'Renewal' in renewal processes

Matija Vidmar

May 17, 2017

The aim of this note is to make precise the notion that a renewal process renews itself at each of the renewal epochs.

Let $T = (T_i)_{i \in \mathbb{N}}$ be a sequence of identically distributed $[0, \infty)$ -valued random variables on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$, with $\mathsf{P}(T_1 = 0) < 1$, adapted to the filtration $\mathbb{F} = (\mathcal{F}_i)_{i \in \mathbb{N}_0}$, and such that T_{i+1} is independent of \mathcal{F}_i for all $i \in \mathbb{N}_0$. Let $N = (N_t)_{t \geq 0}$ be the corresponding renewal process:

$$N_t := \sum_{k \in \mathbb{N}} \mathbb{1}(S_k \le t) \text{ for } t \in [0, \infty),$$

where

$$S_n := \sum_{i=1}^n T_i \text{ for } n \in \mathbb{N}_0,$$

are the renewal epochs. Recall that we may, and shall, possibly by discarding a P-negligible set, insist on each N_t , $t \in [0, \infty)$, being \mathbb{N}_0 -valued – equivalently on $S_n \uparrow \infty$ as $n \to \infty$. Interpret $S_\infty = \infty$.

Proposition 1. Let Γ be an \mathbb{F} -stopping time, $\mathsf{P}(\Gamma < \infty) > 0$. Then $N' := (N_{S_{\Gamma}+t} - \Gamma)_{t \geq 0}$ defined on $\{\Gamma < \infty\}$ is independent of $\mathcal{F}_{\Gamma}|_{\{\Gamma < \infty\}}$ under the conditional measure $\mathsf{P}(\cdot|\Gamma < \infty)$, and has the same law thereunder as does N under P (on the space $\mathbb{N}_0^{[0,\infty)}$).

Remark 1. An important case is that of Γ deterministic and finite.

Remark 2. When $N_0=0$ and N has jumps of size 1 (equivalently, T has values in $(0,\infty)^{\mathbb{N}}$), we find $N_{S_{\Gamma}}=\Gamma$, so N' is nothing but the incremental process $\Delta_{S_{\Gamma}}N$ of N after S_{Γ} . In that case we also have $N_t^{S_{\Gamma}}=\sum_{k=1}^{\Gamma}\mathbbm{1}(S_k\leq t)=\sum_{k=1}^{\infty}\mathbbm{1}_{\{k\leq\Gamma\}}\mathbbm{1}_{[0,t]}\circ S_k$ for $t\in[0,\infty)$, and so $\sigma(N^{S_{\Gamma}})\subset\mathcal{F}_{\Gamma}$, hence $\sigma(N^{S_{\Gamma}})|_{\{\Gamma<\infty\}}$ is independent of N'. Under further 'reasonable conditions' on (Ω,\mathcal{F}) (unclear whether always²), and if \mathbb{F} is the natural filtration of T, letting $\mathcal{F}^N=(\mathcal{F}_t^N)_{t\geq0}$ be the natural filtration of N, $\sigma(N^{S_{\Gamma}})=\mathcal{F}_{S_{\Gamma}}^N$, whence the above says that, on $\{S_{\Gamma}<\infty\}$, under $P(\cdot|S_{\Gamma}<\infty)$, the past of N up to S_{Γ} is independent of the incremental process $\Delta_{S_{\Gamma}}N$, which in turn has the same law as the renewal process we started off with – implying the strong Markov property at the (random) renewal epoch $S_{\Gamma}!^3$ It is not to say N is strong Markov, though; indeed it is (in general) not even a Markov process.

Proof. Note that $T: \Omega \to [0, \infty)^{\mathbb{N}}$ is measurable, where $[0, \infty)^{\mathbb{N}}$ is endowed with the product σ-field $\otimes_{\mathbb{N}} \mathcal{B}([0, \infty))$. Similarly $N: \Omega \to \mathbb{N}_0^{[0, \infty)}$ is measurable, where $\mathbb{N}_0^{[0, \infty)}$ again is endowed with the product σ-field $\otimes_{[0, \infty)} 2^{\mathbb{N}_0}$.

Define $T' := (T_{\Gamma+i})_{i \in \mathbb{N}}$ on $\{\Gamma < \infty\}$. Then $T' : \Omega \to [0,\infty)^{\mathbb{N}}$ is measurable, independent of $\mathcal{F}_{\Gamma}|_{\{\Gamma < \infty\}}$ under $\mathsf{P}(\cdot|\Gamma < \infty)$, and its law (under $\mathsf{P}(\cdot|\Gamma < \infty)$, on the space $[0,\infty)^{\mathbb{N}}$) conicides

¹For a process X and a random time S, X^S is the stopped process, $X_t^S = X_{S \wedge t}, t \in [0, \infty)$.

 $^{^2}$ See [arXiv:1503.02375, Part II] for details.

³If \mathbb{F} is the natural filtration of T then S_{Γ} is an \mathcal{F}^{N} -stopping time: for $t \in [0, \infty)$ we have $\{S_{\Gamma} \leq t\} = \bigcup_{k \in \mathbb{N}_{0}} \{S_{k} \leq t\} \cap \{\Gamma = k\}$, whilst for each $k \in \mathbb{N}_{0}$, $\{\Gamma = k\} \in \mathcal{F}_{k} = \mathcal{F}_{k}^{T} = \mathcal{F}_{k}^{S} = \sigma(S_{1}, \ldots, S_{k}) \subset \mathcal{F}_{S_{k}}^{N}$ owing to the fact that $(S_{l})_{l \in \mathbb{N}_{0}}$ is a nondecreasing sequence of \mathcal{F}^{N} -stopping times.

with that of T (under P, on the same space), by the strong Markov property for sequences with independent values. Define furthermore the mapping $G: [0, \infty)^{\mathbb{N}} \to \mathbb{N}_0^{[0, \infty)}$, as follows:

$$G(t)(s) = \left(\sum_{k \in \mathbb{N}} \mathbbm{1}_{[0,s]} \left(\sum_{l=1}^k t_l\right)\right) \cdot \mathbbm{1}_{\mathbb{N}_0} \left(\sum_{k \in \mathbb{N}} \mathbbm{1}_{[0,s]} \left(\sum_{l=1}^k t_l\right)\right), \quad s \in [0,\infty), \quad t \in [0,\infty)^{\mathbb{N}}$$

(adhering to the convention $\infty \cdot 0 = 0$). Then G is measurable and $N = G \circ T$. (Incidentally, we recover again that N is measurable.)

Next we see that for each $t \in [0, \infty)$: $N'_t = \sum_{k \in \mathbb{N}} \mathbb{1}(S_k \leq S_\Gamma + t) - \Gamma = \sum_{k=\Gamma+1}^{\infty} \mathbb{1}(S_k - S_\Gamma \leq t) = \sum_{k=\Gamma+1}^{\infty} \mathbb{1}(\sum_{l=\Gamma+1}^{k} T_l \leq t) = \sum_{k=1}^{\infty} \mathbb{1}(\sum_{l=1}^{k} T'_l \leq t)$, hence $N' = G \circ T'$. In particular, N' is measurable.

Furthermore, since $N = G \circ T$, $N' = G \circ T'$, G is measurable and, under the relevant measures, the laws of T and T' agree, so the laws of N and N' agree also.

Finally, N' is independent of $\mathcal{F}_{\Gamma}|_{\{\Gamma < \infty\}}$ since it is a measurable function of T'.