Analiza 2
Resitve 9. sklopa nalog

Potencne vrste in Taylorjeva vrsta

(2) Doloci obmocje konvergence danih potencnih vrst, nato pa Se izra¢unaj njuni vsoti:
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Resitev: Pri izracunu vsote potencne vrste lahko uporabimo izrek, ki pravi, da lahko
potencne vrste clenoma odvajamo in integriramo:
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Naj bo R konvergenéni polmer potencne vrste Y~ a,(z—a)" in f(z) =Y ja,(x—a)"
njena vsota na (e — R,a+ R). Potem za = € (a — R,a + R) velja
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(a) Potencna vrsta % ima srediste v tocki a = 1 in koeficiente a,, = . Konver-
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Vrsta torej konvergira na intervalu I = (0,2). Poglejmo $e robni tocki:

cx =0~ Z —— < oo = vrsta konvergira pri x = 0,
n

cx =2~ Z— = o0 = vrsta divergira pri x = 2.
n

n=1

Od tod sledi, da vsota vrste doloc¢a zvezno funkcijo na intervalu [0, 2), ki je analiti¢na v
njegovi notranjosti.
Definirajmo sedaj funkcijo f : [0,2) — R s predpisom
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7 odvajanjem zgornje vrste dobimo

fla)=2 (e-1' =) (w-1)" = 1—(915—1):2;:‘

Pri tem smo uporabili formulo za vsoto geometrijske vrste. Z integriranjem sedaj dobimo
f(z)=—In(2—2z)+ C.

Vrednost konstante C' lahko dobimo z izra¢unom funkcije f v kaksni tocki. Najlazje je
vzeti kar sredisce potencne vrste. Pri 2 = 1 tako dobimo f(1) =0 = C, od koder sledi

f(z) =—In(2 — ).
Na levi sliki so narisani grafi vsote vrste, njene razsiritve in pa aproksimacij vsote vrste s
kon¢énimi vsotami za k € {1,2,5,10}.
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Zanimivo je pogledati, kaj se zgodi s kon¢nimi aproksimacijami, ¢e pogledamo vrednosti, ki
so malce manjse od ni¢. Na desni sliki so prikazane aproksimacije za k € {20, 50, 100, 500}.
Opazimo lahko, da na intervalu [0, 2) aproksimacije konvergirajo k funkeiji f. Kakor hitro

pa je x < 0, pa zacne vsota vrste rasti cez vse meje.
[e.e]

(b) Konvergenéni polmer vrste nz=:1 ey +1)' je enak
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R = lim (Ziz)lzlim (n+1)(n+3) = lim (n+ 1)+ ): ,

kar pomeni, da vrsta konvergira za vsak z € R. Ce definiramo funkcijo f : R — R kot

vsoto potencne vrste
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je torej f cela funkcija. Ce naso vrsto ¢lenoma integriramo, dobimo

RN Iz 1
t)dt = 2y =2 = (—x—1).
/f ( —|—1) x;(rw—l)! x;n! :U(e z=1)

7 uporabo osnovnega 1zreka analize sedaj sledi

f(z) = </Ozf(t)dt>/:(61—1)90—269”—90—1) :@xx_§x+1.
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(3) Doloci obmocje konvergence in izrac¢unaj vsoto potencne vrste

f: (_1)71 l,2n+1
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nato pa se vsoto vrste
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sklepamo, da je konvergenc¢ni polmer vrste enak R = 1. Vrsta konvergira tudi pri z = +1,
od koder sledi, da je f : [-1,1] — R zvezna funkcija. Ker lahko poten¢ne vrste ¢lenoma
odvajamo, je
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7 integriranjem dobimo
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= dr = arctgx + C.
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Konstanto C' dolo¢imo z izracunom v neki tocki, ki je ponavadi kar sredis¢e potencne

vrste. Dobimo 0 = f(0) = arctg 0+ C, kar nam da C' = 0. Posredno smo tako izracunali

Taylorjevo vrsto funkcije arctg v okolici tocke x = 0
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ki konvergira za |z| < 1. Ce izberemo x = 1, pa dobimo
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Poglejmo se graf funkcije arc tg in pa nekaj konénih aproksimacij s Taylorjevimi polinomi.




Opomba: Teorija poten¢énih vrst nam med drugim pomaga izracunati tudi vsote nekaterih
zanimivih Stevilskih vrst. Glavno idejo lahko strnemo v naslednjih nekaj korakov:

- Poisci potencno vrsto, katere izracun v neki tocki sovpada z dano stevilsko vrsto.
- Izracunaj vsoto potencne vrste v poljubni tocki.

- Vstavi v izraz za vsoto potencne vrste ustrezno vrednost.

Razvij dani funkciji v Taylorjevo vrsto okoli tocke a = 0:

(@) 7o) =",
) 10 = 55,5

Regitev: Naj bo f gladka funkcija na neki okolici (a — d,a + ) tocke a. Taylorjeva vrsta
funkcije f glede na tocko a je potencna vrsta
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T(z) =) f™(a)
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Ce Taylorjeva vrsta konvergira k funkciji f na (a — 6,a + §), re¢emo, da je f analiticna
funkcija na (@ — d,a + 6). Omeniti velja, da se lahko zgodi, da Taylorjeva vrsta dane
funkcije konvergira k neki drugi funkciji. Osnovni primeri Taylorjevih vrst so:
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Za poljubno realno stevilo a je posploseni binomski simbol definiran s predpisom

(a) _ala=1(@=2)--(a=n+1)
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Pri o« = —1 tako dobimo:
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(a) Za razvoj funkcije v Taylorjevo vrsto v okolici dane tocke moramo izra¢unati vrednosti
vseh odvodov funkcije v tej tocki. V splosnem je racunanje odvodov tezko in zamudno,



vcasih pa si lahko delo olajsamo, ¢e znamo dano funkcijo zapisati kot produkt funkeij,
katerih Taylorjeve vrste ze poznamo. V nasem primeru je:

In(1 + x)
N A
= -4 = - = ) (1= 3
( st3 -1+ )( T+ +-e),

=0

3

Stevila a,, dobimo s konvolucijskim produktom obeh vrst:
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(b) V tem primeru je:
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Stevila a,, dobimo s konvolucijskim produktom obeh vrst:
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za splosni ¢len pa velja
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Taylorjeva vrsta funkcije f glede na tocko z = 0 je torej
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Dana je funkcija f(x) = ﬁ, kjer je k naravno Stevilo. Pokazi, da je razvoj funkcije f
v Taylorjevo vrsto okoli tocke a = 0 enak

Fa) = ni"% (k+z— 1):&

Regitev: Pri razvoju funkcije f v Taylorjevo vrsto si bomo pomagali z binomsko formulo:
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Razvij funkcijo
d(x) Tz dt
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v Taylorjevo vrsto okoli tocke a = 0.

Resitev: V verjetnosti, statistiki, fiziki, ra¢unalnistvu in drugod je pomembna standardna
normalna porazdelitev z verjetnostno gostoto

Je ena izmed funkcij, katere nedoloceni integral ni elementarna funkcija. Njen nedoloceni
integral ponavadi oznac¢imo s ¢, omogoca pa nam, da racunamo verjetnosti, da normalno
porazdeljena slucajna spremenljivka zavzame vrednosti na dolocenem intervalu.



Funkcijo ® lahko razvijemo v Taylorjevo vrsto, ki konvergira na celi realni osi. Pri tem
bomo uporabili dejstvo, da lahko potencne vrste ¢lenoma integriramo. Uporabili bomo

formulo
o nth

Z onpl

od koder sledi

nth nt2n+1

O( 7 dt =
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Ce izracunamo prvih nekaj ¢lenov, dobimo

o(x) 1 3 N 2 a2l .

Tr) = — €r — — S
V2m 6 40 336

Funkcija @ je omejena in ima vodoravni asimptoti y = £0.5.
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