Dynkin (λ) and π -systems

Matija Vidmar

March 10, 2015

Definition 1. Let Ω be a set, $\mathcal{D} \subset \mathcal{P}(\Omega)$ a collection of its subsets. Then \mathcal{D} is called a Dynkin system, or a λ -system, on Ω , if:

- 1. $\Omega \in \mathcal{D}$;
- 2. $\{A, B\} \subset \mathcal{D}$ and $A \subset B$, implies $B \setminus A \in \mathcal{D}$;
- 3. $(A_i)_{i>1} \subset \mathcal{D}$, and $A_i \subset A_{i+1}$ for all $i \geq 1$, implies $\bigcup_{i>1} A_i \in \mathcal{D}$.

Remark 2. Let Ω be a set, $\mathcal{D} \subset \mathcal{P}(\Omega)$ a collection of its subsets. Then \mathcal{D} is a Dynkin system on Ω , if and only if:

- 1. $\Omega \in \mathcal{D}$;
- 2. $A \in \mathcal{D}$ implies $\Omega \backslash A \in \mathcal{D}$;
- 3. $(A_i)_{i\geq 1}\subset \mathcal{D}$, and $A_i\cap A_j=\emptyset$ for all $i\neq j$, implies $\cup_{i\geq 1}A_i\in \mathcal{D}$.

[If \mathcal{D} is a Dynkin system, then for $\{A, B\} \subset \mathcal{D}$ with $A \cap B = \emptyset$, $A \cup B = \Omega \setminus ((\Omega \setminus A) \setminus B) \in \mathcal{D}$. Conversely, if the above hold, then for $\{A, B\} \subset \mathcal{D}$ with $A \subset B$, $B \setminus A = \Omega \setminus (A \cup (\Omega \setminus B)) \in \mathcal{D}$. The rest is trivial.]

Remark 3. Given a set Ω and a collection $\mathcal{L} \subset \mathcal{P}(\Omega)$ of its subsets, there is a smallest (with respect to inclusion) λ -system on Ω containing \mathcal{L} . It is the intersection of all the λ -systems on Ω containing \mathcal{L} and will be denoted $\lambda_{\Omega}(\mathcal{L})$. (Similarly $\sigma_{\Omega}(\mathcal{L})$ will denote the smallest (with respect to inclusion) σ -field on Ω containing \mathcal{L} .)

Definition 4. Let Ω be a set, $\mathcal{L} \subset \mathcal{P}(\Omega)$ a collection of its subsets. Then \mathcal{L} is called a π -system on Ω , if $A \cap B \in \mathcal{L}$, whenever $\{A, B\} \subset \mathcal{L}$.

Remark 5. Let Ω be a set, $\mathcal{D} \subset \mathcal{P}(\Omega)$ a collection of its subsets, which is both a π -system and a λ -system on Ω . Then \mathcal{D} is a σ -algebra on Ω .

Theorem 6. Let \mathcal{L} be a π -system on Ω . Then $\sigma_{\Omega}(\mathcal{L}) = \lambda_{\Omega}(\mathcal{L})$.

Proof. Since every σ -algebra on Ω is a λ -system on Ω , the inclusion $\sigma_{\Omega}(\mathcal{L}) \supset \lambda_{\Omega}(\mathcal{L})$ is manifest. For the reverse inclusion, it will be sufficient (and, indeed, necessary) to check $\lambda_{\Omega}(\mathcal{L})$ is a σ -algebra. Then it will be sufficient to check $\lambda_{\Omega}(\mathcal{L})$ is a π -system. Define $\mathcal{U} := \{A \in \lambda_{\Omega}(\mathcal{L}) : A \cap B \in \lambda_{\Omega}(\mathcal{L}) \text{ for all } B \in \mathcal{L}\}$: \mathcal{U} is a λ -system, containing \mathcal{L} , so $\lambda_{\Omega}(\mathcal{L}) \subset \mathcal{U}$. Now define $\mathcal{V} := \{A \in \lambda_{\Omega}(\mathcal{L}) : A \cap B \in \lambda_{\Omega}(\mathcal{L}) \}$. Again \mathcal{V} is a λ -system, containing, by what we have just shown, \mathcal{L} . But then $\lambda_{\Omega}(\mathcal{L}) \subset \mathcal{V}$, and we conclude.

Corollary 7 (π - λ theorem). Let \mathcal{L} be a π -system, \mathcal{D} a Dynkin system on Ω , $\mathcal{L} \subset \mathcal{D}$. Then $\sigma_{\Omega}(\mathcal{L}) \subset \mathcal{D}$.

Proof. Immediate. \Box

Some probabilistic corollaries follow.

"It suffices to check densities on a π -system."

Corollary 8. Let X be a random element on some probabilty space $(\Omega, \mathcal{F}, \mathsf{P})$, with values in a σ -finite measure space (D, Σ, μ) (so X is \mathcal{F}/Σ -measurable). Suppose \mathcal{L} is π -system on D, such that $\sigma_D(\mathcal{L}) = \lambda_D(\mathcal{L}) = \Sigma$; $f: D \to [0, +\infty]$ is a $\Sigma/\mathcal{B}([0, +\infty])$ -measurable mapping with $\int f d\mu = 1$; and the following holds for all $L \in \mathcal{L}$:

$$P(X \in L) = \int_{L} f d\mu.$$

Then f is a density for X on (D, Σ, μ) under P, i.e. $P \circ X^{-1} \ll \mu$ and $f = \frac{d(P \circ X^{-1})}{d\mu}$ μ -a.e.

Proof. From the hypotheses, linearity of integration and monotone convergence, the collection $\{L \in \Sigma : \mathsf{P}(X \in L) = \int_L f d\mu\}$ is a λ -system on D, containing the π -system \mathcal{L} . We conclude at once via the π - λ theorem.

"A finite (in particular, a probability) measure is determined by its total mass and the values it assumes on a π -system."

Corollary 9. Let μ and ν be two finite measures on a measurable space (E, Σ) , $\mathcal{L} \subset \Sigma$ a π -system with $\sigma_E(\mathcal{L}) = \Sigma$. Suppose $\mu|_{\mathcal{L} \cup \{E\}} = \nu|_{\mathcal{L} \cup \{E\}}$. Then $\mu = \nu$.

Proof. From the hypotheses, continuity from below, and finite additivity of measures, the collection of sets $\{A \in \Sigma : \mu(A) = \nu(A)\}$ is a λ -system on E containing \mathcal{L} . Enough said.

Definition 10. Given a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ and a collection $\mathcal{C} = (\mathcal{C}_{\lambda})_{\lambda \in \Lambda}$ of subsets of \mathcal{F} , we say \mathcal{C} is an independency (under P), if for any (non-empty) finite $I \subset \Lambda$, and then for any choices of $C_i \in \mathcal{C}_i$, $i \in I$, we have:

$$\mathsf{P}(\cap_{i\in I}C_i) = \prod_{i\in I}\mathsf{P}(C_i).$$

Of course, we say subsets \mathcal{A} and \mathcal{B} of \mathcal{F} are independent (under P), if the family $(\mathcal{A}, \mathcal{B})$ consisting of them alone, is an independency (under P). Further, given a random element Z with values in a measurable space (E, Σ) , and a subset \mathcal{B} of \mathcal{F} , we say Z is independent of \mathcal{B} , if $\sigma(Z) := \{Z^{-1}(S) : S \in \Sigma\}$ (a subset of \mathcal{F} , since Z is a random element) is independent of \mathcal{B} . And so on, and so forth.

Remark 11. A sub-collection of an independency is an independency. A collection is an independency if and only if every finite sub-collection thereof is so.

"Independence can be raised from π -systems to the σ -fields they generate."

Corollary 12. Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space, $\mathcal{C} = (\mathcal{C}_{\lambda})_{\lambda \in \Lambda}$ an independency under P consisting of π -systems alone. Then $(\sigma_{\Omega}(\mathcal{C}_{\lambda}))_{\lambda \in \Lambda}$ also is an independency under P .

Proof. It will suffice to show that if the finite collection of π -systems (A_1, \ldots, A_n) $(n \geq 2$ an integer) on Ω is an independency, then $(\sigma_{\Omega}(A_1), A_2, \ldots, A_n)$ is one also. (Then one can apply mathematical induction.) Consider then \mathcal{L} , the collection of all subsets L of Ω , such that for all $A_2 \in A_2, \ldots, A_n \in A_n$: $P(L \cap A_2 \cap \cdots \cap A_n) = P(L)P(A_2) \cdots P(A_n)$. It is, from the hypothesis and by properties of probability measures, a λ -system, containing the π -system A_1 . Enough said.

 $[\]frac{1}{d}\frac{d(\mathsf{P}\circ X^{-1})}{d\mu}$ is the Radon-Nikdoym derivative with respect to μ of the law of X under P on the space (D,Σ) (so $\mathsf{P}\circ X^{-1}(L)=\mathsf{P}(X\in L)$ for $L\in\Sigma$).