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Motivacija

Imamo simetrično matriko A, za katero bi radi izračunali vse lastne pare.

Računanje običajno poteka v treh fazah:
1) Redukcija A na tridiagonalno matriko T .
2) Računanje lastnih parov T .
3) Transformacija lastnih vektorjev T v lastne vektorje A.

Časovne zahtevnosti:
1) O(n3)

2) Odvisno od metode:
Vse preko QR: O(n3)
Lastne vrednosti preko QR, lastni vektorji preko inverzne iteracije: O(n2),
kadar je potrebna naknadna ortogonalizacija O(n3).
Deli in vladaj: O(n3), če so lastne vrednosti enakomerno razporejene

3) O(n3)
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Izračun lastnega vektorja

T =


a1 b1

b1
. . . . . .
. . . . . . bn−1

bn−1 an

 .
Naj bo λ lastna vrednost ireducibilne simetrične tridiagonalne matrike T . Za
lastni vektor z velja z1 6= 0 in zn 6= 0.

z1 = 1
z2 = −(a1 − λ)/b1
k = 2, . . . , n − 1

zk+1 = −(bk−1zk−1 + (ak − λ)zk)/bk

Če fiksiramo z1 = 1, potem iz prve do predzadnje enačbe sistema (T − λI)z = 0
dobimo lastni vektor z . Pri tem smo opustili zadnjo enačbo.

Če je λ̃ približek za λ, potem za z velja (T − λ̃I)z = δnen za nek δn.
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Numerično računanje lastnega vektorja

Podobno, če bi opustili k-to enačbo, bi za ostanek veljalo (T − λ̃I)z = δkek .

Opustitev k-te enačbe je ekvivalentna temu, da kot približek za lastni vektor
vzamemo z = (T − λ̃I)−1ek .

Naj bo λ̃ približek za λj . Katero enačbo naj opustimo?

Iz ek =
∑n

i=1(xi)kxi sledi

z (k) = (T − λ̃I)−1ek =
(xj)k

λj − λ̃

xj +
∑
i 6=j

(xi)k
(xj)k

· λj − λ̃
λi − λ̃

xi



Vidimo, da bo z (k) dober približek za lastni vektor, če
opustimo k-to enačbo, kjer ima lastni vektor xj maksimalno komponento,
velja |λj − λ̃| � |λi − λ̃| za i 6= j .
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LDLT in UDUT faktorizaciji

T =


a1 b1

b1
. . . . . .
. . . . . . bn−1

bn−1 an

 = LD+LT = UD−UT

L =


1
l1 1

. . . . . .
ln−1 1

, D+ =


d+

1
d+

2
. . .

d+
n



LD+LT

d+
1 = a1

k = 1, . . . , n − 1
lk = bk/d+

k
d+

k+1 = ak+1 − lkbk

U =


1 u1

. . . . . .
1 un−1

1

, D− =


d−1

d−2
. . .

d−n



UD−UT

d−n = an
k = n − 1, . . . , 1

uk = bk/d−k+1
d−k = ak − ukbk
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Zasukan razcep

Na k zgornjih vrsticah naredimo razcep LD+LT , na spodnjih n − k + 1 pa UD−UT .
Dobimo T = NkDkNT

k , kjer je

Nk =



1

l1
. . .
. . . 1

lk−1 1 uk

1
. . .
. . . un−1

1


in Dk = diag(d+

1 , . . . , d+
k−1, γk , d−k+1, . . . , d

−
n ).

Izrek
1) γk = d+

k + d−k − ak

2) Če je matrika T nesingularna, potem velja 1/γk = eT
k T−1ek .
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Lastnosti zasukanega razcepa

Lema
Naj bo NkDkNT

k zasukani razcep matrike T − λ̃I. Velja

1
γk

=
[(xj)k ]2

λj − λ̃
+
∑
i 6=j

[(xi)k ]2

λi − λ̃
.

Naj bo |λj − λ̃| � |λi − λ̃| za i 6= j . Potem:

majhna vrednost |γk | ⇔ nadpovprečna vrednost |(xj)k |

Iz zasukanega razcepa ocenimo, kateri element lastnega vektorja je maksimalen.
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Izračun lastnega vektorja iz zasukanega razcepa

Nk =



1

l1
. . .
. . . 1

lk−1 1 uk

1
. . .
. . . un−1

1


,

Dk = diag(d+
1 , . . . , d+

k−1, γk , d−k+1, . . . , d
−
n )

Če je T − λ̃I = NkDkNT
k , ima sistem (T − λ̃I)z = γkek enolično rešitev, ki jo dobimo z:

zk = 1
j = k − 1, . . . , 1

zj = −ljzj+1

(v primeru zj+1 = 0 pa zj = −bj+1zj+2/bj)

j = k + 1, . . . , n
zj = −uj−1zj−1

(v primeru zj−1 = 0 pa zj = −bj−2zj−2/bj−1)
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Ponovitev algoritma

Naj bo λ̃ približek za lastno vrednost matrike T . Lastni vektor z izračunamo po
naslednjem postopku.

Algoritem za izračun lastnega vektorja
1) Izračunaj razcepa T − λ̃I = LD+LT in T − λ̃I = UD−UT

2) Izračunaj γ1, . . . , γn za zasukane razcepe in poišči minimalni |γk |
3) Reši sistem (T − λ̃I)z = γkek in normiraj z

Zahtevnost tega algoritma je 12n +O(1) operacij.

Če lahko vnaprej ocenimo k (npr. z Gerschgorinovimi krogi), se zahtevnost še
zmanjša.
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Relativno robustna reprezentacija matrike

Tridiagonalno matriko T lahko predstavimo z vektorjema diagonalnih in
obdiagonalnih elementov a in b. Majhne relativne spremembe a in b lahko
povzročijo velike relativne spremembe lastnih vrednosti in vektorjev.

Če je T pozitivno definitna, jo lahko predstavimo z vektorjema diagonalnih in
obdiagonalnih elementov faktorja Choleskega. Majhne relativne spremembe teh
elementov povzročijo majhne relativne spremembe lastnih parov, zato je takšna
predstavitev relativno robustna.

Definicija
Množica števil {pi}, ki določa matriko T , je relativno robustna reprezentacija
(RRR), če se lastni pari matrike T + δT, ki jo določa množica zmotenih
elementov {pi(1 + εi)}, relativno malo razlikujejo od lastnih parov matrike T .

Če reprezentacija z visoko relativno natančnostjo določa le lastne vrednosti
(λj , . . . , λk), pravimo da je delna RRR(j , . . . , k).
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Robustnost razcepa LDLT

Če je T pozitivno definitna, lahko namesto razcepa Choleskega uporabimo LDLT

razcep (izognemo se kvadratnim korenom), ki je prav tako RRR.

Če je T nedefinitna, lahko uporabimo razcep T − σI = LDLT za izbrani premik σ.

Ob primerno izbranem σ dosežemo, da je zgornji razcep delna RRR za iskane
lastne vrednosti.

Medtem ko lastne vrednosti lahko izračunamo z visoko relativno natančnostjo npr.
z bisekcijo, pa za natančne lastne vektorje potrebujemo, da je lastna vrednost
relativno dobro izolirana, kar lahko dosežemo s premiki.
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RRR premaknjene matrike

Denimo, da poznamo RRR matrike T + τ I oblike LDLT .

Potrebujemo L+D+L+T in U−D−U−T razcepa premaknjene matrike
T + τ I − µI = LDLT − µI.

Z naslednjimi algoritmi ohranimo relativno robustno reprezentacijo.

dstqds algoritem

s1 = −µ
i = 1, . . . , k − 1

d+
i = si + di

l+i = lidi/d+
i

si+1 = l+i lisi − µ
d+

n = sn + dn

dqds algoritem

pn = dn − µ
i = n − 1, . . . , 1

d−i+1 = di l2
i + pi+1

t = di/d−i+1
pi = pi+1i − µ

d−1 = p1

izračun γ

i = 1, . . . , n
γi = si + pi + µ
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Potrebujemo L+D+L+T in U−D−U−T razcepa premaknjene matrike
T + τ I − µI = LDLT − µI.

Z naslednjimi algoritmi ohranimo relativno robustno reprezentacijo.

dstqds algoritem

s1 = −µ
i = 1, . . . , k − 1

d+
i = si + di

l+i = lidi/d+
i

si+1 = l+i lisi − µ
d+

n = sn + dn

dqds algoritem

pn = dn − µ
i = n − 1, . . . , 1

d−i+1 = di l2
i + pi+1

t = di/d−i+1
pi = pi+1i − µ

d−1 = p1

izračun γ

i = 1, . . . , n
γi = si + pi + µ
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GetVec

Naj bo λ̃ približek za lastno vrednost matrike LDLT , ki je RRR.

Algoritem GetVec
1) Preko dstqds izračunaj razcep LDLT − λ̃I = L+D+L+T

2) Preko dqds izračunaj razcep LDLT − λ̃I = U−D−U−T

3) Izračunaj γ1, . . . , γn za zasukane razcepe in poišči minimalni |γk |
4) Reši sistem NkDkNT

k z = γkek in normiraj z
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Natančnost

Naj bo λ̃ približek za lastno vrednost λj matrike T = LDLT .

Za lastni vektor izračunan preko inverzne iteracije, velja

| sin∠(z , xj)| ≤
O(nu‖T‖)
gap(λ̃)

,

kjer je gap(λ̃) = min
i 6=j
|λ̃− λi |,

Za lastni vektor, izračunan preko RRR, pa velja

| sin∠(z , xj)| ≤
O(nu)

relgap(λ̃)
,

kjer je relgap(λ̃) =
gap(λ̃)

|λ̃|
.

Kadar je |λ̃| dosti manjša kot ‖T‖, je RRR lahko veliko natančnejši.
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Končni algoritem (MRRR)

1) Poišči τ da bo LDLT razcep matrike T + τ I RRR.
2) Izračunaj T + τ I = L0D0LT

0

3) Relativno natančno izračunaj lastne vrednosti λ̃1, . . . , λ̃n matrike L0D0LT
0 .

4) l = 1, m = n
5) Razdeli lastne vrednosti λ̃l , . . . , λ̃m na izolirane in gruče.
6) Za vsako izolirano lastno vrednost λ̃j izračunaj zj preko GetVec.
7) Za vsako gručo λ̃j , . . . , λ̃j+k−1

Preko dstqds izračunaj L0D0LT
0 − τs I = LSDSLT

S , kjer τs izbereš tako, da
bo v LSDSLT

S vsaj ena lastna vrednost izolirana,
bo LSDSLT

S delna RRR(j, . . . , j + k − 1).
Relativno natančno izračunaj lastne vrednosti µj , . . . , µj+k−1 matrike LsDsLT

s .
Določi λ̃i = µi za i = j, . . . , j + k − 1
l = j, m = j + k − 1, L0 = Ls , D0 = Ds , rekurzivno se vrni na korak 5).
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Kriterij za izolirano lastno vrednost oz. gručo

Za lastno vrednost λ̃j pravimo, da je relativno izolirana, če velja

relgap(λ̃j) ≥ δ.

Lastne vrednosti λ̃j , . . . , λ̃j+k−1 tvorijo gručo, če velja

reldis(λ̃i , λ̃i+1) < δ za i = j , . . . , j + k − 2
reldis(λ̃j−1, λ̃j) ≥ δ

reldis(λ̃j+k−1, λ̃j+k) ≥ δ,

kjer je
reldis(λ, µ) =

|λ− µ|
|λ|

.

Za δ vzamemo npr. 10−3.
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Predstavitveno drevo
Matrika ima lastne vrednosti ε, 1 +

√
ε, 1 + 2

√
ε, 2.

LDLT 1,2,3,4

N1D1N1
T 1 L2D2L2

T 2,3

2

 2

1


N 4D4N 4
T 4 

N2D2N2
T 2 N3D3N3

T 3

Listi predstavljajo izračune lastnih vektorjev (GetVec).
Povezave predstavljajo prehod na delno RRR premaknjene matrike (dstqds).
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Ostalo

Avtor RRR algoritma je Inderjit S. Dhillon (1997)
Podrobnosti sta v člankih objavila Dhillon in Parlett (2000, 2003, 2004)
Zahtevnost metode za izračun k lastnih parov je O(kn).
Razvili so tudi varianto za singularni razcep bidiagonalne matrike
V LAPACKU je prisoten od verzije 3.0 dalje (1999)
Predvideva se, da bo sčasoma postal osnovna metoda za reševanje
simetričnega problema lastnih vrednosti
Metoda je večinoma hitrejša od ostalih in potrebuje najmanj dodatnega
spomina
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