
Analiza 2

Rešitve 9. sklopa nalog

Potenčne vrste in Taylorjeva vrsta

(2) Določi območje konvergence danih potenčnih vrst, nato pa še izračunaj njuni vsoti:

(a)
∞∑
n=1

(x− 1)n

n
,

(b)
∞∑
n=1

nxn−1

(n+ 1)!
.

Rešitev: Pri izračunu vsote potenčne vrste lahko uporabimo izrek, ki pravi, da lahko
potenčne vrste členoma odvajamo in integriramo:

Naj bo R konvergenčni polmer potenčne vrste
∑∞

n=0 an(x−a)n in f(x) =
∑∞

n=0 an(x−a)n

njena vsota na (a−R, a+R). Potem za x ∈ (a−R, a+R) velja

f ′(x) =
∞∑
n=1

nan(x− a)n−1,∫ x

a

f(t) dt =
∞∑
n=0

an
n+ 1

(x− a)n+1.

(a) Potenčna vrsta
∞∑
n=1

(x−1)n

n
ima sredǐsče v točki a = 1 in koeficiente an = 1

n
. Konver-

genčni polmer vrste je enak

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

1
n
1

n+1

= 1.

Vrsta torej konvergira na intervalu I = (0, 2). Poglejmo še robni točki:

· x = 0 
∞∑
n=1

(−1)n

n
< ∞ ⇒ vrsta konvergira pri x = 0,

· x = 2 
∞∑
n=1

1

n
= ∞ ⇒ vrsta divergira pri x = 2.

Od tod sledi, da vsota vrste določa zvezno funkcijo na intervalu [0, 2), ki je analitična v
njegovi notranjosti.

Definirajmo sedaj funkcijo f : [0, 2) → R s predpisom

f(x) =
∞∑
n=1

(x− 1)n

n
.
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Z odvajanjem zgornje vrste dobimo

f ′(x) =
∞∑
n=1

(x− 1)n−1 =
∞∑
n=0

(x− 1)n =
1

1− (x− 1)
=

1

2− x
.

Pri tem smo uporabili formulo za vsoto geometrijske vrste. Z integriranjem sedaj dobimo

f(x) = − ln(2− x) + C.

Vrednost konstante C lahko dobimo z izračunom funkcije f v kakšni točki. Najlažje je
vzeti kar sredǐsče potenčne vrste. Pri x = 1 tako dobimo f(1) = 0 = C, od koder sledi

f(x) = − ln(2− x).

Na levi sliki so narisani grafi vsote vrste, njene razširitve in pa aproksimacij vsote vrste s
končnimi vsotami za k ∈ {1, 2, 5, 10}.

Interval konvergence vrste
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Zanimivo je pogledati, kaj se zgodi s končnimi aproksimacijami, če pogledamo vrednosti, ki
so malce manǰse od nič. Na desni sliki so prikazane aproksimacije za k ∈ {20, 50, 100, 500}.
Opazimo lahko, da na intervalu [0, 2) aproksimacije konvergirajo k funkciji f . Kakor hitro
pa je x < 0, pa začne vsota vrste rasti čez vse meje.

(b) Konvergenčni polmer vrste
∞∑
n=1

nxn−1

(n+1)!
je enak

R = lim
n→∞

n+1
(n+2)!

n+2
(n+3)!

= lim
n→∞

(n+ 1)(n+ 3)!

(n+ 2)(n+ 2)!
= lim

n→∞

(n+ 1)(n+ 3)

n+ 2
= ∞,

kar pomeni, da vrsta konvergira za vsak x ∈ R. Če definiramo funkcijo f : R → R kot
vsoto potenčne vrste

f(x) =
∞∑
n=1

nxn−1

(n+ 1)!
,

je torej f cela funkcija. Če našo vrsto členoma integriramo, dobimo∫ x

0

f(t) dt =
∞∑
n=1

xn

(n+ 1)!
=

1

x

∞∑
n=1

xn+1

(n+ 1)!
=

1

x

∞∑
n=2

xn

n!
=

1

x
(ex − x− 1).

Z uporabo osnovnega izreka analize sedaj sledi

f(x) =

(∫ x

0

f(t) dt

)′

=
(ex − 1)x− (ex − x− 1)

x2
=

exx− ex + 1

x2
.
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(3) Določi območje konvergence in izračunaj vsoto potenčne vrste

∞∑
n=0

(−1)n

2n+ 1
x2n+1,

nato pa še vsoto vrste
∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · · .

Rešitev: Naj bo

f(x) =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+

x5

5
− x7

7
+ . . .

Iz formule
1

R
= lim sup

n→∞

2n+1

√
1

2n+ 1
= 1

sklepamo, da je konvergenčni polmer vrste enak R = 1. Vrsta konvergira tudi pri x = ±1,
od koder sledi, da je f : [−1, 1] → R zvezna funkcija. Ker lahko potenčne vrste členoma
odvajamo, je

f ′(x) = 1− x2 + x4 − x6 + · · · = 1

1 + x2
.

Z integriranjem dobimo

f(x) =

∫
1

1 + x2
dx = arc tg x+ C.

Konstanto C določimo z izračunom v neki točki, ki je ponavadi kar sredǐsče potenčne
vrste. Dobimo 0 = f(0) = arc tg 0 + C, kar nam da C = 0. Posredno smo tako izračunali
Taylorjevo vrsto funkcije arc tg v okolici točke x = 0

arc tg x = x− x3

3
+

x5

5
− x7

7
+ . . . ,

ki konvergira za |x| ≤ 1. Če izberemo x = 1, pa dobimo

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ . . . = arc tg 1 =

π

4
.

Poglejmo še graf funkcije arc tg in pa nekaj končnih aproksimacij s Taylorjevimi polinomi.

Interval konvergence vrste
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Opomba: Teorija potenčnih vrst nam med drugim pomaga izračunati tudi vsote nekaterih
zanimivih številskih vrst. Glavno idejo lahko strnemo v naslednjih nekaj korakov:

· Poǐsči potenčno vrsto, katere izračun v neki točki sovpada z dano številsko vrsto.

· Izračunaj vsoto potenčne vrste v poljubni točki.

· Vstavi v izraz za vsoto potenčne vrste ustrezno vrednost.

(4) Razvij dani funkciji v Taylorjevo vrsto okoli točke a = 0:

(a) f(x) =
ln(1 + x)

1 + x
,

(b) f(x) =
1

2− 3x+ x2
.

Rešitev: Naj bo f gladka funkcija na neki okolici (a− δ, a + δ) točke a. Taylorjeva vrsta
funkcije f glede na točko a je potenčna vrsta

T (x) =
∞∑
n=0

f (n)(a)
(x− a)n

n!
= f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·

Če Taylorjeva vrsta konvergira k funkciji f na (a − δ, a + δ), rečemo, da je f analitična
funkcija na (a − δ, a + δ). Omeniti velja, da se lahko zgodi, da Taylorjeva vrsta dane
funkcije konvergira k neki drugi funkciji. Osnovni primeri Taylorjevih vrst so:

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · , x ∈ R,

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · , x ∈ R,

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · , x ∈ R,

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · , |x| < 1,

(1 + x)α = 1 +

(
α

1

)
x+

(
α

2

)
x2 +

(
α

3

)
x3 + · · · , |x| < 1, α ∈ R.

Za poljubno realno število α je posplošeni binomski simbol definiran s predpisom(
α

n

)
=

α(α− 1)(α− 2) · · · (α− n+ 1)

n!
.

Pri α = −1 tako dobimo:

1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + · · ·

1

1− x
= 1 + x+ x2 + x3 + x4 + x5 + · · ·

(a) Za razvoj funkcije v Taylorjevo vrsto v okolici dane točke moramo izračunati vrednosti
vseh odvodov funkcije v tej točki. V splošnem je računanje odvodov težko in zamudno,
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včasih pa si lahko delo olaǰsamo, če znamo dano funkcijo zapisati kot produkt funkcij,
katerih Taylorjeve vrste že poznamo. V našem primeru je:

f(x) =
ln(1 + x)

1 + x
,

=

(
x− x2

2
+

x3

3
− x4

4
+ · · ·

)(
1− x+ x2 − x3 + · · ·

)
,

=
∞∑
n=0

anx
n.

Števila an dobimo s konvolucijskim produktom obeh vrst:

a0 = 0,

a1 = 1,

a2 = −
(
1 +

1

2

)
,

a3 = 1 +
1

2
+

1

3
,

za splošni člen pa velja

an = (−1)n+1

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
.

Torej je

f(x) =
∞∑
n=0

(−1)n+1

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
xn = x− 3

2
x2 +

11

6
x3 + · · ·

(b) V tem primeru je:

f(x) =
1

2− 3x+ x2
=

1

(2− x)(1− x)
=

1

2

1

(1− x
2
)(1− x)

,

=
1

2

(
1 +

x

2
+

x2

4
+

x3

8
+ · · ·

)(
1 + x+ x2 + x3 + · · ·

)
,

=
∞∑
n=0

anx
n.

Števila an dobimo s konvolucijskim produktom obeh vrst:

a0 =
1

2
,

a1 =
1

2

(
1 +

1

2

)
,

a2 =
1

2

(
1 +

1

2
+

1

4

)
,

a3 =
1

2

(
1 +

1

2
+

1

4
+

1

8

)
,
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za splošni člen pa velja

an =
1

2

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n

)
=

1

2

1− 1
2n+1

1− 1
2

= 1− 1

2n+1
.

Taylorjeva vrsta funkcije f glede na točko x = 0 je torej

f(x) =
∞∑
n=0

(
1− 1

2n+1

)
xn =

1

2
+

3

4
x+

7

8
x2 +

15

16
x3 + · · ·

(5) Dana je funkcija f(x) = 1
(1−x)k

, kjer je k naravno število. Pokaži, da je razvoj funkcije f

v Taylorjevo vrsto okoli točke a = 0 enak

f(x) =
∞∑
n=0

(
k + n− 1

n

)
xn.

Rešitev: Pri razvoju funkcije f v Taylorjevo vrsto si bomo pomagali z binomsko formulo:

f(x) = (1− x)−k =
∞∑
n=0

(
−k

n

)
(−x)n,

=
∞∑
n=0

−k(−k − 1) · · · (−k − n+ 1)

n!
(−1)nxn,

=
∞∑
n=0

k(k + 1) · · · (k + n− 1)

n!
xn,

=
∞∑
n=0

(
k + n− 1

n

)
xn.

(6) Razvij funkcijo

Φ(x) =
1√
2π

∫ x

0

e−
t2

2 dt.

v Taylorjevo vrsto okoli točke a = 0.

Rešitev: V verjetnosti, statistiki, fiziki, računalnǐstvu in drugod je pomembna standardna
normalna porazdelitev z verjetnostno gostoto

f(x) =
1√
2π

e−
x2

2 .

Je ena izmed funkcij, katere nedoločeni integral ni elementarna funkcija. Njen nedoločeni
integral ponavadi označimo s Φ, omogoča pa nam, da računamo verjetnosti, da normalno
porazdeljena slučajna spremenljivka zavzame vrednosti na določenem intervalu.
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Funkcijo Φ lahko razvijemo v Taylorjevo vrsto, ki konvergira na celi realni osi. Pri tem
bomo uporabili dejstvo, da lahko potenčne vrste členoma integriramo. Uporabili bomo
formulo

e−
t2

2 =
∞∑
n=0

(−1)nt2n

2nn!
,

od koder sledi

Φ(x) =
1√
2π

∫ x

0

e−
t2

2 dt =
1√
2π

∫ x

0

∞∑
n=0

(−1)nt2n

2nn!
dt =

1√
2π

∞∑
n=0

(−1)nt2n+1

(2n+ 1)2nn!
.

Če izračunamo prvih nekaj členov, dobimo

Φ(x) =
1√
2π

(
x− x3

6
+

x5

40
− x7

336
+ · · ·

)
.

Funkcija Φ je omejena in ima vodoravni asimptoti y = ±0.5.
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