Mehanika 1

Gibanje v polju centralne sile
Gibanje tocke v polju centralne sile je v osnovi sicer trodimenzionalno, z upostevanjem
ohranitvenih koli¢in pa ga lahko reduciramo na dinamiko enega samega parametra.

__ tocka

“r

F
.(/.
center sile
Sila na tocko je centralna, ce:

- ves Cas kaze proti centru sile,
- je njena velikost odvisna samo od razdalje tocke od centra sile,
- je dana s potencialom.

To pomeni, da jo lahko zapisemo v obliki
F=F(r)e,

kjer je r razdalja tocke od centra sile, F'(r) = —V’(r) za nek potencial V' : (0,00) — R in &,
enotski vektor ki kaze od centra sile do tocke. Iz definicije centralne sile lahko izpeljemo, da se
pri gibanju v polju centralne sile ohranjata:

(1) skupna energija E tocke,
(2) vrtilna koliina [ tocke glede na center sile.

Ohranitev teh dveh koli¢in nam omogoca, da dinamiko tocke v polju centralne sile reduciramo
na dinamiko parametra 7.

center sile

V tesni povezavi z vrtilno koli¢ino je plos¢inska hitrost. Velja namrec

kjer je [ predznacena velikost vrtilne koli¢ine ['in m masa tocke. Ker je vrtilna koli¢ina tocke
konstantna, se pri gibanju v polju centralne sile ohranja tudi plos¢inska hitrost tocke, ¢emur
bi lahko rekli posploseni 2. Keplerjev zakon. Pri mehaniki namesto s plosc¢insko hitrostjo raje
operiramo z dvojno plos¢insko hitrostjo

ds l

=22 =
Co dt m
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(1) Tocka se premika po ravnini tako, da ima ves ¢as konstantno velikost hitrosti, smer hitrosti

pa oklepa kot ¢ = %T’T z radialno smerjo.

(a) Doloci trajektorijo tocke.

(b) Izracunaj pospesek tocke.

Resitev: Koordinatni sistem na odprti podmnozici U C R? je gladka injektivna preslikava:
o .U — R?,
(@,y) = (u(z,y),v(z,y)),

ki ima povsod neizrojeno Jacobijevo matriko.

V primeru polarnih koordinat ponavadi vzamemo:

U=R*\{(x,0) € R*|z > 0},
d(U) = (0,00) x (0,27) C R?,

preslikava ® pa je definirana implicitno s predpisom:

X =1 COoS @,

Yy = rsin ¢.

Ce preslikamo koordinatni vektorski polji v (, ¢)-koordinatah z odvodom preslikave &1,
dobimo na U vektorski polji:

. (87” 6’7’) = (cos ¢, sin ¢) = Nl
Gy = (2_27 Z_Z) = (—rsing,rcos¢) = (—y, z).

Pri mehaniki raje uporabljamo prirejeni enotski vektorski polji:
2. = (cos ¢, sin 6),
€, = (—sin ¢, cos ¢).

Vektorsko polje €, kaze v smeri narascanja funkcije r, vektorsko polje €5 pa v smeri
narascanja funkcije ¢.
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Ce imamo gibanje tocke opisano v polarnih koordinatah, lahko njen polozaj opisemo z
vektorsko funkcijo

7(t) = (r(t) cos p(t), r(t) sin p(t)).
7 odvajanjem dobimo, da je hitrost tocke enaka
7(t) = (7 cos ¢ — résin ¢, 7 sin ¢ + ré cos ¢) = 7€, + rpey.
Komponenti hitrosti imenujemo:

U =T radialna hitrost,

“Vg = 7’(;5 obodna hitrost.

Ce odvajamo hitrost, dobimo pospesek tocke v polarnih koordinatah
7(t) = (i — 10, + (27 + rd)é,

posamezni ¢leni pospeska pa so:

Cay = F — 17 radialni pospesek,

CQp = 27*925 + réﬁ obodni pospesek.

(a) V nasem primeru ima tocka konstantno velikost hitrosti, smer hitrosti pa oklepa kot

) 37” z radialno smerjo. To pomeni, da je

T =18 +roey = — L2, + Lug,.

Od tod dobimo sistem dveh diferencialnih enach:

V2
2

rqb = \/Tiv.

r = —%=,

Privzeli bomo, da je tocka v zaCetnem trenutku na polozaju 7(0) = (r9,0), kar pomeni,
da je r(0) = ro in ¢(0) = 0. Zgornjo enacbo lahko potem integriramo v
r(t) =19 — \/751)75.
Ko to vstavimo v drugo enacbo, dobimo enacho
V2

e
TO—‘/Tivt
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7 integracijo in upostevanjem zacetne vrednosti dobimo rezultat

Predpisa:

"0}
¢(t) ! (TO — ‘/751)15

r(t) =19 — ‘/T%t,

—n T
()

opisujeta trajektorijo gibanja tocke po ravnini, ki zados¢a danim pogojem. Ce nas ne
zanima, kako tocno se tocka premika, ampak samo, kaksno krivuljo opise med gibanjem,
govorimo o tirnici gibanja. V nasem primeru lahko izrazimo

7”((]5) = Toei(ﬁ’

kar pomeni, da se tocka premika po logaritmic¢ni spirali.

(b) Pospesek tocke je enak

a= (i —r¢*)e, + (21p + rd)E, = —geﬂn —5-é

\J

(2) Tocka z maso m se giblje pod vplivom gravitacijske sile F (r) =—

(a) Z uporabo Binetove formule dolo¢i tirnico tocke.

(b) Dolodi efektivni potencial.

Resgitev: (a) Binetova formula

a, = —Cou(u" + u)

povezuje obliko centralne sile in pa enacbo tira gibanja. Tir podamo v obliki r = r(¢), z

u pa nato ozna¢imo obratno vrednost razdalje tocke od centra sile oziroma u(¢) =

1
r(®)”




Ce imamo dan tir tocke, lahko z odvajanjem in pa z uporabo Binetove formule ponavadi
brez vecjih tezav izracunamo, kaksna sila deluje nanjo. V kolikor pa imamo dano silo,
pa moramo za izracun tira resiti diferencialno enac¢bo drugega reda, kar pa je v splosnem
dokaj tezko.
V nasem primeru je

MG

2

= —MGu>.

ar = —
r

Od tod z uporabo Binetove formule pridemo do diferencialne enacbe:

a, = —Ciu*(u” + u),
~MGu* = —Ciu*(u” + u),
u// + U = MG
=
Splosno resitev te diferencialne enacbe lahko zapisemo v obliki
MG MG
u(¢) = Crcos g + Cysin g + oz = Acos(¢ — ¢o) + NPl
0 0

kjer je A = +/C?+ C% in ¢y polarni kot tocke (C1,Cy). Tako smo prisli do tira oblike

r(g) = L P |
Acos(¢ — o) + G 1+ ecos(¢ — o)
kjer je p = J‘C/}“_(%G in e = j\‘/[CGg. Ta predpis doloca stoznico v ravnini, ki ima gorisce v

koordinatnem izhodis¢u. Parameter € je numericna ekscentricnost stoznice in natanko
doloca tip stoznice. Ce je € = 0 tako dobimo kroznico, pri 0 < € < 1 elipso, pri € = 1
parabolo, pri € > 1 pa hiperbolo. Parameter p imenujemo polparameter, parameter ¢
pa doloca orientacijo stoznice. Na spodnji sliki je narisana odvisnost tipa stoznice od
parametra e pri fiksnem p in pri ¢y = 0.

1 o 1l
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Vrednosti parametrov p, € in ¢g so odvisne od zacetnega polozaja in zacetne hitrosti tocke.

Ce je sila privlacna in obratno sorazmerna s kvadratom oddaljenosti to¢ke od centra sile,
smo torej izpeljali, da morajo biti tirnice tock stoznice. V bistvu smo tako iz Newtonovega
gravitacijskega zakona izpeljali 1. Keplerjev zakon. Dokaz implikacije v obratno smer je
se nekoliko lazji, saj nam ni treba resevati diferencialne enacbe, ampak samo odvajati
predpis tira in uporabiti Binetovo formulo.



Oblika tira tocke (ne pa orientacija) je dolocena z energijo in pa vrtilno koli¢ino tocke na
naslednji nacin:
l2
p=—,
my
2°FE
my?’

e=4/1+

kjer je v = mMG, G pa gravitacijska konstanta.
(b) Gravitacijski potencial je dolo¢en s predpisom F(r) = —V’(r), od koder dobimo

Potencial ponavadi izberemo tako, da v neskonc¢nosti limitira proti nic.

Pri gibanju tocke v polju centralne sile igra pomembno vlogo efektivni potencial
12

2mr?’

Ver(r) = V(r) +

7 uvedbo efektivnega potenciala lahko dinamiko tocke reduciramo na dinamiko parametra
r, saj velja

r .
émrz + Veg(r) = E.
Ce vemo, kaksen je efektivni potencial, lahko kvalitativno obravnavamo, kako se spreminja
oddaljenost tocke od centra sile, z integriranjem pa lahko tudi izra¢unamo r = r(t).

Spreminjanje polarnega kota lahko nato izra¢unamo s pomocjo Keplerjevega zakona

V primeru gravitacijske sile je efektivni potencial enak

v, P
Veg(r) = —— + .
e (7) r o 2mr?
Minimalna mozna energija tocke je enaka Vi, = —”2%2. Pri tej energiji je tir tocke

kroznica. Za energije V,;, < E < 0 se tocka giblje po elipsi, pri energiji £ = 0 po
paraboli, pri energijah £ > 0 pa po hiperboli.

Vest (1)
hiperbola

parabol a: >
elipsa \\//f/‘
kroznicasV,

min

Opomba: Pri izracunih gibanja tocke v polju centralne sile privzamemo, da je center
sile mirujo¢ v koordinatnem izhodis¢u. Ta predpostavka je smiselna, ¢e imamo telesi z
masama m in M >> m, pri telesih s primerljivimi masami pa moramo sistem obravnavati
kot sistem dveh teles. O



(3) Materialna tocka z maso m se giblje pod vplivom gravitacijske sile Fi(r) = —2MGe v
zaCetnem trenutku je na polozaju 7(0) = (rg,0) in ima hitrost #(0) = (0, v).

(a) Dolodi tip orbite v odvisnosti od parametra v.

(b) Dolodi tir tocke v primeru, ko je v = 4/ 1‘2{3

MG
2rg *

(¢) Dolodi polosi elipti¢ne orbite v primeru, ko je v =

Resitev: (a) Tip orbite tocke, ki se premika pod vplivom gravitacijske sile, je odvisen od
energije tocke. Ker se energija ohranja, je dovolj, da izracunamo energijo tocke v zacetnem
trenutku. V nasem primeru tako dobimo

1, .2 M
E = Wiin + Wyot = gmu” — mMG

To
Glede na velikost v tako lo¢imo tri primere:

(Hwv< %...tir tocke je elipsa,

(2) v = /%...‘cir tocke je parabola,
(3) v > /2ME tir tocke je hiperbola.

2MG

Vrednosti v = e ponavadi recemo ubezZna hitrost. To je najmanjsa hitrost tocke, pri

kateri je njen tir neomejen.

(b) V primeru, ko je v = 1;47?, je tir tocke elipsa. V nadaljevanju bomo izracunali obliko

in orientacijo elipti¢ne orbite pri zacetnih pogojih 7(0) = (ro,0) in 7(0) = (0, v).

A

T ©O.v)

>
o

Najprej izracunajmo energijo in vrtilno koli¢ino tocke. V zacetnem trenutku je

E = %m|1—)»(0)|2 _ mMG _ lmv2 _ mMG _ mMG _ mMG _ _ 3mMG

0 2 0 4rg 0 4rg

n

Od tod lahko sedaj izra¢unamo:



[zracunati moramo se orientacijo elipse. Privzeli bomo, da je zavrtena za kot ¢, glede na
abscisno os, kar pomeni, da je njena enacba

B p
r(@) = 1+ ecos(p— o)

V zacetnem trenutku je 7(¢ = 0) = ro. Ko to vstavimo v enacbo elipse, dobimo pogoj

ro
2

1 + % cos(—¢o)

To

iz katerega sledi cos ¢y = —1 oziroma ¢y = 7. Enacba elipse je torej

To

_ 2 _ "o
r(@) = 1+1cos(¢p—m) 2—cos¢’

Poglejmo se skico.

(c) Elipso lahko podamo v kartezi¢ni obliki z ena¢bo

22 2
@ !
ali pa v polarni obliki z enac¢bo
_ P
r(¢) = 1+ecosep

Opozoriti moramo, da je v kartezi¢ni obliki koordinatno izhodisce v srediscu elipse, v
polarni obliki pa v njenem goriscu, kar pomeni, da je:

T = e+ rcoso,

Yy = rsin ¢.

V nadaljevanju bomo izpeljali zvezo med parametri a, b, p in e.

center sile



Po definiciji je

€ = £ = = a‘2_b2
a a :

Razdalji od goris¢a do temen elipse na vecji polosi sta enaki 2= in

_ P P _ _2p
2a = 1+e€ + 1—e = 1—€2°
Od tod lahko izpeljemo zveze:
_p
@=1"a
b=+
V1—e2’
b2
p=
Ce upostevamo vrednosti p = 3 in € = %, dobimo
_ 2
a = 57’0,
b= \/?gr().

Tocka z maso m se giblje pod vplivom centralne sile po lemniskati

(@) = ay/cos 2¢,
kjer je a pozitivna konstanta.

(a) Dolo¢i centralno silo.

p

7, kar nam da

(b) Doloci ¢as prihoda v center sil, ¢e je na zacetku tocka v apocentru in ima hitrost v.

Resitev: (a) Najprej si poglejmo skico lemniskate. V tem primeru tir tocke seka center

sile.

R

center sile ra

Za izra¢un centralne sile bomo spet uporabili Binetovo formulo. 1z u(¢) = m dobimo

Y

, 1 —2sin2¢ 1 1 sin 2¢
0= e (3) =5 v
in
" 1 2c0s2¢(cos2¢)2 — sin2¢ - 2(cos 2¢)2 (—2sin 2¢)
wi(9) = a cos3 2¢
1 2(cos 2¢)3 + 3(cos 2¢)2 sin” 2¢
a

cos3 2¢



Pospesek tocke v radialni smeri je tako enak:
a, = —Cou?(u” + u),

Y 1 2(cos 2¢)3 + 3(cos 2¢)2 sin” 2¢ N 1 1
 a2cos2¢ \ a cos3 2¢ a +/cos2p |’

C? (2(008 2¢)2 + 3(cos 2¢)2 (1 — cos? 2¢) + (cos 2(]5)3)

" &Bcos 2¢ cos? 2¢
C3 3(cos 2¢)2
 a®cos 26 " cos? 20
3C3
a3(cos 20)3
3C2a*
7

)

Y

centralna sila pa
3mCZat

r7

F(r) =

(b) Za dolocanje casa, ki ga tocka porabi za pot med dvema tockama na svojem tiru,
lahko uporabimo Keplerjev zakon. Ce oznac¢imo z S ploscino lika, ki ga tocka opise na
poti med danima tockama, je cas, ki ga porabi za to pot, enak

28

T=—.
Co

Ce hocemo torej izracunati cas, ki ga tocka porabi, da pride iz apocentra v center sile,
moramo izracunati ploscino lika, ki ga opise med potjo.

r=a
center sile‘ apocenter
Polovi¢na ploscina lemniskate je enaka
1 (1 1 (1 a? i a?
S == 2dp = = 2cos2¢pdp = — sin 2 = —.
2/0T¢2/0a 0do="psn29| =7

Preostane nam Se, da izrazimo Cj z zac¢etnim polozajem in z zacetno hitrostjo tocke. V
splosnem lahko hitrost tocke zapisemo v obliki

T = 7€, + 10E,.

V apocentru je tocka na maksimalni oddaljenosti od centra sile, zato je tam 7 = 0, kar
pomeni, da je

v:rgz.S.
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Ce upostevamo e Keplerjev zakon Tzé = (), dobimo iz dejstva, da je v apocentru r = a,
ZVez0
Co = va.

Cas, ki ga tocka porabi, da pride iz apocentra v center sile, je tako enak

a
T=—.
2v
Opomba 1:
Ce bi hoteli izracunati trajektorijo tocke, bi morali integrirati diferencialno enacbo
b= Co  Co
12 a2cos2¢’

pri zacetnem pogoju ¢(0) = 0. To je diferencialna enacba z lo¢ljivima spremenljivkama,
ki ima resitev ) oC
. 0
t) = —arcsin | —1 | .

7 upostevanjem oblike tira od tod dobimo Se
4 402
r(t) =ay/1— a_40t2'

Efektivni potencial tocke pri gibanju v polju centralne sile F'(r) = —

Verr(r) = s (l - a_4> :

2 rz2 76

Opomba 2:

3mC2a?t
g

je enak

Ce se tocka giblje pod vplivom sile F', dobimo pri razli¢nih energijah razli¢ne oblike tira.
Obravnavali bomo primere, ko je 7(0) = 0 in ¢(0) = 0. To pomeni, da tocka zacne gibanje
v apocentru ali pa v pericentru. Gibanju po lemniskati ustreza primer, ko je skupna
energija tocke enaka F = 0, oziroma, ko je apsidna razdalja enaka r = a.

kroznica
\/max

Vet (1)

N
1Ier%niskata r

Pri ostalih energijah dobimo tire, ki jih je v splosnem tezko analiticno izracunati. Tiri
so omejeni v primerih, ko je apsidna razdalja tocke manjsa od ry = v/3a. Ko se apsidna
razdalja tira priblizuje r(, se oblika tira priblizuje kroznici, pri apsidni razdalji r pa je tir
tocke kroznica.
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Tockam, ki lezijo desno od 7y na grafu efektivnega potenciala, ustrezajo neomejeni tiri.

arg

]

(5) Tocka z maso m se giblje z dano dvojno plosé¢insko hitrostjo Cy pod vplivom centralne sile

2 2
ﬁ(r) _ _C’O(l+a ym

T
r3 ’

kjer je a pozitivna konstanta. V zacetnem trenutku je na oddaljenosti ry od centra sil
pod kotom ¢ = 0 in ima radialno hitrost enako v, = % Izracunaj tirnico in trajektorijo
tocke.

Resitev: Zacetni polozaj in zacetna hitrost tocke sta:
F(O) = (rOv 0)7
Co C
(0) = (u —°> .

o To

Obodno komponento hitrosti smo dobili z upostevanjem Keplerjevega zakona. Od tod
vidimo, da parameter a doloca kot med zacetno hitrostjo in pa abscisno osjo, saj je

1
tgh = —.
a

v (0)

S

center sile ro
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Tir gibanja:
Radialni pospesek tocke je enak
a, = ——Cg(lrj ) = —C2(1+ a®)u?.
Od tod z uporabo Binetove formule pridemo do diferencialne enacbe:
a, = —Cou(u" + u),
—C2(1 4 a®)u® = —Cu?(u” + u),
(14 a®)u = u" + u,
' —a’u=0.
Splosno resitev te diferencialne enacbe lahko zapisemo v obliki
u(¢) = Ae + Be .
Za dolocitev konstant A in B potrebujemo Se zacetna pogoja u(0) in u/(0). Direktno iz
predpostavk naloge sledi, da je

S r(0) e
Funkcija u/(¢) je v povezavi z obliko tira, ni pa v direktni povezavi s hitrostjo tocke.

Lahko pa jo izrazimo tudi na naslednji nacin
du du dt u  —% P
dp dt do ¢ = Co

Zacetna hitrost tocke v radialni smeri je enaka 7(0) = v,(0) = %, od koder dobimo

a
u'(0) = ——.
0) =+
7 upostevanjem zacetnih pogojev dobimo sistem enacb, ki mu zadoscata A in B:
1
u(0)=A+B=—,
T'o
, a
u'(0) =aA—aB =——.
To

Resitev tega sistema je A =0, B = % Sledi
(@) = roe.
Tir materialne tocke je torej logaritmicna spirala.

A

center sile| g /
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Trajektorija gibanja:

Pri doloc¢anju trajektorije gibanja nas ne zanima samo kaksno krivuljo opise tocka med
gibanjem, ampak tudi kako se (v odvisnosti od ¢asa) giblje po njej. Ce poznamo tir tocke,
lahko njeno trajektorijo dobimo z upostevanjem Keplerjevega zakona

TQQ'b: C().

V primeru, ko je 7(¢) = roe®, pridemo do diferencialne enacbe z lo¢ljivimi spremenljiv-
kami

p= 0
 r2e2ad’
C
% dp = —Jdt,

7o

1 C
%6261(1) = T_Qot -+ A.

0

Ker je ¢(0) =0, je A = %, trajektorija tocke pa je podana s predpisom

6(t) = —In <2a200t + 1> ,

2a rH

2&00

2
7o

r(t) =ro t+1.
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