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1. Introduction

Minimal surfaces are among the most beautiful and aesthetically pleasing geometric
objects, which are also of major physical importance. These are surfaces in space which
locally minimize the area, in the sense that any small enough piece of the surface has the
smallest area among all surfaces with the same boundary. They appear naturally in the
physical world. Laws of physics imply that a soap film spanned by a given boundary curve
assumes the shape of a minimal surface. Furthermore, the most natural parameterization of
a minimal surface by a smooth map, say from a planar domain, from the physical viewpoint
is a conformal map, i.e., one which preserves angles between tangent vectors. The reason is
that a conformal parameterization minimizes the total energy and makes the internal tension
uniformly spread over the surfaces; see Remark[6.4] This can be illustrated by the following
experiment. Take a piece of cloth in the shape of a disc and made of elastic material. Now,
stretch it as a curtain in the 3-space with the boundary circle attached to a closed curve
C C R3, but allowing it to slide freely along C'. It will assume the shape a minimal surface
S C R3 with boundary C, and the position of points from the original disc inside this
surface S will yield a conformal parameterization of S by the disc. It is however important
that the boundary of the disc is not attached in a fixed way to the curve C, for otherwise
a conformal parameterization cannot be achieved in general. Such experiments, with soap
bubbles as curtains, were conducted by Joseph Plateau in 1873, and they gave rise to the
famous Plateau problem conjecturing that any closed Jordan curve in R? spans a minimal
surface (in fact, a minimal disc). Plateau’s conjecture was confirmed by Tibor Radé [[17, /18]
(1930) and Jesse Douglas [9] (1932).

Minimal surfaces appear in a variety of applications. They are studied in any Riemannian
manifold of dimension at least three, that is, a manifold with a smooth field of inner products
on their tangent spaces. Holomorphic curves in complex Euclidean spaces C" for n > 1
are rather special examples minimal surfaces.
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Unfortunately, this beautiful subject is not easily accessible to undergraduate students
of Mathematics who already know the basic differential calculus of functions of several
variables, but have not been exposed yet to Riemannian geometry. Presentations in standard
texts (see [12} 16, (5, 15,7, 8], among others) either assume or develop several prerequisites
from differential geometry before dealing with this topic, and the amount of necessary
background material quickly becomes overwhelming.

The immediate aim of writing this expository article was a desire to present rudiments
of the theory of minimal surfaces in a third year analysis course on differential equations
and the calculus of variations. My intention was to discuss minimal surfaces as one of
the examples of the Euler-Lagrange equation, but explaining also the geometric meaning
of the resulting equation in terms of the vanishing of the mean curvature of the surface.
Furthermore, I wished to explore the role of conformal parameterization of the surface and
the connection to complex analysis via the Ennepper-Weierstrass formula. The latter opens
the way to applying complex analytic methods in the theory of minimal surfaces, thereby
exposing a close connection between these two fields. These methods are highly efficient
as can be seen from the monographs [16, 3], the AMS Memoir [2]], and the recent survey
[L]. AllT could afford within the given syllabus were four or five lectures. This led me to
develop an elementary presentation based on the following two principles.

e All calculations are done with the second order Taylor polynomials of relevant
functions at a given base point, without an attempt to develop global formulas.

e Metric notions such as length, area, and curvature coincide in any Euclidean
coordinate system. Explicitly, fixing a reference coordinate system on an affine
space, any coordinate system obtained from the initial one by applying translations
and orthogonal rotations (the isometries of the Euclidean metric) is equally good.

By following these principles, I offer here an approach to the basics of the theory of
minimal surfaces in Euclidean spaces R™ which is suitable for third year undergraduate
students with no prior exposure to differential geometry. The same principles apply in any
Riemannian manifold; however, things become more involved since the derivatives of the
metric enter the picture, and the connection to complex analysis is lost in general.

2. Graphs with minimal area

In this section we derive Lagrange’s equation of minimal graphs, which is one of the first
examples in the calculus of variations for functions of more than one variable.

Let D be a bounded domain in the plane R? with piecewise "' boundary bD. Given a
function f : D — R of class € on the closure of D, its graph

2.1 Gf:{(x,y,z)e]R?’:(x,y)eb, z:f(a;,y)}
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has area equal to

(2.2) Area(f) :/ wl—i—ff%—fﬁdwdy:/ V1+|Vf|?dedy.
D D

Here, f, and f, denote the partial derivatives with respect to the indicated variables.

We are interested in finding functions f for which the area is the smallest among all
nearby graphs over D having the same boundary values f|,p : bD — R. The first step is
to understand when is f a stationary point of the area functional. To answer this question,
we consider deformations of f which are fixed on the boundary bD. Pick a "' function
h : D — R vanishing on bD and consider the function

R>s —— Area(f + sh) € Ry.

Then, f is a stationary point of the area functional (2.2)) among all graphs over D with given
boundary values if and only if

Area(f + sh) =0

s=0

ds
holds for all such functions A. This expression equals

d d
@ _ @ 2 2
s Area(f + sh) = / P s:O\/l + (fo + she)? + (fy + shy)? dzdy

s=0

2.3) _ /fzh + fyhy
1+|Vf|2

Integrating both summands by parts, we replace h, and h, by h and put the respective

derivative on the other term in the product. Since h vanishes on b D, this gives

d 0 Jz 0 Ty
24) —| A h) = — - - h dxdy.
@4 Gl phreald +sh) L(axw+ayw> o

This expression vanishes for all functions h as above if and only if
LR R
/14 |Vf2 0y \/1+|Vf]

holds on D. Indeed, if this expression is nonzero at some point (g, y9) € D, say positive,

(2.9)

then it is positive on a neighbourhood U C D due to continuity, and by choosing h > 0 to
have support contained in U and to satisfy h(xo, yo) > 0, the integral on the right hand side
of (2.4) is negative, so f is not stationary. The equation (2.5]) can be written in the form

\i _ U+ D ea = 2 fyfay + (L4 £2) fiy
VIF VI (1+|Vf2)%?

which is equivalent to

(2.6) (L4 f) fow = 2fufyfoy + (L4 £2) fyy = 0.

:07

This calculation was made by J.-L. Lagrange in 1760. The second order quasilinear
partial differential equation is known as the equation of minimal graphs, or the minimal
graph equation. 1t is the Euler-Lagrange equation for the area functional (2.2)).
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One may consider more general deformations of a given graph, with the same result. Let
F(z,y,s) be a ¢ function on D x (—e¢, +¢) for some € > 0 such that

F(x,y,0) = f(z,y) forall (z,y) € D, and
F(z,y,s) = f(x,y) forall (z,y) € bD and s € (—¢, +¢).

Write

Fulay) = F,9) + shiz,y) +o(s), hz.y) = o] _ Fu(a.y).

The same calculation which leads to (2.3) then show that

4 Area(Fy) = 4 Area(f + sh).

ds ls=0 ds ls=0
This justifies the restriction to deformations which are linear in the parameter s when
deriving the minimal graph equation.

A natural question at this point is whether there exists a solution of the minimal graph
equation (2.6) with prescribed continuous boundary values over bD, and if so, how many
are there. This Dirichlet problem for the minimal graph equation was solved affirmatively
for any bounded convex domain D C R2 by T. Rad¢ [18] in 1930; an alternative proof was
given by H. Jenkins and J. Serrin [[11] in 1966. The solution is unique and is an absolute
area minimizer among all surfaces with the given boundary. This is an important special
case of the Plateau problem mentioned in the introductory section.

3. Curvature of surfaces

In order to explain the geometric meaning of the minimal graph equation, we shall need
the notion of principal curvatures and mean curvature of a surface in the Euclidean 3-space
R3. In coordinates = = (z1,x2,...,z,) on R™ the Euclidean metric is given by

ds® = do? + dad + - + da?.

Its value on any pair of vectors & = (£1,&2,...,&,) and n = (n1,m2,...,7,) in R™ is
>y &ni = & -, the standard Euclidean inner product of £ and 7.

Let us observe the following, where the first item may be adopted as an axiom.

o The curvature of an object (say a curve or a surface) is invariant under affine linear
maps R” — R” of the form x — Ax + b, where b € R" and A € O, (R) is an
element of the orthogonal group on R™. Such maps are called rigid, and they are
precisely the isometries of the Euclidean metric on R".

e Every smooth curve C' can locally at any point p € C' be represented as a graph
over its tangent line 7;,C. The analogous property holds for smooth surfaces.

Hence, to explain the notion of curvature of a smooth plane curve C' C R? at a point
p € O, it suffices to apply a rigid change of coordinates in R? taking p to (0,0) and the
tangent line 7),C' to the z-axis, so locally near (0, 0) the curve is the graph y = f(z) of a
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smooth function on an interval around 0 € R, with f(0) = f/(0) = 0. (It will suffice to
work with twice continuously differentiable functions.) The Taylor expansion of f at 0 is
then

G y=f@) = 5 (02 + o(a?).

Let us find the circle which agrees with this graph to the second order at (0,0). Clearly,
such a circle has centre on the y-axis, and hence is of the form

(3.2) %+ (y — 7’)2 =72

for some r € R\ {0}, unless f”(0) = 0 when the z-axis y = 0 (a circle of infinite radius)
does the job. Solving the equation (3.2) on y near (0, 0) gives

2 2 1
y:r—\/ﬂ—x?:r—mll—jg:T—r<1—;rz+o(x2)> :§x2+o(:c2).

A comparison with (3.1)) shows that for f”(0) # 0 the number

r=1/f"(0) e R\ {0}

is the unique number for which the circle (3.2)) agrees with the curve (3.1) to the second
order at (0,0). This best fitting circle is called the osculating circle. The number

(3.3) k= f"(0)=1/r

is the signed curvature of the curve (3.1)) at (0, 0), its absolute value |k| = |f”(0)] > 0 is
the curvature, and |r| = 1/|k| = 1/|f"(0)| is the curvature radius. If f”(0) = 0 then the
curvature is zero and the curvature radius is +oo. The osculating circle lies in the upper
half-plane y > 0 if f”(0) > 0, and in the lower half-plane y < 0 if f”(0) < 0.

Consider now a smooth surface S C R3. Let (z,y, z) be coordinates on R3. Fix a point
p € S. Arigid change of coordinates gives p = (0,0,0) and 7,5 = {z = 0} = R? x {0}.
Then, S is locally near the origin a graph of the form

(3.4) 2= flz,y) = % (f22(0)2? + 2£2,(0,0)2y + fyy (0)y?) + o(2* + y?).

The symmetric matrix

_ fmz(o’ O) ffﬁy(ov 0)
) A‘(mmm mwm)

is called the Hessian matrix of f at (0,0).

Given a unit vector v = (v1,v2) in the (z, y)-plane, let 3, be the 2-plane through 0 € R?
spanned by v and the z-axis. The intersection C, := S N %, is a curve in .S given by

(3.6) z = f(vit,vat) = %(AU )% + o(t?)
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for t € R near 0. Since |v| = 1, the parameters (¢, z) on the ¥, are Euclidean parameters,
i.e., the Euclidean metric ds® on R? restricted to the plane X, is given by dt? + dz?. From
our discussion of curves and the formula (3.3]), we infer that the number

Ky = Av-v = fm(())v% + 2 f2y(0,0)v1v2 + fyy(O)vg
is the signed curvature of the curve C,, at the point (0, 0).

On the unit circle [v]? = v?+v3 = 1 the quadratic form v — Awv - v reaches its maximum
x1 and minimum ko; these are the principal curvatures of the surface S given by (3.4) at
(0,0). Since the matrix A is symmetric, x1 and ko are its eigenvalues. The real numbers

3.7) H = k1 + ko = trace A, K = Kk1k9 =det A

are, respectively, the mean curvature and the Gaussian curvature of S at (0,0). (Sometimes
the number 1 (k1 + k2) is called the mean curvature.)

Note that the trace of A (3.3)) equals the Laplacian A f(0,0) = f4(0,0) + f,,,(0,0). On
the other hand, the trace of a matrix is the sum of its eigenvalues. This implies

(3.8) Af(O, 0) =K1+ Ky = H.

Since the matrix A is symmetric, the eigenvectors of A corresponding to the eigenvalues
k1 and k9 are orthogonal. By an orthogonal rotation in the (z, y)-plane we can map these
vectors to (1,0) and (0, 1), so the equation (3.4) of the surface obtains the normal form

1

(3.9) z= f(z,y) = 3 (/<&1172 + n2y2) + o(z? + v?).

4. Geometric interpretation of the minimal graph equation

We are now ready to prove the following theorem, due to Meusnier (1776), which
provides a geometric interpretation of the minimal graph equation (2.6).

Theorem 4.1. A 6 function f : D — R on a domain D C R? satisfies the minimal graph

equation

4.1 G(f) = L+ f) fax = 2fafyfay + (L+ ) fyy =0

if and only if its graph S = G @.1) has vanishing mean curvature at every point.

Proof. Fix a point pg = (9, yo) € D. Choose Euclidean coordinates on R? which respect

the z direction (to keep the graph property) such that py = (0,0) € R2, £(0,0) = 0, and
f(z,y) = ax +O(x* +4?), a>0.

If po is a critical point of f, i.e., fz(po) = fy(po) = 0, then clearly 4(f)(po) = Af(po) =
H where H is the mean curvature of the graph S = G at py and the second equality
holds by (3.8). Hence, the two conditions in the theorem are equivalent at such a point.
(It would be tempting to achieve a = 0 by a rigid change of coordinates; however,
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the orthogonal rotation on R3 which accomplishes this task does not preserve the graph
condition.) Consider the orthonormal basis of R? given by

1 1
vi = —(1,0,a), vo2=(0,1,0), v3=-——=(—0a,0,1).
1= a0 v2=010), v = Tme(za,0.1)

Then, TpS = span{vi,va} and vs is normal to 7pS. Let (u,v,w) be the Euclidean
coordinates associated to this basis, so the original coordinates are given by

(r,y,2) = uvi + vve + wvs.
In coordinates (u, v, w) the surface S is given locally near the origin as a graph
w = g(u,v), ¢(0,0)=0, dg(0,0)=0.
By (3.8)), the mean curvature of S at 0 equals H = Ag(0,0).

To complete the proof, we shall relate g to f and express 4 (f)(0, 0) in terms of Ag(0, 0).
In the coordinates (z,y, z) the surface S is parameterized by

! z:$(au+g(u,v)).

—— (u — ag(u,v)), =,
\/1+CL2( g( )) 4 ,/1_|_a2

Since S is also given by z = f(x,y), we have the identity

B 2. u— ag(u,v) .
au+ g(u,v) = 1+ a? f(\/leia2 , >

€r =

We now differentiate this identity twice on v and v:

a+ge = fo(1—agu)
G = fa(—agy)+ fyvV1+a?
Gu = foa(1—agu)’/V1+a?+ fo(—aguu)
gov = faa(—ag)?/V1+ a2 + fo(—agu) + fay(—2ag,) + fyyV/1 + a2,

Evaluating these quantities at (u,v) = (0,0) (which corresponds to (x,y) = (0,0)) and
taking into account that f,.(0,0) = a, f,(0,0) =0, g,(0,0) = g,(0,0) = 0 gives

9uu(0,0) = fr(0,0)/ V1 + 0% = 4’9, (0,0),
9un(0,0) = —=a’guu(0,0) + fy (0,0)V/1 +a?,
and hence
f2z(0,0) = V1 + a? 3gw(o, 0), fyy(0,0) = V/1+ a? gy,(0,0).
Therefore we get at (0, 0) that
G(f) = (U4 f2) fox = 2fefyfoy + (14 f2) fyy

3
= V1+a? g+ (1+a*)V1+a?gy

= /1 +a23Ag.
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This shows that 4(f)(0,0) = 0 (the minimal surface equation holds at the origin) if and
only if Ag(0,0) = H = 0 (the mean curvature of S vanishes at 0 € S). Since we
considered an arbitrary point of S = Gy, this proves the theorem. O

Theorem 4.1|{shows that a surface in R? has vanishing mean curvature if and only if small
pieces of the surface are minimal graphs over affine planes. This motivates the following
definition. We shall see that vanishing of the mean curvature is equivalent to the surface
being a stationary point of the area functional for general variations (see Theorem [6.3).

Definition 4.2. A smooth surface in R? is a minimal surface if its mean curvature equals
zero at every point: K1 + ko = 0.

Every point in a minimal surface is a saddle point, and the surface is equally curved in
both principal directions but in the opposite normal directions. Furthermore, the Gaussian

curvature function K = k1r9 = —k2 < 0 is nonpositive at every point. The integral
4.2) TC(S) = / K -dA € [—0,0]
S

of the Gaussian curvature function with respect to the surface area on S is called the toral
Gaussian curvature. This number equals zero if and only if S is a piece of a plane.

The definition of a minimal surface extends to immersed surfaces since every immersion
is locally near each point an embedding. More precisely, if M is a smooth surface and
F : M — R3?is a smooth immersion (i.e., its differential is injective), then every p € M
has a neighbourhood U C M such that F(U) C R? is an embedded surface. We say that F’
is a minimal immersion if every such surface F'(U) has vanishing mean curvature.

The global structure of a minimal surface can be complicated, and it need not be the
image of a planar domain, although many of the oldest known examples such as the
catenoid, the helicoid, Enneper’s surface, Riemann’s minimal examples, and many others
are parameterized by plane domains. In fact, any open (noncompact) surface, orientable or
nonorientable, can be realized as an immersed minimal surface in R?. Even more is true —
one can prescribe the conformal structure on such a surface; this notion will be explained in
the following section. We refer to 3, Chapter 3] for more on this topic.

5. Conformal parameterization of a minimal surface

Let (u, v) be coordinates on R2, An immersion F' : D — R” from a domain D C R? is
said to be conformal if it preserves angles at every point. Explicitly, if p € D and £, 7 € R?
are nonzero vectors which determine an angle of size 0 < 6 < T, then the angle between the
image vectors dF, (&), dFy,(n) € R™ also equals 6. It is elementary to see that an immersion
is conformal if and only if it satisfies the following two conditions at every point (u, v) € D:

5.1 F, - F,=F,-F,,  F,-F,=0.

Here, the dot indicates the Eulidean scalar product. See [3, Lemma 1.8.4] for the details.
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Recall that A denotes the Laplace operator. We shall need the following lemma.

Lemma 5.1. Let D be a domain in R%. If F = (Fy, Fy, ..., F,) : D — R" is a conformal
immersion of class €>, then the vector AF(p) = (AFy(p), ..., AF,(p)) is orthogonal to
the plane dF,(R?) C R" for every p € D. Equivalently,

(5.2) AF.F,=0, AF-F,=0

holds identically on D.

Proof. Differentiating the first identity in (5.1]) on « and the second one on v yields
Fuu Fy=Fu-Fy = *Fvv'Fua

whence AF' - F,, = (Fyy + Fy) - Fy, = 0. Likewise, differentiating the first identity on v
and the second one on u gives AF - F,, = 0. U

Note that if A is an n x n matrix and x(u,v) = (z1(u,v),...,z,(u,v)) € R" is a
smooth map D — R" from a plane domain D C R?, then

(5.3) A(A-x(u,v)) = A- Ax(u,v).

It follows that the property of the Laplacian AF' in Lemma [5.1] is invariant under rigid
motions of R™ since they preserve angles.

We explained in the previous section how the notion of a minimal surface extends to
immersions F' : D — R3 from plane domains. The image S = F(D) of such an immersion
is called an immersed minimal surface. We will now show the following result.

Theorem 5.2. A conformal immersion F = (z,y, z) : D — R3 of class €? from a domain
D C R? parameterizes a surface with vanishing mean curvature function if and only if F
is harmonic:

AF = (Az,Ay,Az) = 0.

Furthemore, by Theorem a conformal immersion F' : D — R"™ is harmonic if and
only if it is a stationary point of the area functional, so the picture will be complete; see
Theorem [6.3] which holds for any n > 3.

Proof. Fix a point pg € D; by a translation of coordinates we may assume that pg =
(0,0) € R2. By we are allowed to make the calculation in any Euclidean coordinate
system on R3 obtained from the initial one by rigid motions. Since the differential
dFo,0) : R? — R3 is a conformal linear map and the mean curvature of a surface is not
affected by rigid motions of R? either, we may assume that

F(0,0) = (0,0,0) and dFo,0)(&1,&2) = (&1, 2, 0) forall § = (&1,6) € R?
for some 1 > 0. Equivalently, at (u, v) = (0,0) the following hold:

(5.4) Ty =Y = >0, zy=yy=0, 2z4=2,=0.
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Note that
(5.5 w=|F,| = |F,|

The implicit function theorem shows that there is a neighbourhood U C D of the origin
such that the surface S = F'(U) is a graph z = f(x,y) with df (o) = 0, so f is of the form
(3-4). By (3-8) the mean curvature of S at 0 € R3 equals H = Af(0,0).

Since the immersion F' is conformal, (5.2)) shows that AF is orthogonal to the (z,y)-
plane R? x {0} at the origin, which means that

(5.6) Az = Ay =0 at (0,0).
We now calculate Az (0, 0). Differentiation of z(u,v) = f(x(u,v),y(u,v)) gives
Zu:fxxu+fyyua Zv:fxxv+fyy117

Zuu = (fxxu + fyyu)u = fmz$12¢ + fwyl'uyu + f;txuu + fyzxuyu + fyyyi + fyyuu-
At the point (0, 0), taking into account (5.4) and f, = f, = 0 we get 2, = W fow. A
similar calculation gives zy,, = p1? fyy at (0,0), so we conclude that

(5.7) Az(0,0) = p?Af(0,0) = p*H,

where H is the mean curvature of the surface F'(U) at the origin. Denoting by N = (0,0, 1)
the unit normal vector to F'(U) at 0 € R3, it follows from (5.3)), (5.6) and (5.7)) that

(5.8) AF = |F,]?HN = %|VF|2HN

holds at (0,0) € D. In particular, AF(0,0) = 0 if and only if H = 0, i.e., the mean
curvature of the image surface vanishes at 0. Since this argument holds for an arbitrary
point of D, this completes the proof. O

Remark 5.3 (Mean curvature vector field). If N is the unit normal vector field along the
surface F'(D) C R3 given by

F, x F,

|Fy < Fy ’

the formula (5.8) holds at every point of D as seen by rigid coordinate changes on R3.

N =

Note that the sign of the principal curvatures and of the mean curvature H of a surface at
a point depend on the choice of the normal vector N at that point. Replacing N by —IN
also replaces H by —H, and hence the product HN is independent of the choice of IN.
The vector field HN is called the mean curvature vector field of F. See (6.6), and
Theorem [6.3] for a generalization to minimal surfaces in R™ for any n > 3. U

A natural question appears: can we always replace a parameterization of an immersed
surface ' : D — R by a conformal one? The answer is affirmative locally near any given
point of D, but globally the situation is more involved. Let us begin with the local picture.
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An immersion F' : D — R" determines on D the Riemannian metric g, also called the
first fundamental form of the immersed surface, by the formula

g = |Fydu? + (F, - F,)(dudv + dvdu) + |F,|*dv?.
This means that for any p € D and vectors ¢ = (£1,&2), 7 = (11,72) € R? we have

gp(&n) = |Fu(p)*&im + Fu(p) - Fuo(p)(&1nz + Eam) + | Fu(p)*E2ma
= dFp(§)-dFy(n),

so F'is an isometry from D with the metric g to F'(D) C R™ with the Euclidean metric.

The main point now is that any point p € D has a neighbourhood U C D and coordinates
(@, ) on U in which a given Riemannian metric g assumes the simpler form

g = \da* + dv?)

for some positive function A > 0. Any such coordinates (u,?) are called isothermal
coordinates for the Riemannian metric g. Letting F' = F'(@, 0) be the immersion U — R"
obtained from F' by expressing (u, v) in terms of (4, 0), we get

|Fal? = |Fs)% = A, Fy-F5 =0,
so [ : U — R™ is a conformal immersion.

The existence of local isothermal coordinates was discovered by C. F. Gauss for surfaces
of revolution. The proof of the general case is beyond the reach of this article, and we refer
to [3, Section 1.8] where the optimal result (assuming only Holder €’ regularity of the
Riemannian metric for some 0 < « < 1) is given, along with a brief history of the subject
and references to the original articles and books.

A reader who is only interested in the local picture may wish to skip the remainder of
this section. For those brave enough, we now describe the global situation. Assume that
M is an abstract smooth surface and F' : M — R" is a smooth immersion. (A reader who
is not familiar with the basic theory of manifolds may simply imagine that M C R" is an
embedded smooth surface and F' is the inclusion map.) By what was said above, we can
parameterize a connected open neighbourhood U C M of any given point p € M by a
smooth diffeomorphism ¢ : U’ — U from an open set U’ C R? such that F o ¢ : U’ — R"
is a conformal embedding. If (;3 is another such local parametrization of a piece of M, then
the transition map ¢~ o gg is a conformal diffeomorphism between planar domains. (This
map has nonempty domain only if the images of ¢ and ¢ overlap, and its domain is the
preimage of this overlap by ¢.) Identifying R? with the complex plane C, it is classical that a
conformal diffeomorphism between a pair of connected domains in C is either holomorphic
or antiholomorphic, depending on whether it preserves or reverses the orientation.

A collection of local parameterizations of this kind whose images cover M is said to be a
conformal atlas on M, and a complex atlas if all transition maps are orientation preserving
and therefore holomorphic. The latter case may be arranged if and only if the surface M is
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orientable. The inverse ¢~ : U — U’ C R? of a local parameterization ¢ : U’ — U C M
is called a local chart on M. A surface endowed with a conformal atlas is called a conformal
surface, and one with a complex atlas is called a Riemann surface. For a conformal surface
M, the notion of a conformal immersion M — R" is well defined by considering it in local
coordinates from the conformal atlas. There is an intrinsic notion of harmonic functions
on a conformal surface, and the analogue of Theorem [5.2] holds: A conformal immersion
F : M — R3 from a conformal surface is a minimal immersion if and only if F is harmonic.

The upshot is that the natural source surfaces to consider (when parameterizing minimal
surfaces) are Riemann surfaces in the orientable case, and conformal surfaces in the
nonorientable case. We refer to [3l Sections 1.8, 1.9] for a more complete discussion.

How can one find a conformal parametrization in practice? In particular, if F : D — R"
is an immersion, is there a diffeomorphism ¢ : D — D such that F o ¢ : D — R"
is a conformal immersion? The answer is affirmative if D is diffeomorphic to a closed
disc. In general, if D is a bounded domain with piecewise smooth boundary, we can find
another domain D’ C R? of the same kind and a diffeomorphism ¢ : D’ — D such that
Fo¢: D' — R"is a conformal immersion. For example, if D is an annulus

A ={(z,y) eR*: 1/ <2® +y* <r?}, r>1,

then we can take D’ = A, for a possibly different 7/ > 1. It is an elementary exercise
in complex analysis that a pair of annuli A, and A, as above are conformally equivalent
(equivalently, biholomorphic) if and only if r = 7.

6. Minimal surfaces in higher dimensional Euclidean spaces

What we have said so far extends to surfaces in Euclidean spaces R™ of dimension n > 3.
In this case there is no particular advantage in considering graphs as we did in Section
so we shall consider immersed surfaces parameterized by plane domains. We start from the
beginning and calculate the first variation of area at a conformal map (6.4)), from which it
follows that F'is a stationary point of the area functional if and only if it is a harmonic map
(see Theorem[6.1)). We then follow the approach developed in Section [5|for the case n = 3
and show that a conformal immersion is harmonic if and only if its mean curvature vector
field vanishes identically; see Theorem[6.3]

Denote the coordinates on R™ by x = (x1, 2, ..., x,). Given a bounded domain D in
R%u ) with piecewise ¢’! boundary and a 42 immersion F' = (Fy, ..., F,) : D — R", the

area of the image surface F'(D) C R™ (counting multiplicities) is given by

(6.1) Area(F):/ VIEu2|Fy|? — |Fy - Fy|? dudo.
D

As before, F,, and F), denote the partial derivatives of F' with respect to the indicated
variables, which are ¢! functions with values in R™. The gradient VF = (F,, F,) is
represented by an n x 2 matrix and |[VF|? = |F,|? + | F, |



Minimal surfaces for undergraduates 13

If F'is a conformal immersion (see (3.1))), then the formula (6.1)) simplifies to
1 1
(6.2) Area(F) :/ |Fy|? dudv = / (|Fu? + |Fy|?) dudv = ~2(F),
D 2Jp 2
where
(6.3) D(F) = / IV F|? dudv
D

is the Dirichlet (energy) integral of the map F'. (See Remark [6.4]for more on this.)

We now calculate the first variation of Area(F’), assuming that F' is conformal. Let
h : D — R"™ be a ! map vanishing on bD. Consider the expression under the integral
(6.1)) for the map Fy = F + sh, s € R. (Note that F is an immersion for s close to 0.)
F,| and F,, - F,, = 0 (see (5.1))) we obtain

Taking into account that |F,| =

|Fu+5hu|2'|Fv+5hv|2 = |Fu|4+25(Fuhu+Fvhv)|Fu|2+O(52)v

((Fy + shy) - (Fy + shy) |2 = O(s%).
It follows that

d

ds ‘s:o(|Fu + shul*|Fy + shy|* — [(Fu + shu) - (F, + 5hv)|2)

= 2(Fy-hy+ F, - hy) |Fy|?

and therefore

d

ds

OArea(F +sh) = / (Fy - hy + Fy - hy) dudv
D

S=

(6.4) = —/ AF'- hdudv.
D

(We integrated by parts and used that h|,p = 0. Note that the factor | F,|? also appears in
the denominator when differentiating the expression for Area(F + sh) under the integral at
s = 0, so these terms cancel.) Clearly, this expression vanishes for all maps h vanishing on
bD if and only if AF = 0, which gives the following result.

Theorem 6.1. A conformal immersion F : D — R™ (n > 3) of class €? is a stationary
point of the area functional (6.1)) if and only if F' is harmonic.

A conformal immersion satisfying the equivalent conditions in the above theorem is said
to be a conformal minimal immersion; it parameterizes an immersed minimal surface in
R™. Theorem [6.3] proved below shows that these two conditions are further equivalent to
vanishing of the mean curvature vector field, so the picture will be complete.

Remark 6.2 (Gradient of the area functional). The identity (6.4)) says more. The quantity
2

6.5) Nk

AF = A,F
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is the intrinsic Laplacian of F = (F},..., F,) with respect to the F'-induced Riemannian
metric F*ds? = |dFy|*+---+|dF,|* on D, and dA = 3|V F|?duduv is the associated area
measure on the image surface as seen from (6.2)). Hence, (6.4) can be written in the form
4 Area(F + sh) = —/ AgF -hdA.
ds ls=0 D
This is the first variational formula for the area of an immersed surface. It may be
interpreted by saying that the vector field A, F' along a conformal immersion F' : D — R"
is the negative gradient of the area functional at F'. In other words, deforming the surface in
the direction of A, F, keeping it fixed on the boundary of a domain in D, leads to the fastest
decrease of the area of that piece of the surface. As we shall presently see, A, F' equals the

mean curvature vector field of F; cf. (6.8). O

The subsequent geometric analysis is much like what we have done in the case n = 3
in Section 5l Assume that F : D — R” is a conformal immersion of class 2. Fix a
point pg = (ug,vp) € D and assume by translations that py € R? and F(0,0) = 0 € R™.
Denote by ey, . . ., e, the standard basis vectors of R"™. Postcomposing F' by an element of
the orthogonal group O,,(R) we may assume that

F(O’O) =0¢€ an Fu(0,0) = ueq, Fv(oyo) = pe2

where © = |F,(0,0)] = |F,(0,0)]. By the implicit function theorem there is a
neighbourhood U C D of (0,0) such that the embedded surface S = F(U) C R" is a
graph over the domain V = (Fy, F3)(U) C R? given by

S ={(z1,22,...,2) : (¥1,22) €V, ;= fi(wr,22) fori =3,...,n},

where each f; : V — R is a € function of the form

1
fi(x1,me) = = (aix% + 28,1129 + %ﬂsg) + 0(:15% + 9:%)

2
The matrix 4; = 51 fi is the Hessian matrix of f; at (0,0); see (3.5)). The discussion
i Vi
in Section [3|shows that the eigenvalues k%, &% of A; are the principal curvatures at 0 of the

3

surface S; in the 3-dimensional space Ry, . .

obtained by orthogonally projecting S to it
(i.e., neglecting the components z; for j € {3,...,n} \ {i}). The numbers

Hi:ﬁiqu/ié:Afi(0,0), Ki:ﬂ’ilié

are, respectively, the mean curvature and the Gaussian curvature of .S at 0 in the direction

of the normal vector e; fori € {3,...,n}. The vector
n n
(6.6) H = Z Hje;, = Z Afi(0,0)e;
i=3 i=3

is the mean curvature vector of the surface S at 0 € S. Since I is conformal, the vector
AF is orthogonal to F' at every point by Lemma[5.1] which implies that

AF1(0,0) = AF,(0,0) = 0.
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The same calculation as in the case n = 3 (see in particular (5.7))) then shows that
AF;(0,0) = p>Af;(0,0) = p?H;, i=3,...,n.

Since % = |F,(0,0)|? = |F,(0,0)|? = |VF(0,0)|?, the upshot is that

1
AF(0,0) = 5|VF(0, 0)|* H.

Applying rigid motions of R™ as we did in Section 5| for surfaces in R3, we see that the
same holds true at every point of D. Together with Theorem [6.1] this proves the following
key result in the theory of minimal surfaces in Euclidean spaces.

Theorem 6.3. A conformal immersion F' : D — R" of class €*(D) satisfies
1
(6.7) AF = 5|VF|2 H,

where H is the mean curvature vector field of the image surface. In particular, F is a
stationary point of the area functional if and only if the mean curvature vector field H
of the immersed surface F'(D) C R™ vanishes identically.

In terms of the intrinsic metric Laplacian (6.5)) of the immersion F, the formula in the
above theorem assumes the simpler form

(6.8) AyF =H.

Remark 6.4. As already mentioned in the introduction, conformal parameterizations of

minimal surfaces are the most natural ones from the physical perspective. Given a €

immersion F' : D — R", let Z(F) be its Dirichlet energy integral (6.3)). Note that for any
two vectors z,y € R™ we have

1

o lyl* = -yl < loflyl* < 5

with equality if and only if = -y = 0 (for the first inequality) and |x| = |y| (for the second

(2 + |y?)?

one). This simple observation shows that
1
Area(F') < 5@ (F) with equality if and only if F' is conformal.

Assume now that D is the closed unit disc D = {(u,v) € R? : u?4+v? < 1}. Consider maps
F : D — R" of class 4%(D) whose restriction to the boundary circle T = bID is an injective
parameterization F' : T — I" C R" of a given smooth oriented Jordan curve. A map in
this class minimizing the Dirichlet integral Z(F') also minimizes the area and provides a
conformally parameterized minimal surface with boundary I" (see Lawson [12, Sect. II.1]).
In other words, conformal parameterization gives a least energy spreading of the surface
over a geometric configuration of least area in R™. This is in analogy to minimization of
the energy integral of curves in a Riemannian manifold which yields geodesics (curves of
minimal length) parameterized by constant multiples of arc length. O
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7. A complex analytic viewpoint on minimal surfaces

In this section we explain the Enneper-Weierstrass formula which provides a connection
between holomorphic maps D — C™ with special properties from domains D C C and
conformal minimal immersions D — R" for n > 3. The same connection holds more
generally for maps from any open Riemann surface instead of a plane domain.

Let z = x + iy be a complex coordinate on C. Let us recall the following basic operators
of complex analysis:

9 _1(0 0N o _1(o 0

0z 2\ox 0Oy)’ 0z 2\o0x 0Oy)’
The kernel of % consists of holomorphic function, and the kernel of % consists of
antiholomorphic functions. The differential of a function F' can be written in the form

_ 9 v _ Y e

where
dz = dz + idy, dz = dx — idy.

Note that %—I;dz is the C-linear part and %—gdi is the C-antilinear part of the differential dF'.
In terms of these operators, the Laplacian equals

0? 0? 0 0 0 0
SR A T
0x?  Oy? 0z 0z 0z 0z

Hence, a function F : D — R is harmonic if and only if the function OF/0z is

holomorphic. It follows that a smooth map F' = (F, Fy, ..., F,) : D — R™ is a harmonic
immersion if and only if the map f = (f1, f2,...,fn) : D — C" with components
fj = 0Fj/0z for j = 1,2,...,n is holomorphic and the component functions f; have

no common zero. (At a common zero of these functions, F' would fail to be an immersion.)
Furthermore, conformality of F' is equivalent to the following nullity condition:

(7.1) fi+fi+-+f=0 onD.
Indeed, we have that
Af} = (Fjo —iFjy)° = (Fja)? — (Fjy)® — 2. Fj .

Summation over j = 1,...,n gives
n
43 f7 = |F* - |F)]* - 2iF, - F,.
j=1

Comparing with the conformality conditions (3.1)) proves the claim.

Since we know by Theorem that a conformal immersion is harmonic if and only it
parameterizes a minimal surface, this gives the following result.
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Theorem 7.1 (The Enneper-Weierstrass representation theorem). Let D be a connected
domain in C. Amap F = (F1, F», ..., F,) : D — R" of class €* is a conformal minimal
immersion if and only if the map f = (f1, f2,...,fn) = OF/0z : D — C™\ {0} is
holomorphic and satisfies the nullity condition (7.1)).

Conversely, a holomorphic map f = (fi1, fo,..., fn) : D — C™\ {0} satisfying the
nullity condition (71.1)) and the period vanishing conditions

(7.2) %% fdz =0 forevery closed curve C C D
C

determines a conformal minimal immersion F' : D — R" given by
(7.3) F(z):c—i—%ﬁ/ f(¢)d¢, zeD
20

for any base point zy € D and vector ¢ = (¢1,¢a,...,cp) € R™

The real period vanishing conditions (7.2) guarantee that the integral in (7.3) is well
defined, in the sense that it is independent of the choice of a path of integration in D from
the initial point zg € D to the terminal point z € D. The imaginary components

(7.4) 3 jq{ Fdz = p(C) € R
C

of the periods ¢, f dz define the flux homomorphism p : Hy(D,Z) — R™. Indeed, by
Green’s formula (the planar version of Stokes’s theorem) the period fo f dz only depends
on the homology class [C] € H(D,Z) of a closed path C C D.

Remark 7.2 (The first homology group). If D is a domain in R? 2 C then its first homology
group Hi(D,Z) is a free abelian group Hy(D,Z) = Z' (¢ € {0,1,2,...} U {cc}) with
finitely or countably many generators. If D is bounded, connected, and its boundary bD
consists of [ Jordan curves I'y, ..., I, and [ isolated points (punctures) py, ..., p;,, then
the group Hy(D,7Z) has ¢ = [;+1y—1 generators which are represented by loops in D based
at any given point pg € D which surround each of the ¢ holes of D. By a hole, we mean
a bounded (hence compact) connected component of the complement C \ D. Indeed, if I';
is the outer boundary curve of D, then every other boundary curve I's,...,I';, of D also
bounds a hole of D, and each of the points py, ..., p;, is a hole. Every hole contributes one
generator to H1 (D, Z). The same loops then generate the fundamental group 71 (D, pg) as a
free nonabelian group. (In general, the first homology group H; (D, Z) is the abelianisation
of the fundamental group 71 (D, pg).) A similar description of H;(D,Z) holds for every
surface, except that its genus enters the picture as well; see [3, Sect. 1.4]. For basics on
homology and cohomology, see J. P. May [[13]]. 0

It is clear from Theorem|[7.1|that the following quadric complex hypersurface in C™ plays
a special role in the theory of minimal surfaces in Euclidean spaces:

(7.5) A=A""={(z1,...,2,) €C" 12§ + 25 + -+ + 22 = 0}.
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This is called the null quadric in C*. Removing the origin, we get the punctured null
quadric A, = A\ {0}. Note that A is a complex cone with the only singular point at 0,
since the differential of the defining function is nonzero elsewhere. Theorem says that
we get all conformal minimal surfaces in R™ which are parameterized by a domain D C C
as integrals (primitives) of holomorphic maps f : D — A, C C" satistying the real period
vanishing conditions (7.2).

Let us now look at a family of immersed holomorphic curves in C™ which are close
relatives of conformally immersed minimal surfaces in R™.

Definition 7.3. A holomorphic immersion F' = (F1,...,F,) : D — C" for n > 3 from a
domain D C C satisfying the nullity condition

(F1)? + (F5)? + -+ (F)*=0

is a holomorphic null curve in C™.

Hence, the derivative f = F’ : D — C" of a holomorphic null curve assumes values
in the punctured null quadric A?~! (7.5). For any closed curve C C D we clearly have
$o fdz = ¢, dF = 0. Conversely, a holomorphic map f : D — A7~! satisfying the
complex period vanishing conditions

(7.6) 7{ fdz =0 forevery closed curve C C D
c

integrates to a holomorphic null curve
z
(7.7) F(z)= c+/ f(¢)dc, z €D,
Z0

where zg € D is any given base point and ¢ € C". Indeed, the conditions guarantee
that the integral in (7.7) is independent of the choice of a path of integration.

If f: D — C"is a holomorphic map then by Green’s formula the period fC fdzeCm
only depends on the homology class [C'| € Hi(D,Z) of C. In particular, these periods
vanish if the domain has trivial homology group H;(D,Z) = 0, which is equivalent to D
being simply connected. According to the Riemann mapping theorem, there are precisely
two such domains up to biholomorphisms: the plane C and the disc D = {|z| < 1}.

Corollary 7.4. If D is a simply connected domain in C then every holomorphic map
f:D — A, C C" determines a holomorphic null curve by the formula (71.7).

If Z=X+1iY : D — C" is a holomorphic null curve then its real part X = RZ :
D — R™ and its imaginary part Y = $Z : D — R" are conformal minimal surfaces.
Indeed, denoting the complex variable in C by z = x + iy and taking into account the
Cauchy-Riemann equations which are satisfied by a holomorphic map Z, we have that

. . 10X
f:Z,:Zx:Xz+1Yx:Xx_1Xy:§E‘
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Since f = Z' : D — A"~ ! satisfies the nullity condition (7.1, X is a conformal minimal
immersion. In the same way we find that f = Z' = Y, +1iY, = JY., s0 Y isa
conformal minimal immersion. Being harmonic conjugates of each other, X and Y are

called conjugate minimal surfaces. Conformal minimal surfaces in the 1-parameter family
X'=R(E"Z): D —R", teR
are called associated minimal surfaces of the holomorphic null curve Z.

Conversely, if X : D — R" is a conformal minimal surface and f = %%—f :D — An!

satisfies the period vanishing conditions (7.6), then f integrates to a holomorphic null curve
Z:D—C" with RZ = X. Recall that the imaginary parts of the periods
determine the flux of the minimal surface X; hence, X is the real part of a holomorphic
null curve if and only if it has vanishing flux. Note that the periods always vanish on a
simply connected domain D C C, and hence every conformal minimal immersion D — R"
from such a domain is the real part of a holomorphic null curve D — C™.

Example 7.5 (Helicatenoid). Consider the holomorphic immersion Z : C — C? given by
(7.8) Z(z) = (cosz,sinz, —iz) € C3, z=xz+iyecC.
We have that

f(z) = Z'(2) = (—sinz,cos z, 1), sin®z+ cos®z + (—i)? = 0.

Hence, Z is a holomorphic null curve. Consider its associated minimal surfaces in R3:

cos x - coshy sinz - sinh y
(79 X' (z) =R (eitZ(z)> =cost | sinz-coshy | +sint | —cosz-sinhy
Yy x

At t = 0 we have a catenoid (see (8.1)), and at t = +m/2 we have a helicoid (see (8.0)).
Hence, these are conjugate minimal surfaces in R®. The holomorphic null curve is
called helicatenoid. 1t is easily verified bthat the given parameterizations of these surfaces
are conformal; of course this also follows from the general theory explained above. O

Weierstrass representation of minimal surfaces in R3. Let us write 0X = %—fdz. In
dimension n = 3 the Enneper—Weierstrass representation formula for a conformal minimal
immersion X = (X1, X2, X3) : D — R3 can be written in the more concrete form (see
[L6] or [3} pp. 107-108] for the details):

2 /141 i1
(7.10) X(2) = X () + 2R /ZO (2 <§ - g), 5 <§ n g), 1) 9Xs,
where
(7.11) g X5 . p_cp!

T X, — 10X,
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is a holomorphic map to the Riemann sphere (a meromorphic function on D) called the
complex Gauss map of X . It is easily seen that the C3-valued meromorphic 1-form
1/1 i/1
¢ = s P2, = 7<7_ ),*(* ),1 0X
(¢1, b2, ¢3) <29 g 294—9 3
in (7.10) has no zeros and poles on M if and only if the following two conditions hold:

e if at some point p € D the meromorphic function g has either a zero or a pole of
order k € N, then ¢3 = 0X3 has a zero at p of the same order &, and
e ¢3 does not have any other zeros (since those would also be zeros of ).

The complex Gauss map corresponds to the classical Gauss map N : D — S? of the
immersed minimal surface X : D — R3, defined by

N — X X Xy

| X x Xy|

provided that we identify the 2-sphere S? C R?® with the Riemann sphere CP' via the
stereographic projection from the point (0,0,1) € S2. See [3,[16] for further details.

One of the most interesting and important features of the complex Gauss map is that the
total Gaussian curvature TC(X) (see (#.2)) of a conformal minimal surface X : D — R3
equals the negative spherical area of the image of the Gauss map g : D — CP! (counted
with multiplicities), where the area of CP! = S? is 47. Explicitly:

(7.12) TC(X) = —Area(g(D)).

It is a recent result that every holomorphic map D — CP! is the complex Gauss map of
a conformal minimal immersion X : D — R3; see [4] or [3, Theorem 5.4.1]. Hence, the

total Gaussian curvature of a minimal surface can be any number in [—o0, 0].

Minimal surfaces of finite total curvature. Recall from that the total curvature of
a minimal surface S C R is the integral TC(S) = [ K - dA of the Gaussian curvature
function K < 0 with respect to the surface area. If X : D — R” is a minimal immersion,
we have TC(X) = [, KdA where dA is the area measure of the Riemannian metric
g = X*ds?> = Y1 (dX;)? on D (the first fundamental form of X). The Gaussian
curvature function K : D — (—o0, 0] of the immersion X is determined solely in terms of
the metric g according to Gauss’s famous Theorema Egregium (the wonderful theorem). An
immersed minimal surface X : D — R3 is said to have finite total curvature if

TC(X) > —oc.

The immersed surface S = X (D) is said to be complete if the X-image of any curve in
D that is not contained in a compact subset of D has infinite Euclidean length in R™. This
is equivalent to asking that the distance function on D induced by the Riemannian metric
g = X*ds? is a complete metric.

If a minimal surface X : D — R3 is both complete and of finite total curvature
TC(X) > —oo, then the domain D must be equal to the complement C \ {p1,...,pm}
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of finitely many points in CP! (or in any compact Riemann surface) and the Gauss map
g has a pole at each of these punctures (including at oo), so it extends to a holomorphic
map g : CP! — CP!. This is a special case of a classical theorem due to Chern and
Osserman [6] from 1967 which describes complete minimal surfaces in R™ of finite total
curvature. In such case, the extended Gauss map g : CP! — CP! has a well-defined degree
deg(g) € Z. which equals the number of points on any fibre g~!(2), 2 € CP!, counted
with multiplicities. The area of the image of g is then equal to deg(g) times the area of CP!
(which is 47), so the formula implies

(7.13) TC(X) = —4r deg(g).

That is, if a complete conformal minimal surface X : D — R? has finite total Gaussian
curvature, then this total curvature is a nonnegative integer multiple of —4m. The case
TC(X) = 0 corresponds to planes. Conversely, if the Gauss map of a conformal minimal
surface X : D = C\ {p1,...,pm} — R? extends to a holomorphic map CP! — CP! with
a pole at each point p; and at oo, then X is complete and has finite total curvature.

On the Calabi-Yau problem for minimal surfaces. Note that every proper immersion
X : D — R” (i.e., such that every sequence p; € D which diverges to bD and has no limit
points inside D is mapped to a sequence X (p;) € R" diverging to co) is complete in the
sense described above. However, if D is a bounded domain in C with piecewise smooth
boundary, there also exist conformal minimal immersions X : D — R" for any n > 3
which are bounded (i.e., such that the image X (D) lies in a ball of R™) and complete. Such
an immersion must be highly oscillating at each boundary point of D. Nevertheless, it is
possible to choose X to extend continuously to D and such that X (bD) is a finite collection
of pairwise disjoint Jordan curves in R™. If n > 5 then X can even be chosen a topological
embedding D < R™. The mentioned results belong to the scope of problems around the
famous Calabi-Yau problem for minimal surfaces; we refer to [1] and [3, Chapter 7] for
surveys of this subject.

8. A few examples of minimal surfaces

We conclude by mentioning a few of the simplest examples of minimal surfaces,
show their conformal parameterizations and the Weierstrass representation. More precise
descriptions of these and other examples, including also their illustrations, can be found
in [3, Sect. 2.8] and in many other sources mentioned in the introduction. Nonorientable
minimal surfaces are treated in the recent publication [2].

The catenoid is obtained by rotating the catenal curve in R? (the graph of the hyperbolic
cosine function) around a suitable axis in R3. It was described by Leonhard Euler in 1744
and characterized by Pierre Ossian Bonnet in 1860 as the only rotational minimal surface in
IR3, besides the plane. For example, by rotating the catenal curve R 3 z + (cosh 2,0, 2) €
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R3 around the z-axis we obtain the catenoid in R? given by the implicit equation
(8.1) z? + y* = cosh? 2.

Other catenoids are obtained from this model one by rigid motions and dilations. For
example, dilating the coordinates by the factor ¢ > 0 gives the family of catenoids

8.2) 2?4yt =c? coshQ(cz).

A conformal parameterization of this catenoid is given by the map X : R? — R3,
(8.3) X (u,v) = (cosu-coshv,sinu-coshv,v).

This is the real part of the holomorphic null curve Z = X +iY : C — C? given by
(8.4) Z(¢) = (cos(,sin¢, —i¢) € C3, (=wu+iveC,

called helicatenoid (see Example [7.5). The Enneper—Weierstrass representation of the
helicatenoid is

¢
Z) = (1,O,O)+/0(—Sing,cosﬁ,—i)dﬁ

Cr1/1 L\ i /1
= (1,0,0) +/0 <2 (@6 —e‘f> % <ei£—|—e‘§> ,1> (—i)de

with ¢ € C. Comparing with (7.10) we see that the Gauss map of the helicatenoid, and
hence of all its associated minimal surfaces (7.9), is g(¢) = €.

The parameterization of the catenoid given by is 2m-periodic in the w variable,
hence infinitely sheeted. By introducing the variable w = e = e~ U ¢ C*, we pass to
the quotient C/27 Z = C* and obtain a single sheeted parameterization F' : C* — R3 of
the same catenoid having the Weierstrass representation

8.5) F(w):(l,0,0)—S‘E/lw (;(;—n);(jﬁn)g d:.

(We introduced the variable = ¢ into the integral for Z(¢). This gives the same
parametric expression X (u,v) (8.3) in terms of the local conformal coordinates (u,v) =
(Arg(w), — log|w|).) From the formula we see that the complex Gauss map
of the catenoid parameterized by is

g(w)=w, weC*

so it extends to the identity map CP' — CP! of degree 1. It follows from that the
catenoid has total Gaussian curvature equal to —47. In fact, the catenoid is the only surface
in the family which factors through C*, has meromorphic Weierstrass data and is of
finite total curvature; all other surfaces in the family (8.4) with ¢ ¢ 7Z are transcendental
and of infinite total curvature.

The catenoid is the most paradigmatic example in the theory of minimal surfaces, and a
list of its major properties can be found in [3, Subsect. 2.8.1].
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Example 8.1. The family of catenoids shows that the Plateau boundary value problem
can have more than one solution. We wish to find a piece of a catenoid from (8.2) whose
boundary consists of the circles z2 4+ y? = r? in the planes z = 1 and z = —1. The equation
for the boundary values is 2> = ¢ =2 cosh?(c) or

coshc=rc, ¢>0.

There is a number rg = 1.50887954 - - - such that this equation has two solutions for r > rq,
one double solution for r = 7y, and no solutions for » < ry. Hence, for values r > rg we
have two catenoids satisfying these boundary conditions. As the radius r of the circles
decreases, the catenoid brakes at the threshold value g and there is no catenoid (and in fact
no minimal surface) connecting this pair of circles for r < rg. Il

The helicoid was described by Leonard Euler in 1774 and Jean Baptiste Meusnier in
1776. Geometrically, it is generated by rotating a line in a plane of R? and simultaneously
displacing it in the perpendicular direction which is the axis of rotation. Therefore, it is
invariant under a one parameter family of screw motions around the axis of rotation, and
consequently it is foliated by helices; hence its name.

Let Z : C — C? be the helicatenoid (8.4). From ([7.9) we obtain the following conformal
parameterization of the helicoid Y = —3Z = R(iZ) : R? — R%:

(8.6) Y (u,v) = (sinw-sinh v, — cosu - sinh v, u).

Its Weierstrass representation is

¢ ) i .
Y(()z%)%/o (; (;—e‘5>,;<;§+e‘§),l>d§, ¢CeC.

Since its complex Gauss map g(¢) = e'¢ (see (7.10)) is transcendental, the total curvature
of the helicoid equals —oo.

Enneper’s surface was discovered by Alfred Enneper in 1868. It is one of the two
most basic minimal surfaces in R? from the point of view of the Enneper—Weierstrass
representation, the other one being the catenoid. Its parametric equations are
u v
X(u,v) = (5(3(1 +0?) — u2), g(v2 -3(1+ u2)),u2 - 1)2) ,
and the Weierstrass representation is given by

¢
X:C — RS, X(C):%/O (1—€2i(1 + €2),2¢) de.

Hence, the complex Gauss map is g({) = ¢, and shows that the total Gaussian
curvature equals TC(X) = —4. It turns out that Enneper’s surface is conjugate to itself.
Besides the catenoid, Enneper’s surface is the only complete minimal surface in R3 of total
Gaussian curvature —4m (see Osserman [[16]]).
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Meeks’s minimal Mébius Strip was discovered by William H. Meeks [14] in 1981. It
was the first known example of a nonorientable properly immersed minimal surface in R3.
Its orientable double cover is parameterized by the harmonic map X : C* — R? with the
following Weierstrass representation formula (see Meeks [14], Theorem 2]):
X(0) :%/C< 22—1 3 22(z+1)7i<(z+1)22 N z—1 )72> i(zz—l)dz7
1 \Z2(z+1) z—1 z—1 22(z+1) 222
where J : C* — C*, J(z) = —1/Z, is the associated antiholomorphic deck transformation.
The Gauss map g : CP! — CP! of X equals
2
o() =

Clearly it has degree 3, so X has total Gaussian curvature —127 by (7.13). Since the map
X covers the Mobius strip exactly twice, the latter has total curvature —67. As shown by

Meeks in [14, Sect. 4], this is the only complete nonorientable immersed minimal surface
in R3 with the absolute total Gaussian curvature smaller than 87.

The Alarcon-Forstneric-Lopez Mobius Strip is the first known example of a properly
embedded nonorientable minimal surface in R*. It was found in 2017 and is described in
[2, Example 6.1]. No such example exists in R? according to Meeks [[14, Corollary 2].

Let J : C* — C* be the fixed-point-free antiholomorphic involution J(¢) = —1/(. The
harmonic map X : C* — R* defined by

X(g):%(i(uz),(—é, ;(cz_clg>,;(<2+é))

is an J-invariant proper conformal minimal immersion such that X (¢;) = X((2) if and
only if (; = (3 or {1 = J((2). Hence, the image surface S = X (C*) C R* is a properly
embedded minimal Mabius strip in R?. It has total Gaussian curvature —4r.
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