
Mehanika 1
Gibanje v polju centralne sile

Gibanje točke v polju centralne sile je v osnovi sicer trodimenzionalno, z upoštevanjem
ohranitvenih količin pa ga lahko reduciramo na dinamiko enega samega parametra.

r

center sile

tockaÇ

F

Sila na točko je centralna, če:

· ves čas kaže proti centru sile,
· je njena velikost odvisna samo od razdalje točke od centra sile,
· je dana s potencialom.

To pomeni, da jo lahko zapišemo v obliki

F⃗ = F (r)e⃗r,

kjer je r razdalja točke od centra sile, F (r) = −V ′(r) za nek potencial V : (0,∞) → R in e⃗r
enotski vektor ki kaže od centra sile do točke. Iz definicije centralne sile lahko izpeljemo, da se
pri gibanju v polju centralne sile ohranjata:

(1) skupna energija E točke,
(2) vrtilna količina l⃗ točke glede na center sile.

Ohranitev teh dveh količin nam omogoča, da dinamiko točke v polju centralne sile reduciramo
na dinamiko parametra r.

rH0L

rHtL
SHtL

center sile

V tesni povezavi z vrtilno količino je ploščinska hitrost. Velja namreč

Ṡ =
dS

dt
=

l

2m
,

kjer je l predznačena velikost vrtilne količine l⃗ in m masa točke. Ker je vrtilna količina točke
konstantna, se pri gibanju v polju centralne sile ohranja tudi ploščinska hitrost točke, čemur
bi lahko rekli posplošeni 2. Keplerjev zakon. Pri mehaniki namesto s ploščinsko hitrostjo raje
operiramo z dvojno ploščinsko hitrostjo

C0 = 2
dS

dt
=

l

m
.
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(1) Točka se premika po ravnini tako, da ima ves čas konstantno velikost hitrosti, smer hitrosti
pa oklepa kot ϕ = 3π

4
z radialno smerjo.

(a) Določi trajektorijo točke.
(b) Izračunaj pospešek točke.

Rešitev: Koordinatni sistem na odprti podmnožici U ⊂ R2 je gladka injektivna preslikava:

Φ : U → R2,

(x, y) 7→ (u(x, y), v(x, y)),

ki ima povsod neizrojeno Jacobijevo matriko.
V primeru polarnih koordinat ponavadi vzamemo:

U = R2 \ {(x, 0) ∈ R2 |x ≥ 0},
Φ(U) = (0,∞)× (0, 2π) ⊂ R2,

preslikava Φ pa je definirana implicitno s predpisom:

x = r cosϕ,

y = r sinϕ.

x

y

Φ
=⇒

r

Φ

2Π

Če preslikamo koordinatni vektorski polji v (r, ϕ)-koordinatah z odvodom preslikave Φ−1,
dobimo na U vektorski polji:

g⃗r =

(
∂x

∂r
,
∂y

∂r

)
= (cosϕ, sinϕ) =

(
x√

x2 + y2
,

y√
x2 + y2

)
,

g⃗ϕ =

(
∂x

∂ϕ
,
∂y

∂ϕ

)
= (−r sinϕ, r cosϕ) = (−y, x).

Pri mehaniki raje uporabljamo prirejeni enotski vektorski polji:

e⃗r = (cosϕ, sinϕ),

e⃗ϕ = (− sinϕ, cosϕ).

Vektorsko polje e⃗r kaže v smeri naraščanja funkcije r, vektorsko polje e⃗ϕ pa v smeri
naraščanja funkcije ϕ.
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eÓr= HcosΦ, sinΦL eÓΦ= H-sinΦ, cosΦL

Če imamo gibanje točke opisano v polarnih koordinatah, lahko njen položaj opišemo z
vektorsko funkcijo

r⃗(t) = (r(t) cosϕ(t), r(t) sinϕ(t)).

Z odvajanjem dobimo, da je hitrost točke enaka
˙⃗r(t) = (ṙ cosϕ− rϕ̇ sinϕ, ṙ sinϕ+ rϕ̇ cosϕ) = ṙe⃗r + rϕ̇e⃗ϕ.

Komponenti hitrosti imenujemo:

· vr = ṙ radialna hitrost,
· vϕ = rϕ̇ obodna hitrost.

Če odvajamo hitrost, dobimo pospešek točke v polarnih koordinatah
¨⃗r(t) = (r̈ − rϕ̇2)e⃗r + (2ṙϕ̇+ rϕ̈)e⃗ϕ,

posamezni členi pospeška pa so:

· ar = r̈ − rϕ̇2 radialni pospešek,
· aϕ = 2ṙϕ̇+ rϕ̈ obodni pospešek.

(a) V našem primeru ima točka konstantno velikost hitrosti, smer hitrosti pa oklepa kot
ϕ = 3π

4
z radialno smerjo. To pomeni, da je

v⃗ = ṙe⃗r + rϕ̇e⃗ϕ = −
√
2
2
ve⃗r +

√
2
2
ve⃗ϕ.

Od tod dobimo sistem dveh diferencialnih enačb:

ṙ = −
√
2
2
v,

rϕ̇ =
√
2
2
v.

Privzeli bomo, da je točka v začetnem trenutku na položaju r⃗(0) = (r0, 0), kar pomeni,
da je r(0) = r0 in ϕ(0) = 0. Zgornjo enačbo lahko potem integriramo v

r(t) = r0 −
√
2
2
vt.

Ko to vstavimo v drugo enačbo, dobimo enačbo

ϕ̇ =

√
2
2

r0 −
√
2
2
vt
.
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Z integracijo in upoštevanjem začetne vrednosti dobimo rezultat

ϕ(t) = ln

(
r0

r0 −
√
2
2
vt

)
.

Predpisa:

r(t) = r0 −
√
2
2
vt,

ϕ(t) = ln

(
r0

r0 −
√
2
2
vt

)

opisujeta trajektorijo gibanja točke po ravnini, ki zadošča danim pogojem. Če nas ne
zanima, kako točno se točka premika, ampak samo, kakšno krivuljo opiše med gibanjem,
govorimo o tirnici gibanja. V našem primeru lahko izrazimo

r(ϕ) = r0e
−ϕ,

kar pomeni, da se točka premika po logaritmični spirali.

�

� �

�ϕ

�ϕ

��

��

(b) Pospešek točke je enak

a⃗ = (r̈ − rϕ̇2)e⃗r + (2ṙϕ̇+ rϕ̈)e⃗ϕ = −v2

2r
e⃗r − v2

2r
e⃗ϕ.

Vidimo, da sta pospešek in hitrost točke ves čas pravokotna.

�

� �
�

�

�ϕ

�ϕ

��

��

(2) Točka z maso m se giblje pod vplivom gravitacijske sile F⃗ (r) = −mMG
r2

e⃗r.

(a) Z uporabo Binetove formule določi tirnico točke.
(b) Določi efektivni potencial.

Rešitev: (a) Binetova formula

ar = −C2
0u

2(u′′ + u)

povezuje obliko centralne sile in pa enačbo tira gibanja. Tir podamo v obliki r = r(ϕ), z
u pa nato označimo obratno vrednost razdalje točke od centra sile oziroma u(ϕ) = 1

r(ϕ)
.
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Če imamo dan tir točke, lahko z odvajanjem in pa z uporabo Binetove formule ponavadi
brez večjih težav izračunamo, kakšna sila deluje nanjo. V kolikor pa imamo dano silo,
pa moramo za izračun tira rešiti diferencialno enačbo drugega reda, kar pa je v splošnem
dokaj težko.
V našem primeru je

ar = −MG

r2
= −MGu2.

Od tod z uporabo Binetove formule pridemo do diferencialne enačbe:

ar = −C2
0u

2(u′′ + u),

−MGu2 = −C2
0u

2(u′′ + u),

u′′ + u =
MG

C2
0

.

Splošno rešitev te diferencialne enačbe lahko zapišemo v obliki

u(ϕ) = C1 cosϕ+ C2 sinϕ+
MG

C2
0

= A cos(ϕ− ϕ0) +
MG

C2
0

,

kjer je A =
√

C2
1 + C2

2 in ϕ0 polarni kot točke (C1, C2). Tako smo prišli do tira oblike

r(ϕ) =
1

A cos(ϕ− ϕ0) +
MG
C2

0

=
p

1 + ϵ cos(ϕ− ϕ0)
,

kjer je p =
C2

0

MG
in ϵ =

AC2
0

MG
. Ta predpis določa stožnico v ravnini, ki ima gorišče v

koordinatnem izhodišču. Parameter ϵ je numerična ekscentričnost stožnice in natanko
določa tip stožnice. Če je ϵ = 0 tako dobimo krožnico, pri 0 < ϵ < 1 elipso, pri ϵ = 1
parabolo, pri ϵ > 1 pa hiperbolo. Parameter p imenujemo polparameter, parameter ϕ0

pa določa orientacijo stožnice. Na spodnji sliki je narisana odvisnost tipa stožnice od
parametra ϵ pri fiksnem p in pri ϕ0 = 0.

center sile

Ε = 0
0 < Ε < 1

Ε = 1 Ε > 1

Vrednosti parametrov p, ϵ in ϕ0 so odvisne od začetnega položaja in začetne hitrosti točke.
Če je sila privlačna in obratno sorazmerna s kvadratom oddaljenosti točke od centra sile,
smo torej izpeljali, da morajo biti tirnice točk stožnice. V bistvu smo tako iz Newtonovega
gravitacijskega zakona izpeljali 1. Keplerjev zakon. Dokaz implikacije v obratno smer je
še nekoliko lažji, saj nam ni treba reševati diferencialne enačbe, ampak samo odvajati
predpis tira in uporabiti Binetovo formulo.
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Oblika tira točke (ne pa orientacija) je določena z energijo in pa vrtilno količino točke na
naslednji način:

p =
l2

mγ
,

ϵ =

√
1 +

2l2E

mγ2
,

kjer je γ = mMG, G pa gravitacijska konstanta.
(b) Gravitacijski potencial je določen s predpisom F (r) = −V ′(r), od koder dobimo

V (r) =

∫ ∞

r

F (r) dr = −γ

∫ ∞

r

dr

r2
= −γ

r
.

Potencial ponavadi izberemo tako, da v neskončnosti limitira proti nič.
Pri gibanju točke v polju centralne sile igra pomembno vlogo efektivni potencial

Veff(r) = V (r) +
l2

2mr2
.

Z uvedbo efektivnega potenciala lahko dinamiko točke reduciramo na dinamiko parametra
r, saj velja

1

2
mṙ2 + Veff(r) = E.

Če vemo, kakšen je efektivni potencial, lahko kvalitativno obravnavamo, kako se spreminja
oddaljenost točke od centra sile, z integriranjem pa lahko tudi izračunamo r = r(t).
Spreminjanje polarnega kota lahko nato izračunamo s pomočjo Keplerjevega zakona

ϕ̇ =
C0

r2
.

V primeru gravitacijske sile je efektivni potencial enak

Veff(r) = −γ

r
+

l2

2mr2
.

Minimalna možna energija točke je enaka Vmin = −mγ2

2l2
. Pri tej energiji je tir točke

krožnica. Za energije Vmin < E < 0 se točka giblje po elipsi, pri energiji E = 0 po
paraboli, pri energijah E > 0 pa po hiperboli.

r

Veff HrL

Vmin

elipsa
parabola

hiperbola

kroznicaÇ

Opomba: Pri izračunih gibanja točke v polju centralne sile privzamemo, da je center
sile mirujoč v koordinatnem izhodišču. Ta predpostavka je smiselna, če imamo telesi z
masama m in M >> m, pri telesih s primerljivimi masami pa moramo sistem obravnavati
kot sistem dveh teles.
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(3) Materialna točka z maso m se giblje pod vplivom gravitacijske sile F⃗ (r) = −mMG
r2

e⃗r. V
začetnem trenutku je na položaju r⃗(0) = (r0, 0) in ima hitrost v⃗(0) = (0, v).

(a) Določi tip orbite v odvisnosti od parametra v.

(b) Določi tir točke v primeru, ko je v =
√

MG
2r0

.

(c) Določi polosi eliptične orbite v primeru, ko je v =
√

MG
2r0

.

Rešitev: (a) Tip orbite točke, ki se premika pod vplivom gravitacijske sile, je odvisen od
energije točke. Ker se energija ohranja, je dovolj, da izračunamo energijo točke v začetnem
trenutku. V našem primeru tako dobimo

E = Wkin +Wpot =
1
2
mv2 − mMG

r0
.

Glede na velikost v tako ločimo tri primere:

(1) v <
√

2MG
r0

...tir točke je elipsa,

(2) v =
√

2MG
r0

...tir točke je parabola,

(3) v >
√

2MG
r0

...tir točke je hiperbola.

Vrednosti v =
√

2MG
r0

ponavadi rečemo ubežna hitrost. To je najmanjša hitrost točke, pri
kateri je njen tir neomejen.

(b) V primeru, ko je v =
√

MG
2r0

, je tir točke elipsa. V nadaljevanju bomo izračunali obliko
in orientacijo eliptične orbite pri začetnih pogojih r⃗(0) = (r0, 0) in v⃗(0) = (0, v).

(���)

��

Najprej izračunajmo energijo in vrtilno količino točke. V začetnem trenutku je

E = 1
2
m|v⃗(0)|2 − mMG

r0
= 1

2
mv2 − mMG

r0
= mMG

4r0
− mMG

r0
= −3mMG

4r0

in
l = |⃗l| = |mr⃗(0)× v⃗(0)| = mr0v.

Od tod lahko sedaj izračunamo:

p = l2

mγ
= 1

2
r0,

ϵ =
√

1 + 2l2E
mγ2 = 1

2
.
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Izračunati moramo še orientacijo elipse. Privzeli bomo, da je zavrtena za kot ϕ0 glede na
abscisno os, kar pomeni, da je njena enačba

r(ϕ) =
p

1 + ϵ cos(ϕ− ϕ0)
.

V začetnem trenutku je r(ϕ = 0) = r0. Ko to vstavimo v enačbo elipse, dobimo pogoj

r0 =
r0
2

1 + 1
2
cos(−ϕ0)

iz katerega sledi cosϕ0 = −1 oziroma ϕ0 = π. Enačba elipse je torej

r(ϕ) =
r0
2

1 + 1
2
cos(ϕ− π)

=
r0

2− cosϕ
.

Poglejmo še skico.

(���)

��

(c) Elipso lahko podamo v kartezični obliki z enačbo

x2

a2
+

y2

b2
= 1

ali pa v polarni obliki z enačbo

r(ϕ) =
p

1 + ϵ cosϕ
.

Opozoriti moramo, da je v kartezični obliki koordinatno izhodišče v središču elipse, v
polarni obliki pa v njenem gorišču, kar pomeni, da je:

x = e+ r cosϕ,

y = r sinϕ.

V nadaljevanju bomo izpeljali zvezo med parametri a, b, p in ϵ.

�
��

�

������ ����
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Po definiciji je
ϵ = e

a
=

√
a2−b2

a
.

Razdalji od gorišča do temen elipse na večji polosi sta enaki p
1+ϵ

in p
1−ϵ

, kar nam da

2a = p
1+ϵ

+ p
1−ϵ

= 2p
1−ϵ2

.

Od tod lahko izpeljemo zveze:

a = p
1−ϵ2

,

b = p√
1−ϵ2

,

p = b2

a
.

Če upoštevamo vrednosti p = r0
2

in ϵ = 1
2
, dobimo:

a = 2
3
r0,

b =
√
3
3
r0.

(4) Točka z maso m se giblje pod vplivom centralne sile po lemniskati

r(ϕ) = a
√

cos 2ϕ,

kjer je a pozitivna konstanta.

(a) Določi centralno silo.
(b) Določi čas prihoda v center sil, če je na začetku točka v apocentru in ima hitrost v.

Rešitev: (a) Najprej si poglejmo skico lemniskate. V tem primeru tir točke seka center
sile.

center sile a

Za izračun centralne sile bomo spet uporabili Binetovo formulo. Iz u(ϕ) = 1
a
√
cos 2ϕ

dobimo

u′(ϕ) =
1

a
· −2 sin 2ϕ

(
√
cos 2ϕ)3

·
(
−1

2

)
=

1

a
· sin 2ϕ

(
√
cos 2ϕ)3

in

u′′(ϕ) =
1

a
·
2 cos 2ϕ(cos 2ϕ)

3
2 − sin 2ϕ · 3

2
(cos 2ϕ)

1
2 (−2 sin 2ϕ)

cos3 2ϕ
,

=
1

a
· 2(cos 2ϕ)

5
2 + 3(cos 2ϕ)

1
2 sin2 2ϕ

cos3 2ϕ
.
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Pospešek točke v radialni smeri je tako enak:

ar = −C2
0u

2(u′′ + u),

= − C2
0

a2 cos 2ϕ

(
1

a
· 2(cos 2ϕ)

5
2 + 3(cos 2ϕ)

1
2 sin2 2ϕ

cos3 2ϕ
+

1

a
· 1√

cos 2ϕ

)
,

= − C2
0

a3 cos 2ϕ

(
2(cos 2ϕ)

5
2 + 3(cos 2ϕ)

1
2 (1− cos2 2ϕ) + (cos 2ϕ)

5
2

cos3 2ϕ

)
,

= − C2
0

a3 cos 2ϕ
· 3(cos 2ϕ)

1
2

cos3 2ϕ
,

= − 3C2
0

a3(cos 2ϕ)
7
2

,

= −3C2
0a

4

r7
,

centralna sila pa
F (r) = −3mC2

0a
4

r7
.

(b) Za določanje časa, ki ga točka porabi za pot med dvema točkama na svojem tiru,
lahko uporabimo Keplerjev zakon. Če označimo z S ploščino lika, ki ga točka opiše na
poti med danima točkama, je čas, ki ga porabi za to pot, enak

T =
2S

C0

.

Če hočemo torej izračunati čas, ki ga točka porabi, da pride iz apocentra v center sile,
moramo izračunati ploščino lika, ki ga opiše med potjo.

apocenter

r = a

center sile

Polovična ploščina lemniskate je enaka

S =
1

2

∫ π
4

0

r2 dϕ =
1

2

∫ π
4

0

a2 cos 2ϕ dϕ =
a2

4
sin 2ϕ

∣∣∣π4
0
=

a2

4
.

Preostane nam še, da izrazimo C0 z začetnim položajem in z začetno hitrostjo točke. V
splošnem lahko hitrost točke zapišemo v obliki

v⃗ = ṙe⃗r + rϕ̇e⃗ϕ.

V apocentru je točka na maksimalni oddaljenosti od centra sile, zato je tam ṙ = 0, kar
pomeni, da je

v = rϕ̇.

10



Če upoštevamo še Keplerjev zakon r2ϕ̇ = C0, dobimo iz dejstva, da je v apocentru r = a,
zvezo

C0 = va.

Čas, ki ga točka porabi, da pride iz apocentra v center sile, je tako enak

T =
a

2v
.

Opomba 1:
Če bi hoteli izračunati trajektorijo točke, bi morali integrirati diferencialno enačbo

ϕ̇ =
C0

r2
=

C0

a2 cos 2ϕ
,

pri začetnem pogoju ϕ(0) = 0. To je diferencialna enačba z ločljivima spremenljivkama,
ki ima rešitev

ϕ(t) =
1

2
arc sin

(
2C0

a2
t

)
.

Z upoštevanjem oblike tira od tod dobimo še

r(t) = a
4

√
1− 4C2

0

a4
t2.

Opomba 2:
Efektivni potencial točke pri gibanju v polju centralne sile F (r) = −3mC2

0a
4

r7
je enak

Veff(r) =
mC2

0

2

(
1

r2
− a4

r6

)
.

Če se točka giblje pod vplivom sile F , dobimo pri različnih energijah različne oblike tira.
Obravnavali bomo primere, ko je ṙ(0) = 0 in ϕ(0) = 0. To pomeni, da točka začne gibanje
v apocentru ali pa v pericentru. Gibanju po lemniskati ustreza primer, ko je skupna
energija točke enaka E = 0, oziroma, ko je apsidna razdalja enaka r = a.

r

Veff HrL
Vmax

a r0

kroznica

lemniskata

Ç

Pri ostalih energijah dobimo tire, ki jih je v splošnem težko analitično izračunati. Tiri
so omejeni v primerih, ko je apsidna razdalja točke manjša od r0 = 4

√
3a. Ko se apsidna

razdalja tira približuje r0, se oblika tira približuje krožnici, pri apsidni razdalji r0 pa je tir
točke krožnica.
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a r0

Točkam, ki ležijo desno od r0 na grafu efektivnega potenciala, ustrezajo neomejeni tiri.

a r0

(5) Točka z maso m se giblje z dano dvojno ploščinsko hitrostjo C0 pod vplivom centralne sile

F⃗ (r) = −C2
0(1 + a2)m

r3
e⃗r,

kjer je a pozitivna konstanta. V začetnem trenutku je na oddaljenosti r0 od centra sil
pod kotom ϕ = 0 in ima radialno hitrost enako vr =

aC0

r0
. Izračunaj tirnico in trajektorijo

točke.

Rešitev: Začetni položaj in začetna hitrost točke sta:

r⃗(0) = (r0, 0),

v⃗(0) =

(
aC0

r0
,
C0

r0

)
.

Obodno komponento hitrosti smo dobili z upoštevanjem Keplerjevega zakona. Od tod
vidimo, da parameter a določa kot med začetno hitrostjo in pa abscisno osjo, saj je

tg θ =
1

a
.

r0

Θ

center sile

v H0L
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Tir gibanja:
Radialni pospešek točke je enak

ar = −C2
0(1 + a2)

r3
= −C2

0(1 + a2)u3.

Od tod z uporabo Binetove formule pridemo do diferencialne enačbe:
ar = −C2

0u
2(u′′ + u),

−C2
0(1 + a2)u3 = −C2

0u
2(u′′ + u),

(1 + a2)u = u′′ + u,

u′′ − a2u = 0.

Splošno rešitev te diferencialne enačbe lahko zapišemo v obliki
u(ϕ) = Aeaϕ +Be−aϕ.

Za določitev konstant A in B potrebujemo še začetna pogoja u(0) in u′(0). Direktno iz
predpostavk naloge sledi, da je

u(0) =
1

r(0)
=

1

r0
.

Funkcija u′(ϕ) je v povezavi z obliko tira, ni pa v direktni povezavi s hitrostjo točke.
Lahko pa jo izrazimo tudi na naslednji način

u′(ϕ) =
du

dϕ
=

du

dt
· dt
dϕ

=
u̇

ϕ̇
=

− ṙ
r2

C0

r2

= − ṙ

C0

.

Začetna hitrost točke v radialni smeri je enaka ṙ(0) = vr(0) =
aC0

r0
, od koder dobimo

u′(0) = − a

r0
.

Z upoštevanjem začetnih pogojev dobimo sistem enačb, ki mu zadoščata A in B:

u(0) = A+B =
1

r0
,

u′(0) = aA− aB = − a

r0
.

Rešitev tega sistema je A = 0, B = 1
r0

. Sledi

r(ϕ) = r0e
aϕ.

Tir materialne točke je torej logaritmična spirala.

r0center sile
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Trajektorija gibanja:
Pri določanju trajektorije gibanja nas ne zanima samo kakšno krivuljo opiše točka med
gibanjem, ampak tudi kako se (v odvisnosti od časa) giblje po njej. Če poznamo tir točke,
lahko njeno trajektorijo dobimo z upoštevanjem Keplerjevega zakona

r2ϕ̇ = C0.

V primeru, ko je r(ϕ) = r0e
aϕ, pridemo do diferencialne enačbe z ločljivimi spremenljiv-

kami

ϕ̇ =
C0

r20e
2aϕ

,

e2aϕ dϕ =
C0

r20
dt,

1

2a
e2aϕ =

C0

r20
t+ A.

Ker je ϕ(0) = 0, je A = 1
2a

, trajektorija točke pa je podana s predpisom

ϕ(t) =
1

2a
ln

(
2aC0

r20
t+ 1

)
,

r(t) = r0

√
2aC0

r20
t+ 1.
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