
Analiza 2

Rešitve 10. sklopa nalog

Funkcijska zaporedja in vrste

(1) Dano je zaporedje funkcij fn : [0, 1] → R, kjer je fn(x) = n(1− x)xn.

(a) Določi limitno funkcijo f(x) = lim
n→∞

fn(x).

(b) Ali zaporedje funkcij (fn) konvergira enakomerno na [0, 1] k funkciji f?

Rešitev: Pri študiju zaporedij realnih oziroma kompleksnih števil imamo na razpolago
bolj ali manj eno samo smiselno definicijo pojma konvergence zaporedja. Pri funkcijah pa
lahko, odvisno od uporabe, definiramo več med sabo neekvivalentnih načinov konvergence.
Tukaj bomo spoznali dva izmed njih. Naj bodo funkcije (fn) in f definirane na nekem
intervalu I ⊂ R. Potem:

(a) Zaporedje (fn) konvergira k f po točkah na I, če je lim
n→∞

fn(x) = f(x) za vsak x ∈ I.

(b) Zaporedje (fn) konvergira k f enakomerno na I, če za vsak ϵ > 0 obstaja tak N , da
za vsak n ≥ N in za vsak x ∈ I velja |f(x)− fn(x)| < ϵ.

Konvergenca po točkah pomeni, da v izbrani točki x0 ∈ I in pri dani natančnosti ϵ funkcijo
f dovolj dobro aproksimirajo vsi fn od nekega N dalje.

Enakomerna konvergenca pa pomeni, da pri izbrani natančnosti ϵ funkcijo f dovolj dobro
aproksimirajo vse funkcije fn od nekod dalje na celem intervalu I. To pomeni, da lahko
izberemo tak N , ki je hkrati dober za vse x ∈ I. Enakomerna konvergenca torej implicira
konvergenco po točkah, obratno pa ni vedno res.
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Pri računanju si pomagamo z naslednjo ekvivalentno definicijo enakomerne konvergence.
Ekvivalentno je namreč zahtevati, da zaporedje cn = supx∈I |f(x)− fn(x)| konvergira k 0.

(a) Izberimo x ∈ [0, 1].

· x ∈ {0, 1} ⇒ fn(x) = 0 za vsak n ⇒ f(x) = 0,

· x ∈ (0, 1) ⇒ f(x) = lim
n→∞

fn(x) = lim
n→∞

n(1− x)xn = (1− x) lim
n→∞

nxn = 0.

Zaporedje (fn) torej po točkah konvergira k funkciji

f(x) = 0.
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(b) Poglejmo sedaj razliko med posameznimi funkcijami in pa limitno funkcijo. Upoštevali
bomo, da nas zanimajo samo x ∈ [0, 1].

|f(x)− fn(x)| = |fn(x)| = |n(1− x)xn| = n(1− x)xn.

Ker so vse funkcije zvezne, interval pa je končen in zaprt, lahko supremum zamenjamo z
maksimumom. Sledi

cn = sup
x∈[0,1]

|f(x)− fn(x)| = max
x∈[0,1]

fn(x).

Iščemo torej maksimume funkcij fn na intervalu [0, 1]. Računajmo

f ′
n(x) = −nxn + n2(1− x)xn−1 = nxn−1 (n(1− x)− x) = nxn−1 (n− (n+ 1)x) .

Ničle odvodov so v x0 = 0, kjer imajo funkcije minimume, in pa v točkah xn = n
n+1

, kjer
imajo funkcije maksimume. Sledi

cn = fn(xn) = n

(
1− n

n+ 1

)(
n

n+ 1

)n

= n · 1

n+ 1

(
n

n+ 1

)n

=

(
n

n+ 1

)n+1

.

Limita zaporedja (cn) je enaka

lim
n→∞

(cn) = lim
n→∞

(
n

n+ 1

)n+1

= lim
n→∞

(
1− 1

n+ 1

)n+1

=
1

e
.

Pri majhnih ϵ-ih bo torej za dovolj velike n veljalo

max
x∈[0,1]

fn(x) > ϵ,

kar pomeni, da konvergenca ni enakomerna.

Na sliki vidimo, da gredo za vsak x ∈ [0, 1] vrednosti fn(x) proti 0 pri n → ∞, vendar pa
se grafi funkcij fn po obliki bistveno razlikujejo od grafa funkcije f .
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(2) Dano je zaporedje funkcij fn : [0, 1] → R, kjer je fn(x) = 2nxe−nx2
.

(a) Določi limitno funkcijo f(x) = lim
n→∞

fn(x).

(b) Ali velja lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
f(x) dx?
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Rešitev: (a) Izberimo x ∈ [0, 1].

· x = 0 ⇒ fn(x) = 0 za vsak n ⇒ f(x) = 0,

· x ∈ (0, 1] ⇒ f(x) = lim
n→∞

fn(x) = lim
n→∞

2nxe−nx2

= 2x lim
n→∞

ne−nx2

= 0.

Zaporedje (fn) tudi tokrat po točkah konvergira k funkciji

f(x) = 0.

(b) Računajmo∫ 1

0

fn(x) dx =

∫ 1

0

2nxe−nx2

dx
nx2=t
=

∫ n

0

e−t dt = −e−t
∣∣∣n
0
= 1− e−n.

Torej je

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

(1− e−n) = 1.

Po drugi strani pa je
∫ 1

0
f(x) dx = 0, od koder sledi

lim
n→∞

∫ 1

0

fn(x) dx ̸=
∫ 1

0

f(x) dx.

Opomba: Implicitno smo s tem pokazali, da zaporedje (fn) ne konvergira enakomerno na
intervalu [0, 1] k funkciji f . Za enakomerno konvergentna zaporedja velja namreč:

Izrek: Če zaporedje (fn) enakomerno konvergira k funkciji f na intervalu [a, b], je

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx.

V praksi to pomeni, da lahko pri enakomerno konvergentnih zaporedjih zamenjamo vrstni
red integriranja in pa računanja limite.

Prepričajmo se še grafično, da konvergenca ni enakomerna. Narisani so grafi prvih petih
funkcij iz danega zaporedja. Maksimumi funkcij rastejo v tem primeru čez vse meje.
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(3) Dano je zaporedje funkcij fn : R → R, kjer je fn(x) =
x

1+nx2 .

(a) Pokaži, da zaporedje (fn) enakomerno konvergira na R k neki funkciji f .

(b) Ali velja f ′(x) = lim
n→∞

f ′
n(x) za vsak x ∈ R?
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Rešitev: (a) Izberimo x ∈ R in računajmo

f(x) = lim
n→∞

fn(x) = lim
n→∞

x

1 + nx2
= 0.

Zaporedje (fn) torej po točkah konvergira k funkciji f(x) = 0. Naj bo sedaj

cn = sup
x∈R

|f(x)− fn(x)| = sup
x∈R

|fn(x)|.

Ker je
lim

x→±∞
fn(x) = 0

za vsak n ∈ N, in so funkcije fn zvezne na R, so omejene, zato moramo pravzaprav poiskati
maksimume funkcij |fn| na R. Računajmo

f ′
n(x) =

1 + nx2 − 2nx2

(1 + nx2)2
=

1− nx2

(1 + nx2)2
.

Ničle odvodov so v točkah ± 1√
n
, kjer imajo funkcije fn lokalne ekstreme. Vse funkcije so

lihe, zato se lahko pri iskanju maksimuma funkcije |fn| omejimo na x ≥ 0. Maksimum bo
dosežen v točki xn = 1√

n
. Sledi

cn = fn(xn) =

1√
n

2
=

1

2
√
n
.

Limita vrednosti cn pa je

lim
n→∞

(cn) = lim
n→∞

1

2
√
n
= 0,

kar pomeni, da zaporedje (fn) konvergira enakomerno na R k funkciji f .

(b) Izračunali smo že, da velja f ′
n(x) =

1−nx2

(1+nx2)2
. Od tod sledi

lim
n→∞

f ′
n(x) =

{
1 ; x = 0,
0 ; x ̸= 0.

Po drugi strani pa je f ′(x) = 0 za vsak x. Od tod sklepamo, da enakost

f ′(x) = lim
n→∞

f ′
n(x)

ne velja za vsak x ∈ R, ampak le za x ̸= 0.

Opomba 1: Videli smo, da kljub temu, da zaporedje (fn) konvergira enakomerno na
intervalu R k funkciji f , ne smemo zamenjati vrstnega reda odvajanja in pa računanja
limite. Pogoji, kdaj to lahko naredimo, so v tem primeru malce ostreǰsi.

Izrek: Naj zaporedje (fn) konvergira po točkah k funkciji f na intervalu I ⊂ R. Če so
vse funkcije fn odvedljive in če zaporedje f ′

n konvergira enakomerno na I, je funkcija f
odvedljiva in velja

f ′(x) =
(
lim
n→∞

fn(x)
)′

= lim
n→∞

f ′
n(x).

Opomba 2: Poglejmo si še grafe funkcij fn za n ∈ {5, 10, 15, 20}.
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Ker zaporedje (fn) konvergira enakomerno na R k ničelni funkciji, bodo grafi funkcij fn
poljubno blizu grafa funkcije f pri dovolj velikih n-jih. Vendar pa grafi vseh funkcij fn
sekajo abscisno os pod kotom 45◦, kar pomeni, da se po obliki precej razlikujejo od grafa
ničelne funkcije.

Na splošno nam enakomerna konvergenca funkcij zagotavlja, da bomo lahko limitno
funkcijo poljubno dobro aproksimirali. Če pa dodatno želimo še, da se bodo tudi oblike
grafov funkcij prilegale grafu limitne funkcije, pa moramo dodatno zahtevati še enakomerno
konvergenco prvih nekaj odvodov funkcij fn.

(4) Dana je funkcijska vrsta
∞∑
n=2

1

(x+ n− 1)(x+ n)
.

(a) Pokaži, da vrsta enakomerno konvergira na [0,∞).

(b) Izračunaj vsoto funkcijske vrste.

Rešitev: (a) Funkcijska vrsta
∞∑
n=0

fn po definiciji konvergira enakomerno na intervalu I ⊂ R

k vsoti f , če zaporedje delnih vsot

sk =
k∑

n=0

fn

konvergira enakomerno k funkciji f na intervalu I. Če so vsi členi vrste zvezne funkcije in
je konvergenca enakomerna, je tudi vsota vrste zvezna funkcija. Pri določanju enakomerne
konvergence vrst nam pogosto pomaga naslednji kriterij.

Weierstrassov kriterij za enakomerno konvergenco vrst:

Če za vsak n obstaja konstanta cn, da je sup
x∈I

|fn(x)| ≤ cn in vrsta
∞∑
n=0

cn konvergira, potem

vrsta
∞∑
n=0

fn konvergira enakomerno na I.

V praksi ponavadi poskušamo absolutne vrednosti funkcij navzgor omejiti s pozitivnimi
konstantami, ki se seštejejo v neko končno število.

V našem primeru je I = [0,∞) in fn(x) =
1

(x+n−1)(x+n)
za n ≥ 2.

Poglejmo sedaj ocene

|fn(x)| =
1

(x+ n− 1)(x+ n)
≤ 1

(n− 1)(n)
≤ 1

(n− 1)2
.
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Če označimo cn = 1
(n−1)2

, je

∞∑
n=2

cn =
∞∑
n=2

1

(n− 1)2
=

∞∑
n=1

1

n2
=

π2

6
.

Od tod poWeierstrassovem kriteriju sledi, da vrsta
∞∑
n=2

1
(x+n−1)(x+n)

enakomerno konvergira

k neki zvezni funkciji f : [0,∞) → R.
(b) V splošnem je to vse, kar lahko povemo o vsoti vrste. Vemo, da je zvezna funkcija,
ki jo lahko poljubno dobro aproksimiramo z delnimi vsotami. V našem primeru pa lahko
vsoto tudi eksplicitno izračunamo. Najprej opazimo, da velja

fn(x) =
1

(x+ n− 1)(x+ n)
=

1

x+ n− 1
− 1

x+ n
.

Od tod sledi

sk(x) =
k∑

n=2

fn(x) =

(
1

x+ 1
− 1

x+ 2

)
+

(
1

x+ 2
− 1

x+ 3

)
+ · · ·+

(
1

x+ k − 1
− 1

x+ k

)
,

=
1

x+ 1
− 1

x+ k

in

f(x) = lim
k→∞

sk(x) = lim
k→∞

(
1

x+ 1
− 1

x+ k

)
=

1

x+ 1
.

Poglejmo še grafe vsote in pa delnih vsot za k ∈ {2, 5, 10, 20, 50}.
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Opomba: V primeru, ko konvergenca ni enakomerna, se lahko zgodi, da limitna funkcija
ni zvezna. Tak primer je zaporedje funkcij fn(x) = xn, ki na intervalu [0, 1] po točkah
konvergira k funkciji

f(x) =

{
0 ; x ∈ [0, 1),
1 ; x = 1.
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(5) Dano je zaporedje funkcij fn : (0,∞) → R, kjer je fn(x) =
e−nx

n
.

(a) Izračunaj vsoto vrste
∞∑
n=1

fn.

(b) Pokaži, da vrsta ne konvergira enakomerno na (0,∞).

Rešitev: (a) Pri izračunu vsote vrste si bomo pomagali s Taylorjevo vrsto

ln(1− t) =
∞∑
n=1

(−1)n+1 (−t)n

n
= −

∞∑
n=1

tn

n
,

ki konvergira za |t| < 1. Če pǐsemo t = e−x, bo za x > 0 veljalo t ∈ (0, 1), zato je

f(x) =
∞∑
n=1

e−nx

n
=

∞∑
n=1

(e−x)n

n
= − ln(1− t) = − ln(1− e−x).

(b) Za dokaz enakomerne konvergence vrste na intervalu (0,∞) ne moremo uporabiti
Weierstrassovega kriterija, saj je

sup
x∈(0,∞)

|fn(x)| = 1/n,

harmonična vrsta
∞∑
n=1

1
n
pa divergira.

Vsota vrste je zvezna funkcija na intervalu (0,∞), ki pa je neomejena v okolici točke
x = 0. Od tod sledi, da konvergenca ni enakomerna. Vse delne vsote vrste so namreč
omejene funkcije na intervalu (0,∞), enakomerna limita omejenih funkcij pa ne more biti
neomejena.

Na sliki so prikazani graf vsote in pa grafi delnih vsot za k ∈ {1, 2, 5, 10}.
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