Kardinalna Aritmetika: Izpit		1	
June 29, 2018		2	
This exam contains four questions. You are required to answer all four. All answers must be justified. You have 120 minutes to complete the exam. You	Seat (3.04)	3	
may answer in English or in Slovene. Good luck!		4	
		Σ	
Name and surname	Student ID		

Question 1 (25 marks)

a) (6 marks) Let X be a set. Define what it means for $R \subseteq X \times X$ be an equivalence relation.

b) (6 marks) Let $R \subseteq X \times X$ be an equivalence relation. Recall that an *equivalence class* of R is a subset $Y \subseteq X$ for which there exists $y \in Y$ satisfying: for all $y' \in X$, it holds that $y' \in Y$ if and only if yRy'. Prove that the collection X/R of all equivalence classes is a set.

Question 2 (25 marks)

a) (6 marks) If $(X, <_X)$ and $(Y, <_Y)$ are well-orders, define the well-order $(X, <_X) + (Y, <_Y)$.

b) (6 marks) Suppose $(X,<_X)$ and $(Z,<_Z)$ are well-orders and suppose $\operatorname{ord}(X,<_X) \leq \operatorname{ord}(Z,<_Z)$. Prove that there exists a well-order $(Y,<_Y)$ such that $\operatorname{ord}((X,<_X)+(Y,<_Y)) = \operatorname{ord}(Z,<_Z)$.

c) (8 marks) Suppose $ord((X,<_X)+(Y,<_Y)) = ord((X,<_X)+(Y',<_{Y'}))$. Prove that $ord(Y,<_Y) = ord(Y',<_{Y'})$.

d) (5 marks) Suppose $\operatorname{ord}((X,<_X)+(Y,<_Y)) = \operatorname{ord}((X',<_{X'})+(Y,<_Y))$. Does it follow that $\operatorname{ord}(X,<_X) = \operatorname{ord}(X',<_{X'})$?

Question 3 (25 marks)

Recall the hierarchy of *beth* cardinals:

$$\beth_0 := \aleph_0$$
 $\beth_{\alpha+1} := 2^{\beth_{\alpha}}$
 $\beth_{\lambda} := \sup_{\alpha < \lambda} \beth_{\alpha}, \quad \lambda \text{ limit.}$

a) (5 marks) Is it true that $\beth_0 = (\beth_0)^{\aleph_0}$?

b) (8 marks) For $0 < n < \omega$ prove that $\beth_n = (\beth_n)^{\aleph_0}$.

(More space	e for your answer to part	(b) .)		
c) (4 marks)	Recall the statement of	Kőnig's theorem est	ablishing a strict cardi	nal inequality.
d) (8 montro)	Prove that $\mathbb{T} \times (\mathbb{T})^{\aleph_0}$			
d) (8 marks)	Prove that $\beth_{\omega} < \left(\beth_{\omega}\right)^{\aleph_0}$.			

Question 4 (25 marks)

In the space below and on the opposite page, answer exactly one of the two questions below.

- 1. (a) Suppose we have a function $f:\aleph_1\to\aleph_0$. Prove that there exists $n<\aleph_0$ such that $|f^{-1}(n)|=\aleph_1$.
 - (b) Suppose we have a function $f:\aleph_{\omega}\to\aleph_0$. Does there necessarily exist $n<\aleph_0$ such that $|f^{-1}(n)|=\aleph_{\omega}$?
 - (c) Comment on whether or not your answers to parts (a) and (b) rely on any form of the Axiom of Choice.
- 2. This question concerns Borel sets of real numbers.
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. For any $n \in \mathbb{N}$, define $f^n: \mathbb{R} \to \mathbb{R}$ by:

$$f^{0}(x) = x$$
 $f^{n+1}(x) = f(f^{n}(x)).$

- (i) For any $\epsilon \in \mathbb{R}$ and $N \in \mathbb{N}$, show that $\{x \mid \forall m \ge N \mid f^m(x) f^N(x) \mid \le \epsilon \} \in \Pi_1^0$.
- (ii) Show that $\{x \mid \text{the sequence } (f^n(x))_n \text{ is convergent} \} \in \Pi_2^0$.
- (b) Recall from lectures that: (i) there are 2^{\aleph_0} -many Borel sets; and (ii) every uncountable Borel set has a perfect subset. Using these facts, prove that there exists a family $\{B_\alpha\}_{\alpha<\omega_1}$ of Borel sets whose union $\bigcup_{\alpha<\omega_1}B_\alpha$ is *not* Borel. Hint: assume the Continuum Hypothesis (CH) and show that the statement follows; similarly, show that it follows from \neg CH.

(Write your answer here.)

(More space for your answer to Question 4.)