13. The Logistic Differential Equation

Suppose that P(t) describes the quantity of a population at timet. For example, P(t)
could be the number of milligrams of bacteriain a particular beaker for a biology
experiment, or P(t) could be the number of peoplein aparticular country at atimet. A
model of population growth tells plausible rules for how such a population changes over
time. The smplest model of population growth is the exponential model, which assumes
that there isaconstant parameter r, called the growth parameter, such that

P(t) =r P(t)
holdsfor all timet. Thisdifferential equation itself might be called the exponential
differential equation, because its solutionis

P(t) = Po &'t
where Ry = P(0) isthe initial population.

One noticeable feature of the exponential model is that, whenr is positive, the
population always grows larger and larger without any finite limit, asis seen in Figure 1.
Thiskind of growth may be agood model for anew population of bacteriain a beaker, but
it does not hold for along time. It iseasy to see that the equation would imply a population
of bacteriathat ultimately outgrew the beaker and even outgrew the planet earth, since the
mass of the bacteriawould ultimately exceed the mass of the earth. Such amodel is
therefore absurd to model a system for long periods of time. The fundamental difficulty is
that the exponential differential equation ignoresthe fact that there are limits to resources
needed for the population to grow. It ignores the needs for food, oxygen, and space; and it
ignores the accumulation of waste products that inevitably arise.
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Figurel: P(t) = 2 D-3t. Thisexample of the exponential model shows a population
growing always faster without any bound.

An alternative model was proposed by Verhulst in 1836 to alow for the fact that
there are limitsto growth in al known biological systems. He proposed what is now called
thelogistic differential equation. The equation involvestwo positive parameters. The
first parameter r is again called the growth parameter and playsarole similar to that of r
in the exponentia differential equation. The second parameter K is called the carrying
capacity. Thelogistic differential equation iswritten

P(t) =r P(t) [1- P@t)/K].

Equivaently, in terms of the d notation, the logistic differential equation is
dP/dt=rP[1-P/K]



Note that when P(t) isvery small, then P(t)/K iscloseto 0, so the entire factor [1-P(t)/K] is
closeto 1 and the equation itself isthen close to P(t) = r P(t); we then expect that the
population grows approximately at an exponential rate when the populationissmall. Onthe
other hand, if P(t) getsto be near K, then P(t)/K will be approximately 1, so [1-P(t)/K] will
be approximately 0, and the logistic differential equation will then say approximately P(t) =
r P(t) 0=0. The growth rate will be essentially 0, so the population will not grow
significantly more.

To solvethelogistic differentia equation, we separate variables:
dP/dt=rP[1-P/K]
dP=rP[1-P/K]dt

dP =r dt
[P(1-P/K)]
(\) dP :c\)r adt
[P(1-P/K)]

Since the left integral is quite difficult, the remainder of the detailswill be left to the end of
thissection. Thereisan arbitrary constant C in the general solution. When the fact that
P(0) = Pg is utilized, we obtain that

P(t) = Po K
Po + (K-Pp) et

Theorem 1. The solution of the logistic differential equation is
P(t) = Po K

Po + (K-Pg) et
where Ry = P(0) istheinitial population.

Thisformulaisthelogistic formula. It tellsthe equation for the logistic curve.
The derivation of the formulawill be given at the end of this section.

Thelogistic curve gives amuch better general formulafor population growth over a
long period of time than does exponential growth.

Example. A population of bacteria grows according to the differential equation
dP/dt = 0.03 P (1 - P/2000)

Whent = 0, the population is 200 g.

Find the population P at timet.

Solution. We recognize the logistic differential equation withr = 0.03 and K = 2000. We
aregiven Pg = 200. Hence by Theorem 1,

P(t) = (200) (2000)

(200) + (2000-200) e-0.03t
P(t) = 400,000

200 + 1800 e-0.03t
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Example. A population of bacteria grows according to the differential equation
dP/dt = 0.05P (1 - 0.001 P)

Whent = 0, the population is 300 g.

Find the population P at timett.

Solution. We recognize the logistic differential equation with r =0.05. To find K note that
the part of the general differential equationinvolving K is
(1-P/K)
while for the problem at hand the part is
(1-0.001P)
Hence /K =0.001
so K =1000.
We are given Pg = 300. Hence by Theorem 1,

P(t) = (300) (1000)

(300) + (1000-300) e~0-05t
Pt = 300,000

300 + 700 e-0.05t

Since the numbers are messy, we might simplify by dividing numerator and denominator by
100. We then get
P(t) = 3000

Example. A population of bacteriagrows logisticaly. Supposetheinitial populationis 3
mg of bacteria, the carrying capacity is 100 mg, and the growth parameter is 0.2 hour1.
(a) Findthedifferential equation satisfied by the population.

(b) Find the population at all times.

(c) When will the population reach 90 mg?

(d) When will the population reach 200 mg?

Solution. (&) Thelogigtic differential equationis
P(t) =r P(t) [1- P(t)/K]

Since PO =3, K =100, r = 0.2, the equation is
P'(t)=0.2 P(t) [1- P(t) / 100]
P'(t) = 0.2 P(t) [1 - 0.01 P(t)]

(b) From Theorem 1 we know that
P(t) = Po K
Po + (K-Pg) et
But we are given that Pg = 3 mg of bacteria, K =100mg, and r=0.2 hour-1.
Plugging in these values we see
P(t) = (3)(100) = 300
3 +(100-3) e-0-2t 3+97e0.2t

(¢) The population will reach 20 mg when P(t) = 20.



300 =20
3+97e 0.2t

3+97e0.2t =300/20=15
9702t =12

0.2t = 19/97

-0.2t = In(12/97)

t =[In(12/97)]/(-0.2) = 10.45 hours

(d) The population will reach 200 mg when P(t) = 200.
300 =200
3+97e0.2t

3+97e0.2t =300/200=15

97e¢02t =15-3=-15

e0.2t = .15/97

-0.2t = In(-1.5/97)

But thisismeaningless. Thereisno such t since one cannot take the logarithm of a negative
number. Hence the population never reaches 200 mg.

Figure 2 showsthislogistic curve. Note that it has roughly the shape of an elongated S
(and it isin fact sometimes called the S-shaped curve). The population initially grows
dowly but steadily. Then the growth speeds up and the curve moves more steeply upward.
Asthe population gets closer to the carrying capacity K = 100, the growth slows and the
curve gets more horizontal again. In fact the population never appears to reach the carrying
capacity, but instead seems to approach it as an asymptote. Henceit is clear from Figure 2
why we never find at such that P(t) = 200.
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Figure2: Thelogistic curvewhen Pg =3, K =100, r =0.2. Thisisan example of the
famous S-shaped curve. It shows limitsto population growth.

There are many different ways to express the formulafor P(t). Inthe preceding
example, we had



Pt)= = 300
3+97e0.2
We could multiply numerator and denominator by any number to find an equivalent
formula. For example, we could multiply numerator and denominator by (1/3):

Pt) = = (300)  (U3)
@+o7e02) (3
P()= = 100
1+@U3)e02
Pt) = = 100

1+3233e0.2t
Thislast expression looksnice sinceit has1inthefirst term of the denominator.
Alternatively, we might like 1 in the numerator. Hence
Pt) = = (300) (1/300)

P(t)= = 1
3/300 + (97/300) e 0.2t
Pt)= = 1

0.01 + 0.3233 -0.2t

Thus when someone gives us aformulafor the logistic curve, we must remember that they
might have "ssmplified" it in such amanner. It isthen not quite so easy to find K and PQ.

Theidentification of K ismade easy in general because, in fact, it istruethat ast
goesto infinity, P(t) will approach K as an asymptote. Thisis seen more exactly using
limits:

Example. Find
550
173 —

t®Y¥  10+20e0.1t

Solution. When we writet® ¥ we mean that t gets very large without bound. Note that

0.1t = 1/ 0.1t
Ast® ¥ we see that the exponent in the denominator gets huge. So the whole denominator

gets huge (think of it aslike 21,000,000 so the fraction goesto 0. Hence

and
550



175 4
® ¥ 10+20e 0.1t
= 550

10 + 20 (0)

550/10 = 55
The same technique is used in the following theorem:

Theorem 2. If P(t) isthelogistic formulaand K is the carrying capacity, then

lime ¥ P(t) =K.

Proof. Notethat et=1/dt. Sincer>0, ast® ¥ weseethat &t also goesto
infinity, so e goesto 0. Hence

lim@y P(t) =lim@ ¥ Po.K =limey _ POK =K
Po + (K-Pg) et PO

Example. Suppose that a particular population of bacteria obeysthe logistic
formula
P(t) = _ 2000
2 +3e-0.3t
wherePisinmgandtisinhours. Find K, r, and Po.
Solution. First wefind Po:

Pg = P(0) = 2000/(2+3€0) = 2000/(2+3) = 2000/5 = 400 mg.

To compute K, by Theorem 2 we know that K = limi@ ¥ P(t).

But ast gets arbitrarily large, e0-3t = 1/ 0-3t goesto 0.
Hence limi@ ¥ P(t) = 2000/(2 + 3(0)) = 2000/2 = 1000,
SincePisinmg, K isalsoinmg, so K = 1000 mg.

The numerical value of ris0.3 since -r is the coefficient of t in the exponent of e.
The exponent of e should be dimensionless, so rt should have no units. Sincetisin hours,

it follows that the units of r should be 1/hr. Hencer = 0.3 hr-1.

Thus the natural formulaway in this problem would have been to find
P(t) = PoK

Po + (K-Pg) et

P(t) = (400) (1000)

400 + (600) e-0.3t
P(t) = 400,000

400 + 600 e-0.3t
Theorigina formulahad been smplified to make the numbers smaller.



Example. Suppose that a particular population of bacteria obeysthe logistic
formula

P(t) = _ 2000

1.5+ 3.7 0.2t

where Pisinmg and tisin hours.
(@ FindK, r, and Po.
(b) Findthedifferential equation that P(t) solves.
Solution. (&) r=0.2 from the exponential form.
Po = P(0) = 2000/ (1.5 + 3.7 €0) = 2000/ (1.5 + 3.7) = 384.6 mg
K= lim P(t)

i® ¥

lim -

1.5+ 3.7 (0) since €0-2t goesto 0 ast gets very large

=2000/1.5 = 1333 mg
The carrying capacity is 1333 mg.

(b) Thedifferential equationis
dP/dt =r P[1- P/K].

Hence

dP/dt =0.2 P[1- P/1333].

The maximal rate of growth for thelogistic formula

Note that according to the logistic differential equation we have P(t) > 0 for
populations P(t) satisfying 0 < P(t) < K. Thisisbecause, for such P(t), K - P(t) > 0, so
dividing by K we have (1 - P(t)/K) > 0. But P(t) =r P(t) (1-P(t)/K) so P(t) > 0 aswell.
Thisimpliesthat the logistic curve is alwaysincreasing, as occurred in the examplein
Figure 2.

We would like to find out when the rate of growth is maximal. Thiswill tell when
the population is growing the fastest. To do this, recall that the rate of growth is P = dP/dt,
and we know that

dP/dt = r P (1-P/IK)

Hence we wish to find out when

r P (1-PIK)

ismaximal.

To do this, wetakeitsderivative. More explicitly, let

F(P) =r P (1-P/K).

Then F(P) = rP- (r/K) P2

soF'(P)=r-2(r/IK)P

The maximum occurs with F'(P) = 0, hence
r-2(/K)yp=0



-2(/IK)P=-r
-(2K)P=-1
P=K/2

Theorem 3. The maximal rate of growth for the logistic curve occurs when
P=K/2.

In words, the growth rate peaks and starts to slow when the popul ation reaches half the
carrying capacity.

It isalso useful to know the time when the maximal rate of growth occurs. Thisisfound by
solving the equation

P(t) = K/2
sinceit isthe time when the population is haf the carrying capacity.

Example. Suppose that a particular population of bacteria obeysthe logistic formula
P(t)= _3000
1.5+ 3502t
where Pisin mg and tisin hours.
(@ Téell the population when it is growing fastest.
(b) Tl when the population is growing fastest.
(c) Tel the maximal rate of growth for the population.

Solution. (@) The population grows fastest when P = K/2. Hence we need to find K.

K= lim P@)
® ¥

= im e
t®¥ 15+35e0.2t

= 3000/1.5 = 2000 mg
Hence the fastest rate of growth occurs when P = 1000 mg

(b) We need to find t such that P(t) = 1000.

3000

------------------- = 1000
1.5+35¢0.2t

1.5+ 3.5e0.2t =3000/1000 = 3
3502t =15

e02t =15/35

-0.2t=1In(1.5/3.5)
t =[In(1.5/35)]/(-0.2) = 4.236 hours

(c) Therate of growth of the populationisP'(t). The maximal rate of growth occurs when
t = 4.236 hours. Hence we need P '(4.236).

The most direct method isjust to differentiate:
By the quotient rule, P'(t)



(15+35e0.2t) (0) - 3000 Dff 1.5+ 3502t ]

[15+35e02t ]2

Hence P '(4.236)
- 3000 (3.5) 0-2(4.236) (-0.2)

[ 1.5+ 3.5e0.2(4.236) 12

100 mg/hour

A much smpler method, however, isto utilize the differential equation:
P(t) =r P(t) [1- P(t)/K]

Hence

P(t) = 0.2 P(t) [1 - P(t)/2000]

P'(4.236) = 0.2 P(4.236) [1 - P(4.236)/2000]

=0.2(2000) [1 - (1000)/2000]

= 100 mg/hour

Application to epidemics

Thelogigtic curve is often amuch better model than the exponential curve for the
growth of populations when the environment poses limitations on growth. It turns out that
another use of the logistic curve isto describe the spread of an epidemic. Thisistrue
because an epidemic corresponds to the popul ation growth of a certain disease organism.

Example. Suppose that t weeks after the start of an epidemic in a certain community, the
number P(t) of people who have caught the disease is given by the logistic curve

P(t) = 1500

5 + 295 e-0.9t

(& How many people had the disease when the epidemic began?
(b) Approximately how many peoplein total will get the disease?
(c) When was the disease spreading most rapidly?
(d) How fast was the disease spreading at the peak of the epidemic?
(e) When did the spread of the disease start to low down?
(f) What isthe differential equation for P(t)?
(g) By thetime 200 people had had the disease, what was the rate at which the disease was
spreading?

Solution. (@) When the epidemic began, there were P(0) = 1500/(5+295(1))= 5 peopleill.
(b) The number that will get the disease isthe carrying capacity K. Ast goesto infinity,

e 0.9 goesto 0, so K = 1500/(5 + 295(0)) = 300. We expect atotal of 300 people to get ill
during the epidemic.

(c) The disease was spreading most rapidly at the inflection point. From Theorem 3, this
occurred when t = In[(K-Po)/Pg] / r = In[(300-5)/5]/0.9 = 4.53. Hence the epidemic will
peak 4.53 weeks after the beginning of the epidemic.
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(d) From (c), the peak of the epidemic occurred whent = 4.53. Therate of spreading is
P(t), so the answer will be P(4.53). But

P(t) = 398250 0.9t

(5+295 e-0.91)2

s0 P(4.53) = 67.5 people/week. At the peak of the epidemic, 67.5 new people get the
disease per week.
(e) Once the epidemic reaches its peak, the spread of the disease will begin to ow down.
Hence the spread of the disease starts to slow 4.53 weeks after the beginning of the
epidemic.
(f) P®) =rP(t) [1-P(t)/K] =0.9P(t) [1- P()/300]

0) When P =200, it follows that

P = 0.9 (200) [ 1- 200/300] = 60 people/week.

Derivation of thelogistic formul
ewish to solvethe logistic differential equation
P(t) =r P(t) [1- P(t)/K]
Rewriteit as
dP/ dt=r P (1- PIK)
The equation is separable, so rewriteit again as
dpP = r ot

P(1-PIK)
We now wish to integrate both sides. The left side requires the use of the trick of partial
fractions. We guessthat there are constants A and B such that
1 = A+ B
P (1- PIK) P (1-PIK)

Clear the fractions:
1=A (1-PK)+BP
This should be identically true, hence true when P = 0 and when P= K. When P=0we
obtain
1=A(1-0+BO
so1=A. When P=K weobtain
1=A (1-K/K) + BK
so1=BK and B = /K.

Hence
O 1 dp = OLdP + A (UK) dP
P (1- PIK) P (1-PIK)
Theright hand integral can be done by the substitution u = (1-P/K) whence
du =-(UK) dP
Hence
(‘) 1 dpP = In(P) + O‘-du
P (1- PIK) u

=In(P) - In(1-P/K) .
But Qr dt= rt+ C where Cisaconstant of integration.
Since (‘) drP = C)’dt
P(1- PIK)
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we obtain
INn(P) - In(1-P/K) =rt + C.

To smplify this, we take e to the power given by ether side.

Hence dIN(P) - In(1-P/IK)] = drt+ C]
dIn(P)]  eIn(1-P/IK)] = L' t
P/(1-P/K) = C gt
Write A = €C. Now
P/(1-PIK) = A €t
We need to solve this equation for P. Multiply by (1-P/K):
P=A &t (1-PIK)
Move all termswith Pto the | eft:
P+Aell/K)P=A &t
Factor: P[1+A t/K] = A &t
Hence
P= A€t
1+A et/ K

Multiply numerator and denominator by KeI't

P= A K

K e'rt+A ert e'rt
P= AK

K eTt+A

But P(0) = P, so

Po= AK
K +A

HencePp (K + A) = AK

PoK+PpA=AK
PoOK=AK-APp
PoK=A (K-Ppg)
A= PoK = (PoK)/ (K-Po)
K-Po

Now plugging this back into the expression for P we obtain
P= AK

K eTl+A
P= [(PoK)/ (K - Po)] K

K e+(Pg K)/ (K - PQ)

Multiply numerator and denominator by (K-Pg)/K. Then

P= _(PoK)
(K-Pg) et+Pg

which is equivaent to the logistic formula.
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