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Definicija baze

Naj bo V vektorski prostor. Vektor v ∈ V se da izraziti kot linearna
kombinacija vektorjev v1, . . . , vn ∈ V , če obstajajo taki skalarji
α1, . . . , αn, da velja v = α1v1 + . . .+ αnvn. Pogosto lahko te skalarje
izberemo na več različnih načinov.

Definicija baze

Naj bo V vektorski prostor.

Vektorji v1, . . . , vn ∈ V so ogrodje, če se da vsak vektor v ∈ V na
vsaj en način izraziti kot linearna kombinacija v1, . . . , vn.

Vektorji v1, . . . , vn ∈ V so linearno neodvisni, če se da vsak vektor
v ∈ V na največ en način izraziti kot linearna kombinacija v1, . . . , vn.

Vektorji v1, . . . , vn ∈ V so baza, če se da vsak vektor v ∈ V na
natanko en način izraziti kot linearna kombinacija v1, . . . , vn.

Opomba: Očitno so vektorji v1, . . . , vn ∈ V baza natanko tedaj, ko so
linearno neodvisni in ko so ogrodje.
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Linearna ogrinjača vektorjev v1, . . . , vn ∈ V je definirana kot množica
vseh vektorjev v ∈ V , ki se dajo izraziti kot linearna kombinacija vektorjev
v1, . . . , vn. Označimo jo z Lin{v1, . . . , vn}. Linearna ogrinjača prazne
množice {} naj bo {0}. Linearna ogrinjača je vektorski podprostor v V .

Opomba: Vektorji v1, . . . , vn ∈ V so ogrodje natanko tedaj, ko je njihova
linearna ogrinjača enaka V .

Izrek 1 - Karakterizacije linearne neodvisnosti

Za vektorje v1, . . . , vn iz vektorskega prostora V so ekvivalentne trditve:

(1) Vektorji v1, . . . , vn so linearno neodvisni.

(2) Za vsake skalarje α1, . . . , αn, ki zadoščajo α1v1 + . . .+ αnvn = 0,
velja α1 = . . . = αn = 0.

(3) Nobeden od vektorjev v1, . . . , vn se ne da izraziti kot linearna
kombinacija preostalih vektorjev.

Opomba: V nadaljevanju bomo uporabljali točko (2) kot (alternativno)
definicijo linearne neodvisnosti vektorjev.

Dokaz: Dokazali bomo, da je (1)⇔ (2) in da je (2)⇔ (3).
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(1)⇒ (2) Recimo, da so v1, . . . , vn linearno neodvisni. Potem se da vektor
0 na kvečjemu en način izraziti kot linearna kombinacija v1, . . . , vn. Ena
izražava je 0 = 0v1 + . . .+ 0vn. Če imamo še eno izražavo, recimo
0 = α1v1 + . . .+ αnvn, potem je α1 = . . . = αn = 0 zaradi enoličnosti.

(2)⇒ (1) Recimo, da iz α1v1 + . . .+ αnvn = 0 sledi α1 = . . . = αn = 0.
Vzemimo nek vektor v , ki se da na dva načina izraziti kot linearna
kombinacija vektorjev v1, . . . , vn. Prvi način naj bo v = β1v1 + . . .+ βnvn,
drugi način pa v = γ1v1 + . . .+ γnvn. Ko oba načina odštejemo, dobimo
0 = v − v = (β1 − γ1)v1 + . . .+ (βn − γn)vn. Po predpostavki odtod sledi
βi − γi = 0 za vse i , se pravi βi = γi za vse i . Torej sta oba načina enaka.

(2)⇒ (3) Recimo, da velja (2) in da ne velja (3). Potem lahko pri nekem
i izrazimo vi kot linearno kombinacijo preostalih vektorjev, se pravi kot
vi = α1v1 + . . .+αi−1vi−1 +αi+1vi+1 + . . .+αnvn. Ta izraz preoblikujemo
v α1v1 + . . .+ αi−1vi−1 + (−1)vi + αi+1vi+1 + . . .+ αnvn = 0. Ker velja
(2), odtod sledi −1 = 0 (in αi = 0 za vse i), kar je protislovje.

(3)⇒ (2) Recimo, da velja (3) in da ne velja (2). Torej obstajajo taki
skalarji α1, . . . , αn, ki niso vsi enaki nič, da je α1v1 + . . .+ αnvn = 0.
Vzemimo tak i , da je αi 6= 0. Potem lahko odtod izrazimo vektor vi kot
linearno kombinacijo ostalih vektorjev, kar je protislovje.
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Primeri baz
V nadaljevanju bomo potrebovali, da se vse karakterizacije obrnljivih
matrik nad poljem R posplošijo na vsako polje F .

Primer - Baze v F n

Stolpčni vektorji v1, . . . , vn ∈ F n so baza natanko tedaj, ko je

det
[
v1 . . . vn

]
6= 0.

To sledi iz karakterizacij obrnljivih matrik. Posebna primera sta:

Standardna baza e1 =

 1
0

.

.

.
0

, e2 =

 0
1

.

.

.
0

, . . . , en =

 0
0

.

.

.
1

.

Vektorji


1
0
0

.

.

.
0

,


1
1
0

.

.

.
0

, . . . ,


1
1
1

.

.

.
1

 so baza za F n.

Opomba: Standardna baza v Mm,n(F ) so koordinatne matrike Ei ,j .
Matrika Ei ,j ima na (i , j)-tem mestu enko, drugod pa same ničle.
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Primer - Lagrangeov interpolacijski polinom

Naj bo n ≥ 2 naravno število, F polje z vsaj n elementi in x1, . . . , xn
paroma različni elementi polja F . Naj bo V = F [x ]n−1 vektorski prostor
vseh polinomov stopnje ≤ n − 1 s koeficienti iz F . Trdimo, da so polinomi

pi (x) =
(x − x1) · · · (x − xn)

x − xi
=

∏
j∈Nn,j 6=i

(x − xj), za i = 1, . . . , n

baza vektorskega prostora V . Začnimo z linearno neodvisnostjo. Če je
n∑

i=1

αipi (x) = 0,

potem za vsak j vstavimo xj . Ker je pi (xj) = 0 za vsak i 6= j , ostane
αjpj(xj) = 0. Ker so xk paroma različni, je pj(xj) 6= 0. Sledi αj = 0.

Dokažimo, da za vsak polinom f (x) ∈ V velja formula

f (x) =
f (x1)

p1(x1)
p1(x) + . . .+

f (xn)

pn(xn)
pn(x)

Odtod sledi, da so polinomi pi (x) ogrodje. Obe strani formule imata
namreč stopnjo ≤ n − 1 in se ujemata v n različnih točkah x1, . . . , xn.
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Obstoj baze
Spomnimo se, da je ogrodje vektorskega prostora V taka končna
podmnožica v V , da je njena linearna ogrinjača enaka V .

Definicija

Vektorski prostor je končno-razsežen, če ima ogrodje. Če ima ogrodje
z n elementi, nima pa ogrodja z n − 1 elementi, potem je n-razsežen.

Trditev 1

Podmnožica S vektorskega prostora je baza natanko tedaj, ko je ogrodje in
ko nobena prava podmnožica v S ni ogrodje.

Dokaz: Če je S ogrodje in če nobena prava podmnožica v S ni ogrodje,
potem za vsak v ∈ S velja v 6∈ Lin(S \ {v}) (sicer bi iz v ∈ Lin(S \ {v})
in S \ {v} ⊆ Lin(S \ {v}) sledilo S ⊆ Lin(S \ {v}), odtod pa bi sledilo
LinS ⊆ Lin(S \ {v}), torej bi bila prava podmnožica S \ {v} ogrodje.)
Odtod po karakterizaciji linearno neodvisnih množic sledi, da je S linearno
neodvisna. Torej je S baza. Dokaz v obratno smer je podoben.

Jaka Cimprič ( FMF UL) Trinajsto predavanje december 2020 7 / 21



Oglejmo si nekaj posledic preǰsnje trditve.

Izrek 2 - Obstoj baze

Vsak končno-razsežen vektorski prostor ima bazo. (Če je n-razsežen, ima
bazo z n elementi.) Vsako ogrodje ima podmnožico, ki je baza.

Dokaz: Naj bo V končno-razsežen vektorski prostor in naj bo S ogrodje z
najmanj elementi. (Če je V n-razsežen, ima S n elementov.) Potem
nobena prava podmnožica v S ni ogrodje, saj ima manj elementov kot S .
Torej je S baza po trditvi.

Naj bo T ogrodje. Med vsemi podmnožicami v T , ki so tudi ogrodje,
izberimo tako, ki ima najmanj elementov, in jo označimo z S . Nobena
prava podmnožica v S ni ogrodje, saj je podmnožica v T in ima manj
elementov kot S . Po trditvi je S baza. Ta baza je vsebovana v T .

Opomba: Trivialni vektorski prostor {0} je 0-razsežen. Njegova baza je
prazna množica {}. To sledi iz dogovora Lin{} = {0}.
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Primeri iz obstoja baze
Zanima nas, kako za dano množico {v1, . . . , vm} ⊂ F n preverimo ali je
ogrodje in kako poǐsčemo tako njeno podmnožico, ki je baza. Matriko[
v1 . . . vm

]
z Gaussovo metodo prevedemo v reducirano vrstično

stopničasto formo R. Če ima R ničelno vrstico, potem {v1, . . . , vm} ni
ogrodje. Če R nima ničelne vrstice in če so i1, . . . , in zaporedne številke
njenih pivotnih stolpcev potem je množica {vi1 , . . . , vin} baza za F n.
Utemeljitev: Če matriko

[
v1 . . . vm

]
z leve množimo z elementarno

matriko, se ohranijo vse linearne relacije med stolpci.

Primer te metode

Pokažimo, da so stolpci matrike

A =


1 0 1 0 1 0
1 0 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1


ogrodje za F 4 in poǐsčimo take štiri stolpce, ki so baza za F 4.
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Z Gaussovo metodo izračunamo njeno reducirano vrstično kanonično formo

R =


1 0 0 1 0 1
0 1 0 1 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1


Ker matrika R nima ničelne vrstice, so stolci matrike A ogrodje za F 4.
Zaporedne številke pivotnih stolpcev v R so 1, 2, 3, 5. Stolpci v A z istimi
zaporednimi številkami so potem baza za F 4. Iz R lahko odčitamo tudi,
kako se s temi stolpci izražata preostala stolpca matrike A.

Primer: F [x ] ni končno-razsežen

Spomnimo se, da je F [x ] vektorski prostor vseh polinomov v x s koeficienti
iz F . Množica {1, x , x2, . . .} je ogrodje F [x ]. Če bi imeli končno ogrodje
{p1, . . . , pn}, potem bi vsak polinom p iz F [x ] lahko izrazili kot
p = α1p1 + . . . αnpn, odkoder bi sledilo deg p ≤ max{deg p1, . . . , deg pn},
kar je protislovje, saj imajo lahko polinomi poljubno visoko stopnjo.
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Enoličnost moči baze

Radi bi dokazali, da imajo vse baze istega vektorskega prostora enako
elementov. Začnimo s pomožno trditvijo.

Trditev 2

Naj bo V vektorski prostor. Če so u1, . . . , um linearno neodvisni vektorji v
V in če so vektorji v1, . . . , vn ogrodje za V , potem je m ≤ n.

Dokaz: Vsak vektor ui razvijmo po vektorjih vj :

u1 = α1,1v1 + . . .+ α1,nvn
... (1)

um = αm,1v1 + . . .+ αm,nvn

Privzemimo sedaj, da je m > n in poskušajmo dobiti protislovje.

Ker ima vsak podoločen homogen sistem netrivialno rešitev, obstajajo taki
skalarji x1, . . . , xm, ki niso vsi enaki nič, da velja:
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α1,1x1 + . . .+ αm,1xm = 0
... (2)

α1,nx1 + . . .+ αm,nxm = 0

Iz (1) in (2) sledi
m∑
i=1

xiui =
m∑
i=1

xi (αi ,1v1 + . . .+ αi ,nvn)

= (
m∑
i=1

αi ,1xi )v1 + . . .+ (
m∑
i=1

αi ,nxi )vn (3)

= 0v1 + . . .+ 0vn = 0

Ker so vektorji u1, . . . , um linearno neodvisni, sledi iz (3), da je
x1 = . . . = xm = 0. To je v protislovju z izbiro x1, . . . , xm.
Predpostavka m > n je torej napačna.

Jaka Cimprič ( FMF UL) Trinajsto predavanje december 2020 12 / 21



Oglejmo si nekaj posledic te trditve.

Izrek 3 - Enoličnost moči baze

Če je V n-razsežen vektorski prostor, potem velja:

Če so u1, . . . , um ∈ V linearno neodvisni, je m ≤ n.

Če so u1, . . . , um ∈ V ogrodje, je m ≥ n.

Če so u1, . . . , um ∈ V baza, je m = n.

Dokaz: Ker je V n-razsežen vektorski prostor, ima bazo z n elementi,
recimo v1, . . . , vn. Vemo, da je vsaka baza linearno neodvisna in ogrodje.

Prvo točko dokažemo takole. Ker so u1, . . . , um linearno neodvisni in ker
so v1, . . . , vn ogrodje, je po Trditvi 2 m ≤ n.

Drugo točko dokažemo takole. Ker so u1, . . . , um ogrodje in ker so
v1, . . . , vn linearno neodvisni, je po Trditvi 2 n ≤ m.

Očitno tretja točka sledi iz prvih dveh.

Posledica izrekov 2 in 3

Vektorski prostor je n-razsežen natanko tedaj, ko ima bazo iz n elementov.
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Primer iz enoličnosti moči baze

Naj bo F polje in S neskončna množica. Pokažimo, da vektorski prostor
F S vseh funkcij iz S v F ni končno-razsežen. Recimo, da ima F S ogrodje
iz n elementov. Konstruirali bomo linearno neodvisno množico v F S , ki
ima n + 1 elementov, kar je v nasprotju z Izrekom 3.

Za vsak s ∈ S označimo z δs funkcijo, ki pošlje element s v 1, elemente iz
S \ {s} pa v nič. Ker je S neskončna množica, lahko izberemo n + 1
paroma različnih elementov s1, . . . , sn+1 ∈ S . Pokažimo, da so funkcije
δs1 , . . . , δsn+1 linearno neodvisne. Recimo, da velja

α1δs1 + . . .+ αn+1δsn+1 = 0

za neke skalarje α1, . . . , αn+1 ∈ F . Potem ze vsak x ∈ S velja

α1δs1(x) + . . .+ αn+1δsn+1(x) = 0

Ko vstavimo x = si za i = 1, . . . , n + 1, in upoštevamo δj(si ) = 0 za vsak
j 6= i , dobimo αiδsi (si ) = 0. Ker je δsi (si ) = 1, sledi αi = 0.

Jaka Cimprič ( FMF UL) Trinajsto predavanje december 2020 14 / 21



Dopolnitev linearno neodvisne množice do baze

V tem razdelku bomo dokazali, da vsako linearno množico dopolnimo do
baze. Začnimo z pomožno trditvijo.

Trditev 3

Če so vektorji v1, . . . , vm linearno neodvisni, in če vektor vm+1 ne leži v
njihovi linearni ogrinjači, potem so tudi vektorji v1, . . . , vm, vm+1 linearno
neodvisni.

Dokaz: Recimo, da so vektorji v1, . . . , vm linearno neodvisni, in da vektor
vm+1 ne leži v njihovi linearni ogrinjači. Vzemimo take α1, . . . , αm, αm+1,
da velja α1v1 + . . .+ αmvm + αm+1vm+1 = 0. Radi bi dokazali, da velja
α1 = . . . , αm = αm+1 = 0. Ločimo dva primera.

Če je αm+1 6= 0, potem velja vm+1 = −1
αm+1

(α1v1 + . . .+ αmvm), kar je v
nasprotju s predpostavko, da vm+1 ne leži v linearni ogrinjači v1, . . . , vm.

Če je αm+1 = 0, potem velja α1v1 + . . .+ αmvm = 0. Ker so vektorji
v1, . . . , vm linearno neodvisni, je α1 = . . . , αm = 0.
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Trditev 4

Naj bo V n-razsežen vektorski prostor. Vsaka linearno neodvisna množica
v V , ki ima n elementov, je baza.

Dokaz: Če so vektorji v1, . . . , vn ∈ V linearno neodvisni, niso pa baza,
potem niso ogrodje. Torej obstaja tak vektor vn+1, ki ne leži v linearni
ogrinjači vektorjev v1, . . . , vn. Po Trditvi 3 si vektorji v1, . . . , vn, vn+1

linearno neodvisni. Ker je V n-razsežen, ima ogrodje z n elementi. Po
Trditvi 2 ima vsaka linearno neodvisna množica manj ali enako elementov
kot vsako ogrodje. Torej je n + 1 ≤ n, kar je protislovje.

Izrek 4 - Dopolnitev do baze

Vsaka linearno neodvisna množica v končno-razsežnem vektorskem
prostoru je vsebovana v neki bazi.
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Dokaz: Če je V n-razsežen vektorski prostor in so vektorji v1, . . . , vm ∈ V
linearno neodvisni, potem je m ≤ n po Izreku 3. Če je m = n, potem so
vektorji v1, . . . , vm baza po Trditvi 4. Če je m < n, potem:

Izberimo tak vm+1 ∈ V , da vm+1 6∈ Lin{v1, . . . , vm}.
Izberimo tak vm+2 ∈ V , da vm+2 6∈ Lin{v1, . . . , vm, vm+1}.
Izberimo tak vm+3 ∈ V , da vm+3 6∈ Lin{v1, . . . , vm, vm+1, vm+2}.
. . .

Izberimo tak vn ∈ V , da vn 6∈ Lin{v1, . . . , vm, vm+1, . . . , vn−1}.
Obstoj takih vm+1, . . . , vn sledi iz dejstva, da nobena podmnožica v n
razsežnem prostoru, ki ima manj kot n elementov, ni ogrodje (drugi del
Izreka 3). Če n −m krat uporabimo Trditev 3, dobimo, da so vektorji
v1, . . . , vm, vm+1, . . . , vn linearno neodvisni. Po Trditvi 4 so torej baza.
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Primer iz dopolnjevanja linearno neodvisnih množic
Zanima nas, kako za dano množico {v1, . . . , vm} v F n ugotovimo ali je
linearno neodvisna in kako jo dopolnimo do baze. Tvorimo matriko

A =
[
v1 . . . vm e1 . . . en

]
kjer je e1, . . . , en standardna baza za F n. Z Gaussovo metodo prevedemo
matriko A na reducirano vrstično stopničasto formo R.

Zaporedne številke pivotnih stolpcev matrike R naj bodo i1, . . . , in.
Vektorji v1, . . . , vm so linearno neodvisni natanko tedaj, ko velja
i1 = 1 in . . . in im = m. Stolpci v A z zaporednimi številkami
im+1, . . . , in so potem dopolnitev množice {v1, . . . , vm} do baze.

Primer

Dopolni vektorja


1
−1
0
2

 in


2
2
0
1

 do baze za R4.
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Najprej tvorimo matriko

A =


1 2 1 0 0 0
−1 2 0 1 0 0
0 0 0 0 1 0
2 1 0 0 0 1


Njena reducirana vrstična stopničasta forma je

R =


1 0 0 −1

5 0 2
5

0 1 0 2
5 0 1

5
0 0 1 −3

5 0 −4
5

0 0 0 0 1 0


Njeni pivotni stolpci imajo zaporedne številke 1, 2, 3 in 5. Torej sta

1
−1
0
2

,


2
2
0
1

 linearno neodvisna in


1
0
0
0

,


0
0
1
0

 ju dopolnita do baze.
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Povzetek - Karakterizacije baz in razsežnosti

Povzemimo vse karakterizacije baz v en izrek.

Povzetek 1

Za vsako podmnožico S v n-razsežnem prostoru V so ekvivalentne trditve:

S je baza.

S je linearno neodvisna in je ogrodje.

S je linearno neodvisna in ima n elementov.

S je ogrodje in ima n elementov.

S je linearno neodvisna in nima nobene prave linearno neodvisne
nadmnožice.

S je ogrodje in nima nobene prave podmnožice, ki bi bila ogrodje.
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Povzemimo še vse karakterizacije razsežnosti v en izrek.

Povzetek 2

Za vsak vektorski prostor V so ekvivalentne naslednje trditve:

V je n-razsežen.

V ima ogrodje z n elementi, nima pa ogrodja z n − 1 elementi.

V ima bazo z n elementi.

V ima linearno neodvisno množico z n elementi, nima pa linearno
neodvisne množice z n + 1 elementi.
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