
Izbrana poglavja iz matematike

Obsegi

(1) Zapiši tabeli za seštevanje in množenje v Galoisovem obsegu GF (4).

Rešitev: Teorija obsegov nam pove, da za vsako praštevilo p in vsako naravno število
n obstaja do izomorfizma natanko določen končni obseg s pn elementi. Označimo ga z
GF(pn) in mu rečemo Galoisov obseg. Če je n = 1, se obseg GF (p) ujema z obsegom Zp

ostankov pri deljenju s praštevilom p.
Za n > 1 konstruiramo Galoisov obseg GF(pn) ∼= Zp[x]/(u) na naslednji način:

· Izberemo nerazcepen polinom u stopnje n v kolobarju Zp[x].
· Elementi GF(pn) so polinomi stopnje največ n−1 v Zp[x], ki jih lahko interpretiramo

tudi kot ostanke pri deljenju s polinomom u(x).
· Seštevanje je definirano kot seštevanje polinomov.
· Produkt dveh polinomov dobimo tako, da najprej izračunamo njun produkt v Zp[x],

nato pa vzamemo ostanek pri deljenju s polinomom u(x).

Edini nerazcepen kvadratni polinom v Z2[x] je polinom u(x) = x2 + x+ 1, zato je

GF (4) = {0, 1, x, 1 + x},

operaciji seštevanja in množenja pa lahko predstavimo s tabelama:

+ 0 1 x 1 + x
0 0 1 x 1 + x
1 1 0 1 + x x
x x 1 + x 0 1

1 + x 1 + x x 1 0

· 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

.

Množica vseh elementov obsega zmeraj tvori grupo za seštevanje, ki je v našem primeru
izomorfna grupi Z2 × Z2. Grupa obrnljivih elementov Galoisovega obsega GF (22) pa je
izomorfna grupi Z3. Bolj splošno velja, da je grupa obrnljivih elementov končnega obsega
vedno izomorfna ciklični grupi.

(2) Naj bo obseg GF(8) definiran z nerazcepnim polinomom u(x) = x3 + x+1 ∈ Z2[x]. Opiši
grupi (GF(8),+) in (GF(8)∗, ·).

Rešitev: Sedaj je

GF(8) = {0, 1, x, x+ 1, x2, x2 + x, x2 + 1, x2 + x+ 1}.

Na te polinome lahko gledamo tudi kot na vektorski prostor nad Z2 z bazo {1, x, x2}, zato
imamo izomorfizem

(GF(8),+) ∼= Z3
2.

Množica neničelnih elementov obsega GF(pn), ki jo označimo z GF(pn)∗, zmeraj tvori
grupo za množenje, ki je izomorfna grupi Zpn−1. Generatorjem te grupe rečemo primitivni
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elementi Galoisovega obsega. V primeru obsega GF(8) je GF(8)∗ ∼= Z7, zato je vsak
nekonstanten polinom primitiven element. Če vzamemo na primer element x, so njegove
potence:

x1 = x,

x2 = x2,

x3 = x+ 1,

x4 = x2 + x,

x5 = x2 + x+ 1,

x6 = x2 + 1,

x7 = 1.

(3) Obseg GF (28) definiramo z nerazcepnim polinomom u(x) = x8 + x4 + x3 + x+ 1 ∈ Z8[x].

(a) Izračunaj produkt polinomov a(x) = x6+x2+1 in b(x) = x7+x6+x2+1 v GF(28).
(b) Izračunaj inverz polinoma q(x) = x5 + x+ 1 v GF(28).

Rešitev: (a) Najprej izračunajmo produkt polinomov a in b v kolobarju Z8[x]

a(x)b(x) = (x6 + x2 + 1)(x7 + x6 + x2 + 1) = x13 + x12 + x9 + x7 + x4 + 1.

Pri deljenju polinoma x13 + x12 + x9 + x7 + x4 + 1 s polinomom u(x) dobimo kvocient
x5 + x4 in ostanek x6 + 1. V obsegu GF(28) torej velja

a(x) · b(x) = x6 + 1.

(b) Inverz polinomov v Galoisovih obsegih iščemo s pomočjo posplošenega Evklidovega
algoritma. Če namreč velja

su+ tq = 1,

je polinom t inverz polinoma q v Galoisovem obsegu, ki ga definira nerazcepni polinom u.
V našem primeru dobimo:

ri si ti ki
x8 + x4 + x3 + x+ 1 1 0

x5 + x+ 1 0 1
x+ 1 1 x3 x3

1 x4 + x3 + x2 + x x7 + x6 + x5 + x4 + 1 x4 + x3 + x2 + x

Ta tabela temelji na izračunih:

x8 + x4 + x3 + x+ 1 = x3 · (x5 + x+ 1) + x+ 1,

x5 + x+ 1 = (x4 + x3 + x2 + x) · (x+ 1) + 1,

iz nje pa lahko preberemo, da velja

q(x)−1 = x7 + x6 + x5 + x4 + 1.
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(4) Pokaži, da so naslednja števila algebraična in nato izračunaj njihove minimalne polinome:

(a) a = 1 + 3
√
5,

(b) a =
√
2 +

√
3,

(c) a =
√

1 +
√
2.

Rešitev: Kompleksna števila lahko razdelimo na naslednji dve podmnožici:
· število a ∈ C je algebraično nad Q, če obstaja polinom p ∈ Q[x], da je p(a) = 0,
· število a ∈ C je transcendentno nad Q, če ni algebraično.
Množico algebraičnih števil torej poleg racionalnih števil tvorijo še ničle polinomskih enačb
z racionalnimi koeficienti. Tipični primeri so števila, ki jih dobimo iz racionalnih števil
s seštevanjem, odštevanjem, množenjem, deljenjem in korenjenjem. Vendar pa obstajajo
ničle polinomskih enačb stopnje vsaj 5, ki jih ne moremo izraziti na ta način.
Za vsako algebraično število a obstaja enolično določen, nerazcepen, monični polinom
ga ∈ Q[x], da je ga(a) = 0. Rečemu mu minimalni polinom algebraičnega števila a.
(a) Pišimo a = 1 + 3

√
5. Potem je a− 1 = 3

√
5. S potenciranjem te enačbe dobimo zvezo

a3 − 3a2 + 3a− 6 = 0.

Če definiramo ga(x) = x3 − 3x2 + 3x − 6, je torej ga(a) = 0. Polinom ga je moničen
in nerazcepen v Q[x] po Eisensteinovem kriteriju. Torej je ga minimalni polinom števila
a = 1 + 3

√
5.

(b) V primeru števila a =
√
2 +

√
3 pridemo po dvakratnem kvadriranju do zveze

a4 − 10a2 + 1 = 0,

zato definirajmo polinom ga(x) = x4 − 10x2 +1. Preverimo lahko, da ga nima racionalnih
ničel. Če bi bil razcepen, bi torej moral biti produkt dveh kvadratnih faktorjev

x4−10x2+1 = (x2+ bx+ c)(x2+dx+e) = x4+(b+d)x3+(c+e+ bd)x2+(eb+ cd)x+ ce,

kjer lahko po Gaussovi lemi predpostavimo, da so b, c, d, e ∈ Z. Od tod dobimo sistem
enačb:

b+ d = 0,

c+ e+ bd = −10,

eb+ cd = 0,

ce = 1.

Iz prve enačbe dobimo d = −b, iz zadnje pa, da je c = e = 1 ali pa c = e = −1. Ko to
vstavimo v drugo enačbo, dobimo −b2 = −12 ali pa −b2 = −8, kar pa ne gre. Od tod
sklepamo, da je polinom ga minimalni polinom števila a =

√
2 +

√
3.

(c) V primeru števila a =
√

1 +
√
2 lahko podobno kot pri prejšnjem primeru pokažemo,

da je algebraično in da ima minimalni polinom

ga(x) = x4 − 2x2 − 1.
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(5) (a) Izračunaj stopnjo in bazo razširitve Q( 3
√
2) nad Q. Nato izračunaj inverz števila

2 + 3
√
2 + 3

√
4 ∈ Q( 3

√
2).

(b) Izračunaj stopnjo in bazo razširitve Q(
√
3,
√
5) nad Q in pokaži, da je enostavna.

Rešitev: Naj bo a poljubno kompleksno število. Potem označimo:
Q[a] . . . najmanjši podkolobar C, ki vsebuje Q in a,
Q(a) . . . najmanjši podobseg C, ki vsebuje Q in a.
Izkaže se, da potem za algebraično število a velja

Q[a] = Q(a) ∼= Q[x]/(ga).

V tem primeru je torej Q(a) razširitev obsega Q stopnje [Q(a) : Q] = deg(ga).
Če je število a transcendentno, pa velja

Q[a] ∼= Q[x], Q(a) ∼= Q(x).

(a) Število a = 3
√
2 je algebraično in ima minimalni polinom ga(x) = x3 − 2. Od tod sledi

[Q(
3
√
2) : Q] = 3,

kar pomeni, da je Q( 3
√
2) tridimenzionalni vektorski prostor nad Q. Za bazo vzemimo

števila 1, a, a2, vsak element x ∈ Q( 3
√
2) pa je potem oblike

x = a0 + a1
3
√
2 + a2

3
√
4

za neke a0, a1, a2 ∈ Q.
Ker je Q( 3

√
2) obseg, je tudi inverz števila 2+ 3

√
2+ 3

√
4 enake oblike. Izračunamo ga lahko

z uporabo razširjenega evklidovega algoritma kot v Galoisovih obsegih, ali pa z nastavkom

(2 +
3
√
2 +

3
√
4)(a0 + a1

3
√
2 + a2

3
√
4) = 1.

Zgornjo enačbo lahko prevedemo v sistem linearnih enačb za neznanke a0, a1, a2 ∈ Q, ki
ima rešitev a0 = 1, a1 = 0 in a2 = −1

2
. Torej je

1

2 + 3
√
2 + 3

√
4
= 1− 1

2

3
√
4.

(b) Obseg Q(
√
3,
√
5) je najmanjši podobseg C, ki poleg Q vsebuje še števili

√
3 in

√
5.

Opišemo ga lahko tudi v obliki Q(
√
3,
√
5) = Q(

√
3)(

√
5). Za izračun stopnje razširitve

bomo uporabili produktno formulo

[Q(
√
3,
√
5) : Q] = [Q(

√
3,
√
5) : Q(

√
3)][Q(

√
3) : Q] = 2 · 2 = 4.

Pri tem smo upoštevali, da sta minimalna polinoma g√3(x) = x2 − 3 in g√5(x) = x2 − 5.
Za bazo razširitve lahko vzamemo števila 1,

√
3,
√
5,
√
15.

Za dano razširitev rečemo, da je enostavna, če je generirana z enim samim elementom. V
našem primeru lahko preverimo, da je

Q(
√
3,
√
5) = Q(

√
3 +

√
5).
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Če pišemo a =
√
3 +

√
5, lahko izrazimo:

√
3 =

a3 − 14a

4
,

√
5 =

a3 − 18a

−8
,

√
15 =

a2 − 8

2
.

To pomeni, da lahko za bazo razširitve Q(
√
3,
√
5) vzamemo tudi števila 1, a, a2, a3.

(6) Izračunaj stopnjo in bazo razširitve Q(e
2πi
n ) nad Q, če je n praštevilo.

Rešitev: Obsegom oblike Q(e
2πi
n ), kjer je n naravno število, rečemo ciklotomski obsegi.

Vemo že, da je število ω = e
2πi
n rešitev enačbe ωn = 1, od koder sledi, da je število ω

algebraično in da minimalni polinom gω deli polinom xn − 1. Za vsak n lahko polinom
xn − 1 faktoriziramo v obliki

xn − 1 = (x− 1)(xn−1 + xn−2 + . . .+ x+ 1).

V primeru, ko je n praštevilo, smo že pred časom pokazali, da je polinom

gω(x) = xn−1 + xn−2 + . . .+ x+ 1

nerazcepen, zato je minimalni polinom števila ω = e
2πi
n . Torej je Q(e

2πi
n ) razširitev obsega

Q stopnje n− 1 z bazo 1, ω, ω2, . . . , ωn−2.
Opomba: Če n ni praštevilo, je polinom xn−1+xn−2+ . . .+x+1 razcepen. V tem primeru
se izkaže, da je stopnja razširitve ciklotomskega obsega Q(e

2πi
n ) nad Q enaka ϕ(n), kjer je

ϕ Eulerjeva funkcija.

(7) Poišči razpadna obsega naslednjih polinomov:

(a) p(x) = x4 + 1 ∈ Q[x],
(b) p(x) = x3 − 3 ∈ Q[x].

Rešitev: Razpadni obseg polinoma p ∈ Q[x] je najmanjši obseg Q ≤ F ≤ C, ki vsebuje vse
ničle polinoma p.
(a) Polinom p(x) = x4 + 1 ima štiri kompleksne ničle:

z0 = e
iπ
4 =

√
2
2
+ i

√
2
2
,

z1 = e
3iπ
4 = −

√
2
2
+ i

√
2
2
,

z2 = e
5iπ
4 = −

√
2
2
− i

√
2
2
,

z3 = e
7iπ
4 =

√
2
2
− i

√
2
2
.

Vidimo, da so vse ničle potence z0, kar pomeni, da so vsebovane v obsegu Q(z0), ki pa je
hkrati najmanjši obseg, ki vsebuje z0. Od tod sklepamo, da je razpadni obseg polinoma
p(x) = x4 + 1 enak Q(z0) = Q(e

iπ
4 ). Ker je polinom p nerazcepen nad Q, je minimalni
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polinom števila z0, od koder sledi, da je [Q(e
iπ
4 ) : Q] = 4. Za bazo razširitve lahko

vzamemo števila 1, z0, z
2
0 = i, z30 = z1. Ta razpadni obseg bi lahko zapisali tudi v obliki

Q(e
iπ
4 ) = Q(

√
2, i).

(b) Ničle polinoma p(x) = x3 − 3 so:

z0 =
3
√
3,

z1 =
3
√
3e

2iπ
3 ,

z2 =
3
√
3e

4iπ
3 .

V tem primeru obseg Q( 3
√
3) ne vsebuje preostalih dveh ničel. Da dobimo razpadni obseg,

mu moramo dodati še število e
2iπ
3 . Stopnjo razširitve Q( 3

√
3, e

2iπ
3 ) lahko izračunamo z

uporabo formule

[Q(
3
√
3, e

2iπ
3 ) : Q] = [Q(

3
√
3, e

2iπ
3 ) : Q(

3
√
3)][Q(

3
√
3) : Q].

Minimalni polinom števila 3
√
3 je g 3√3(x) = x3 − 2, števila e

2iπ
3 pa g

e
2iπ
3
(x) = x2 + x + 1.

Torej je [Q( 3
√
3, e

2iπ
3 ) : Q] = 6 in

Q(
3
√
3, e

2iπ
3 ) = {a0 + a1

3
√
3 + a2

3
√
9 + a3e

2iπ
3 + a4

3
√
3e

2iπ
3 + a5

3
√
9e

2iπ
3 | ai ∈ Q}.

(8) Ugotovi, ali lahko pravilni 8-kotnik oziroma pravilni 9-kotnik konstruiramo samo s šestilom
in ravnilom.

Rešitev: Pravilni n-kotnik lahko konstruiramo s šestilom in ravnilom, če sta cos 2π
n

in sin 2π
n

konstruktibilni števili. To pa velja natanko takrat, ko je ciklotomski obseg Q(e
2πi
n ) dobljen

iz Q z zaporedjem razširitev stopnje 2.
V primeru n = 8 smo že izračunali, da velja

Q(e
2πi
8 ) = Q(e

iπ
4 ) = Q(

√
2, i) = Q(

√
2)(i).

Imamo torej razširitev stopnje 4, ki jo lahko dobimo z zaporedjem razširitev stopnje 2. Od
tod računsko sledi, da lahko 8-kotnik konstruiramo samo s šestilom in ravnilom. Dejansko
lahko konstrukcijo izvedemo z nekajkratno konstrukcijo simetral kotov.
Bolj zanimiv je primer n = 9, pri katerem konstrukcije ne znamo izvesti. Sedaj bomo
pokazali, da je dejansko ne moremo izvesti. Pišimo ω = e

2πi
9 . Potem je ω9 = 1. Iz razcepa

ω9 − 1 = (ω3 − 1)(ω6 + ω3 + 1)

sledi, da je ω6 + ω3 +1 = 0. Pri tem smo upoštevali, da ω3 ̸= 1. Sedaj bomo pokazali, da
je polinom

gω(x) = x6 + x3 + 1

minimalni polinom števila ω. Če pišemo
gω(x+ 1) = (x+ 1)6 + (x+ 1)3 + 1 = x6 + 6x5 + 15x4 + 21x3 + 18x2 + 9x+ 3,

lahko z uporabo Eisensteinovega kriterija za p = 3 sklepamo, da je nerazcepen polinom
gω(x+ 1). Vendar pa mora biti potem nerazcepen tudi polinom gω(x).
Stopnja razširitve Q(e

2πi
9 ) nad Q je torej enaka 6, kar pa pomeni, da je ne moremo zapisati

kot zaporedje razširitev stopnje 2.
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(9) Z uporabo kvaternionov izračunaj matriko za rotacijo za kot ϕ = π okoli osi e⃗ =
(√

2
2
,
√
2
2
, 0
)

.

Rešitev: Kvaternioni so števila oblike

H = {q = t+ xi+ yj + zk | t, x, y, z ∈ R}.

Kvaternioni i, j in k so imaginarne enote, množenje pa je definirano s formulami

i2 = j2 = k2 = −1

in
ij = −ji = k, jk = −kj = i, ki = −ik = j.

Pogosto uporabljamo vektorsko notacijo

q = t+ xi+ yj + zk = (t, r⃗),

ki nam omogoča, da množenje izrazimo s formulo

q1q2 = (t1t2 − r⃗1 · r⃗2, t1r⃗2 + t2r⃗1 + r⃗1 × r⃗2).

Vektorje v R3 pri tem zapisu identificiramo s kvaternioni, ki imajo skalarni del enak nič.
Podobno kot pri kompleksnih številih lahko definiramo konjugirani kvaternion s predpisom

q∗ = (t,−r⃗).

Kvaternioni tvorijo nekomutativen kolobar z deljenjem, enotski kvaternioni pa tvorijo
grupo

S3 = {(t, r⃗) ∈ R4 | t2 + |r⃗|2 = 1}.
Enotske kvaternione lahko uporabimo za vrtenje vektorjev v R3. Definirajmo kvaternion

q = cos ϕ
2
+ sin ϕ

2
e⃗,

kjer je ϕ ∈ R in e⃗ ∈ R3 enotski vektor. Potem je s predpisom

R(e⃗, ϕ)x⃗ = qx⃗q∗

definirana rotacija R3 za kot ϕ okoli osi e⃗.

V našem primeru je ϕ = π in e⃗ =
(√

2
2
,
√
2
2
, 0
)

, kar nam da:

q = e⃗,

q∗ = −e⃗.

Sedaj bomo izračunali, kako se zavrtijo bazni vektorji:

R(e⃗, ϕ) · i⃗ = e⃗ · i · (−e⃗) = 1
2
(i+ j)i(−i− j) = j,

R(e⃗, ϕ) · j⃗ = e⃗ · j · (−e⃗) = 1
2
(i+ j)j(−i− j) = i,

R(e⃗, ϕ) · k⃗ = e⃗ · k · (−e⃗) = 1
2
(i+ j)k(−i− j) = −k.

Od tod sledi, da rotaciji R(e⃗, ϕ) ustreza rotacijska matrika

R(e⃗, ϕ) =

0 1 0
1 0 0
0 0 −1

 .
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Opomba: Rotacijske matrike so ortogonalne matrike z determinanto ena. Tvorijo grupo

SO(3) = {R ∈ R3×3 |RTR = I, det(R) = 1}.

Če je R rotacijska matrika, lahko os in kot rotacije izračunamo na naslednji način.

· Os vrtenja je vzporedna lastnemu vektorju e⃗ matrike R, ki ustreza lastni vrednosti
λ = 1. Eksplicitno je za ϕ /∈ {0, π} to vektor

e⃗ =
1

2 sinϕ

R32 −R23

R13 −R31

R21 −R12

 .

· Kot ϕ ∈ [0, π] dobimo iz formule cosϕ = sl(R)−1
2

.

(10) S kvaternioni izračunaj rotacijo R = R2 ◦ R1, kjer je R1 = R(⃗i, π
2
) in R2 = R(⃗j, π

2
).

Rešitev: Pri prejšnji nalogi smo fiksen kvaternion q ∈ S3 uporabili za izračun rotacijske
matrike. Bolj splošno pa se da pokazati, da je preslikava R : S3 → SO(3) s predpisom

R(q)x⃗ = qx⃗q∗

surjektiven homomorfizem grup z jedrom kerR = {1,−1}. Dejstvo, da je R homomorfizem
grup pomeni, da kompozicija rotacij ustreza množenju kvaternionov.
V našem primeru lahko rotacijo R(⃗j, π

2
) predstavimo s kvaternionom

q2 =
√
2
2
+

√
2
2
(0, 1, 0),

rotacijo R(⃗i, π
2
) pa s kvaternionom

q1 =
√
2
2
+

√
2
2
(1, 0, 0).

Rotacijo R(⃗j, π
2
) ◦ R(⃗i, π

2
) pa lahko potem predstavimo s kvaternionom

q = q2q1 = (
√
2
2
+

√
2
2
(0, 1, 0))(

√
2
2
+

√
2
2
(1, 0, 0)) = 1

2
+ 1

2
(1, 1,−1).

Od tod lahko preberemo, da vrtimo okoli osi s smerjo e⃗ =
√
3
3
(1, 1,−1), kot rotacije pa

zadošča pogoju cos ϕ
2
= 1

2
oziroma ϕ = 120◦.

8


