Izbrana poglavja iz matematike

(1)

Obsegi

Zapisi tabeli za seStevanje in mnozenje v Galoisovem obsegu GF'(4).

Resitev: Teorija obsegov nam pove, da za vsako prastevilo p in vsako naravno stevilo
n obstaja do izomorfizma natanko dolocen koncni obseg s p" elementi. Oznacimo ga z
GF(p™) in mu re¢emo Galoisov obseg. Ce je n = 1, se obseg GF(p) ujema z obsegom Z,
ostankov pri deljenju s prastevilom p.

Za n > 1 konstruiramo Galoisov obseg GF(p") = Z,[z]/(u) na naslednji nacin:

- Izberemo nerazcepen polinom u stopnje n v kolobarju Z,[x].

- Elementi GF(p") so polinomi stopnje najve¢ n—1 v Z,[x], ki jih lahko interpretiramo
tudi kot ostanke pri deljenju s polinomom u(x).

- Sestevanje je definirano kot sestevanje polinomov.

- Produkt dveh polinomov dobimo tako, da najprej izratunamo njun produkt v Z,[z],
nato pa vzamemo ostanek pri deljenju s polinomom u(x).

Edini nerazcepen kvadratni polinom v Zs[z] je polinom u(x) = * + z + 1, zato je
GF(4)={0,1,z,1+ x},

operaciji sestevanja in mnozenja pa lahko predstavimo s tabelama:

+ ‘ 0 1 T 1+2x ‘ 0 1 T 1+
0 0 1 T 14+ 0 0 0 0 0

1 1 0 1+z T 1 0 1 T 1+x .
T T 1+ 0 1 T 0 T 1+ 1
1+z 1+ T 1 0 1+z 0 1+=x 1 T

Mnozica vseh elementov obsega zmeraj tvori grupo za sestevanje, ki je v nasem primeru
izomorfna grupi Zy X Zs. Grupa obrnljivih elementov Galoisovega obsega GF(2%) pa je
izomorfna grupi Zs. Bolj splosno velja, da je grupa obrnljivih elementov koncénega obsega
vedno izomorfna cikli¢ni grupi. [

Naj bo obseg GF(8) definiran z nerazcepnim polinomom u(x) = x® + x4+ 1 € Zy[z]. Opisi
grupi (GF(8),+) in (GF(8)*,-).

Resitev: Sedaj je
GF8)={0,1,z,v +1,2% 2> + 2, 2> + 1,2* + 2 + 1}.

Na te polinome lahko gledamo tudi kot na vektorski prostor nad Z, z bazo {1, x, z?}, zato
imamo izomorfizem

(GF(8), +) & Zs.

Mnozica nenicelnih elementov obsega GF(p™), ki jo oznac¢imo z GF(p™)*, zmeraj tvori
grupo za mnozenje, ki je izomorfna grupi Z,._;. Generatorjem te grupe reCemo primitivni
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elementi Galoisovega obsega. V primeru obsega GF(8) je GF(8)" = Z, zato je vsak
nekonstanten polinom primitiven element. Ce vzamemo na primer element x, so njegove
potence:

T =z,
z? = 22,

B =x4+1,
x4—x2+x,
x5—x2+x+1,
28 =%+ 1,

' =1.

O

(3) Obseg GF(28) definiramo z nerazcepnim polinomom u(z) = 2%+ z* + 23 + x + 1 € Zg[x].

(a) Izra¢unaj produkt polinomov a(z) = 2%+ 22+ 1in b(z) = 2" + 25+ 22 + 1 v GF(28).
(b) Izracunaj inverz polinoma ¢(z) = 2° + z + 1 v GF(2%).
Resitev: (a) Najprej izracunajmo produkt polinomov a in b v kolobarju Zs|x]

a(x)b(z) = (® + 22 + 1) (a"+ 25 + 22+ 1) = 2B + 22 + 2 + 2" + 2t 4+ 1.

Pri deljenju polinoma x'% + 22 + 2% + 27 + 2* 4+ 1 s polinomom wu(z) dobimo kvocient
25 + 2% in ostanek 2% + 1. V obsegu GF(2%) torej velja

a(x) -b(z) = 2° + 1.

(b) Inverz polinomov v Galoisovih obsegih is¢emo s pomocjo posplosenega Evklidovega
algoritma. Ce namrec velja
su+tq =1,

je polinom ¢ inverz polinoma ¢ v Galoisovem obsegu, ki ga definira nerazcepni polinom .
V nasem primeru dobimo:

T ‘ Si tz kl
DB+t +ar+1 1 0
P +r+1 0 1
r+1 1 3 23
1 ¥4+ "+t 1l At 42?4

Ta tabela temelji na izrac¢unih:

Bttt rr+l1=2% (PP +2x+ 1)+ +1,
P rr+l=>@"'+2 + 22 +2)- (z+1)+1,

iz nje pa lahko preberemo, da velja

)t =a2" + 2% 42+t 1



(4) Pokazi, da so naslednja stevila algebrai¢na in nato izracunaj njihove minimalne polinome:

(a) a =145,
(b) a =2+ /3,
(c) a=+V1+V2

Resitev: Kompleksna stevila lahko razdelimo na naslednji dve podmnozici:
- Stevilo a € C je algebraicno nad Q, ¢e obstaja polinom p € Q|z], da je p(a) =0,
- Stevilo a € C je transcendentno nad Q, ¢e ni algebrai¢no.

Mnozico algebrai¢nih stevil torej poleg racionalnih stevil tvorijo Se ni¢le polinomskih enach
z racionalnimi koeficienti. Tipi¢ni primeri so stevila, ki jih dobimo iz racionalnih stevil
s sestevanjem, odstevanjem, mnozenjem, deljenjem in korenjenjem. Vendar pa obstajajo
nicle polinomskih enacb stopnje vsaj 5, ki jih ne moremo izraziti na ta nacin.

Za vsako algebraicno stevilo a obstaja enolicno doloc¢en, nerazcepen, moni¢ni polinom
Ja € Qlz], da je g,(a) = 0. Re¢emu mu minimalni polinom algebraiénega Stevila a.

(a) PisSimo a = 1+ /5. Potem jea—1= V5.8 potenciranjem te enacbe dobimo zvezo
a® —3a®+3a— 6 = 0.

Ce definiramo g,(z) = 2* — 322 4+ 32 — 6, je torej g,(a) = 0. Polinom g, je monicen
in nerazcepen v Q[z] po Eisensteinovem kriteriju. Torej je g, minimalni polinom Stevila

a=1+ /5.

(b) V primeru $tevila a = v/2 + /3 pridemo po dvakratnem kvadriranju do zveze
a’ —10a®> +1 =0,

zato definirajmo polinom g,(x) = 2% — 102 + 1. Preverimo lahko, da g, nima racionalnih
nicel. Ce bi bil razcepen, bi torej moral biti produkt dveh kvadratnih faktorjev

2t =102 +1 = (2® +br+c)(2® +dr+e) = 2 + (b+d)2* + (c+ e+ bd)2x® + (eb+cd)x + ce,

kjer lahko po Gaussovi lemi predpostavimo, da so b,c¢,d,e € Z. Od tod dobimo sistem

enach:
b+d=0,
¢+ e+ bd =—10,
eb+cd=0,
ce = 1.
Iz prve enacbe dobimo d = —b, iz zadnje pa, da jec = e =1 ali pac=e = —1. Ko to
vstavimo v drugo ena¢bo, dobimo —b? = —12 ali pa —b?> = —8, kar pa ne gre. Od tod

sklepamo, da je polinom g, minimalni polinom stevila a = V2 + /3.

(¢) V primeru stevila a = /1 + v/2 lahko podobno kot pri prej$njem primeru pokazemo,
da je algebrai¢no in da ima minimalni polinom

Ga(x) = 2* — 22 — 1.



(5) (a) Izracunaj stopnjo in bazo raziiritve Q(+v/2) nad Q. Nato izracunaj inverz stevila
24+ V2 +VieQ(V2).

(b) Izra¢unaj stopnjo in bazo razsiritve Q(v/3,v/5) nad Q in pokazi, da je enostavna.

Resitev: Naj bo a poljubno kompleksno stevilo. Potem oznacimo:
Qla] . .. najmanjsi podkolobar C, ki vsebuje Q in a,
Q(a) ... najmanjsi podobseg C, ki vsebuje Q in a.

Izkaze se, da potem za algebraic¢no stevilo a velja
Qla] = Q(a) = Q[z]/(ga)-
V tem primeru je torej Q(a) razsiritev obsega Q stopnje [Q(a) : Q] = deg(g,)-

Ce je stevilo a transcendentno, pa velja

Qla] = Qlz], Q(a) = Q(x).

kar pomeni, da je Q(+v/2) tridimenzionalni vektorski prostor nad Q. Za bazo vzemimo
Stevila 1, a, a?, vsak element z € Q(+/2) pa je potem oblike

T =ay+ a1 V2 + ax V4

za neke ag, ar, as € Q.

Ker je Q(v/2) obseg, je tudi inverz Stevila 2+ v/2 + v/4 enake oblike. Izracunamo ga lahko
z uporabo razsirjenega evklidovega algoritma kot v Galoisovih obsegih, ali pa z nastavkom

(24 V2 + V4)(ag + a1 V2 + aV/4) = 1.

Zgornjo enacbo lahko prevedemo v sistem linearnih enacb za neznanke ag, aq,a, € Q, ki
ima resitev ag =1, a1 =0 in ay = —%. Torej je

1
1
2+ V24 V4 ?

(b) Obseg Q(v/3,v/5) je najmanjsi podobseg C, ki poleg Q vsebuje $e Stevili v/3 in v/5.
Opisemo ga lahko tudi v obliki Q(v/3,/5) = Q(v/3)(v/5). Za izra¢un stopnje razsiritve
bomo uporabili produktno formulo

[Q(V3,v5) : Q] = [Q(v3,V5) : Q(V3)][Q(V3) : Q] =2-2 = 4.

Pri tem smo upostevali, da sta minimalna polinoma g s5(z) = 2> — 3 in g 5(z) = 2> — 5.
Za bazo razsiritve lahko vzamemo Stevila 1, v/3, v/5, v/15.

Za dano razsiritev re¢emo, da je enostavna, Ce je generirana z enim samim elementom. V
nasem primeru lahko preverimo, da je
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Ce piSemo a = V3 + \/5, lahko izrazimo:

a® — 14a
3= ——
V3 YR
a® — 18a
R
V5 —
a’> — 8
V15 = .
2

To pomeni, da lahko za bazo razsiritve Q(v/3,v/5) vzamemo tudi $tevila 1,a,a?,a®>. O
Izracunaj stopnjo in bazo razsiritve Q(e%) nad Q, ce je n prastevilo.

Resitev: Obsegom oblike Q(e%), kjer je n naravno stevilo, recemo ciklotomski obseg:.

Vemo zZe, da je stevilo w = e reditev enatbe w" = 1, od koder sledi, da je stevilo w
algebraicno in da minimalni polinom g, deli polinom z™ — 1. Za vsak n lahko polinom
2™ — 1 faktoriziramo v obliki

" —1=(x -1 " +a" 2. 1)
V primeru, ko je n prastevilo, smo zZe pred ¢asom pokazali, da je polinom

Jo(@) ="+ 2" 2+ 4z +1

27i

. .. . . v . 27 .. 27i v .
nerazcepen, zato je minimalni polinom stevila w = e . Torej je Q(e™ ) razsiritev obsega
Q stopnje n — 1 z bazo 1,w,w?, ..., w" 2.

Opomba: Ce n ni prastevilo, je polinom z"~' +2""2+...+x+1 razcepen. V tem primeru
se izkaze, da je stopnja razsiritve ciklotomskega obsega Q(e%) nad Q enaka ¢(n), kjer je
¢ Eulerjeva funkcija. ]

Poisci razpadna obsega naslednjih polinomov:

(a) p(z) = 2" +1 € Qlal,
(b) p(z) = 2® — 3 € Q[z].

Resitev: Razpadni obseg polinoma p € Q[z] je najmanjsi obseg Q < F' < C, ki vsebuje vse
nicle polinoma p.

(a) Polinom p(x) = z* + 1 ima §tiri kompleksne nicle:

zoze%:‘éi—i-i\/?i,
21:63277 = \f+z‘/7§,
22:e5§1ﬂ :—72—272,
z3*e%:72—i72

Vidimo, da so vse nicle potence z, kar pomeni, da so vsebovane v obsegu Q(zp), ki pa je
hkrati najmanjsi obseg, ki vsebuje z5. Od tod sklepamo, da je razpadni obseg polinoma
p(z) = 2* 4+ 1 enak Q(z,) = Q(e7). Ker je polinom p nerazcepen nad Q, je minimalni



polinom stevila z, od koder sledi, da je [Q(eT) : Q] = 4. Za bazo razdiritve lahko

vzamemo Stevila 1, zg, 22 = i, 25 = z;. Ta razpadni obseg bi lahko zapisali tudi v obliki

Q(e) = Q(V2.).
(b) Ni¢le polinoma p(r) = 23 — 3 so:

20 = \3/57
3 2im
271 =V3e s,
3 dim
2o =V 3e3 .
V tem primeru obseg Q(v/3) ne vsebuje preostalih dveh nicel. Da dobimo razpadni obseg,
mu moramo dodati e Stevilo e5". Stopnjo razsiritve @(\3/5’62%) lahko izracunamo z
uporabo formule

[Q(V/3,e) : Q] = [Q(V3,¢%) : Q(V3)][Q(V3) : Q.
Minimalni polinom $tevila v/3 je gaz(z) = 2% — 2, Stevila e’s pa g 2z (7) = 22+ + 1.
Torej je [Q(¥/3,¢5) : Q] = 6 in
Q(V3,e) = {ag + a1 V3 + aaV/9 + aze’ s + agV/3e’ s + azv/9e’ T |a; € Q).
]

Ugotovi, ali lahko pravilni 8-kotnik oziroma pravilni 9-kotnik konstruiramo samo s Sestilom
in ravnilom.

2
n
271

konstruktibilni Stevili. To pa velja natanko takrat, ko je ciklotomski obseg Q(e™ ) dobljen
iz Q z zaporedjem razsiritev stopnje 2.

2

Resitev: Pravilni n-kotnik lahko konstruiramo s Sestilom in ravnilom, ce sta cos =& in sin =&

V primeru n = 8 smo ze izracunali, da velja

27

Q) = Q(eT) = Q(V2,4) = Q(V2)(4).

Imamo torej razsiritev stopnje 4, ki jo lahko dobimo z zaporedjem razsiritev stopnje 2. Od
tod racunsko sledi, da lahko 8-kotnik konstruiramo samo s sestilom in ravnilom. Dejansko
lahko konstrukcijo izvedemo z nekajkratno konstrukcijo simetral kotov.

Bolj zanimiv je primer n = 9, pri katerem konstrukcije ne znamo izvesti. Sedaj bomo
pokazali, da je dejansko ne moremo izvesti. PiSimo w = e, Potem je w? = 1. Iz razcepa

W —1= (- 1)(W +w*+1)
sledi, da je w® +w? +1 = 0. Pri tem smo upostevali, da w?® # 1. Sedaj bomo pokazali, da
je polinom
go(z) =2+ 2% + 1
minimalni polinom $tevila w. Ce pisemo
go(x+1) = (x+1)°+ (x +1)> + 1 = 2° + 62° + 152" + 212> + 182 + 92 + 3,
lahko z uporabo Eisensteinovega kriterija za p = 3 sklepamo, da je nerazcepen polinom
gw(z + 1). Vendar pa mora biti potem nerazcepen tudi polinom g, (z).

Stopnja razsiritve Q(e%) nad Q je torej enaka 6, kar pa pomeni, da je ne moremo zapisati
kot zaporedje razsiritev stopnje 2. [



(9) Zuporabo kvaternionov izra¢unaj matriko za rotacijo za kot ¢ = m okoli osi € = (‘/75, ‘/75, O) :

Resitev: Kvaternioni so stevila oblike

H={q=t+xi+yj+ zk|t,z,y,z € R}.
Kvaternioni 7, 5 in k£ so imaginarne enote, mnozenje pa je definirano s formulami

P=7=k=-1

in

1] =—ji =k, jk=—kj =1, ki = —ik = j.
Pogosto uporabljamo vektorsko notacijo

q=t+zi+yj+zk=(17),

ki nam omogoca, da mnozenje izrazimo s formulo

Q1q2 = (tity — 71 - To, 117 + £l + 71 X 7).

Vektorje v R? pri tem zapisu identificiramo s kvaternioni, ki imajo skalarni del enak ni¢.
Podobno kot pri kompleksnih stevilih lahko definiramo konjugirani kvaternion s predpisom

Kvaternioni tvorijo nekomutativen kolobar z deljenjem, enotski kvaternioni pa tvorijo

grupo
S8 = {(t,7) € R |2 + |72 = 1}.

Enotske kvaternione lahko uporabimo za vrtenje vektorjev v R3. Definirajmo kvaternion

q= cos% —i—sin%é
kijer je ¢ € R in € € R3 enotski vektor. Potem je s predpisom
R(e, )T = qq"
definirana rotacija R3 za kot ¢ okoli osi €.

. . R AV BN )
V nasem primeru je ¢ =7 in € = (77 =, O), kar nam da:

=e,

*

= —¢.

Sedaj bomo izracunali, kako se zavrtijo bazni vektorji:

R(E,¢)-i=¢-i (=€) =1(i+j)i(—i—j) =]
R(E¢)-j=¢j- (=€) =3(i+1)j(—i—j) =1,
R(€.¢)- k=" k-(=&) = §(i+ j)k(=i — j) = —k.

Od tod sledi, da rotaciji R(€,¢) ustreza rotacijska matrika

01 0
R(E¢)=1]1 0 0
00 —1



Opomba: Rotacijske matrike so ortogonalne matrike z determinanto ena. Tvorijo grupo
SOB3) ={R cR¥*3 | RTR =1, det(R) = 1}.
Ce je R rotacijska matrika, lahko os in kot rotacije izra¢unamo na naslednji nacin.

- Os vrtenja je vzporedna lastnemu vektorju € matrike R, ki ustreza lastni vrednosti
A = 1. Eksplicitno je za ¢ ¢ {0, 7} to vektor

1 [ M2 — s
€= 2sin¢ fis — o
Ro1 — Rip
- Kot ¢ € [0, 7] dobimo iz formule cos ¢ = Sl(P;)*l.

(10) S kvaternioni izra¢unaj rotacijo R = Ry o Ry, kjer je Ry = R(i, 5)in Ry = R(j, 7).

Resitev: Pri prejsnji nalogi smo fiksen kvaternion ¢ € S® uporabili za izrac¢un rotacijske
matrike. Bolj splosno pa se da pokazati, da je preslikava R : S? — SO(3) s predpisom

R(q)T = qZq"

surjektiven homomorfizem grup z jedrom ker R = {1, —1}. Dejstvo, da je R homomorfizem
grup pomeni, da kompozicija rotacij ustreza mnozenju kvaternionov.

V nasem primeru lahko rotacijo R(j, %) predstavimo s kvaternionom

42 = \/Ti + \/75(07 1a0)7

rotacijo R(i, %) pa s kvaternionom

oIS
&

q1 = > + 22(17()’())‘

Rotacijo R(j, %Yo R(i, 2) pa lahko potem predstavimo s kvaternionom
¢ =qq = (2 +2(0,1,0) (2 + %(1,0,0) =  + 1(1,1,~1).

Od tod lahko preberemo, da vrtimo okoli osi s smerjo € = Tg(l, 1,—1), kot rotacije pa
O

zadosca pogoju cos% = % oziroma ¢ = 120°.



