[bookmark: _GoBack]Dynamic Programming: An induction approach

Dec 27, 2018·6 min read

Dynamic Programming (DP) is a generic programming technique that uses memorisation in order to solve problems that can be broken down into smaller problems of the same type.
Richard Bellman was the first to coin its name. He wanted to study these kind of problems back in the 1950s while he was in the US Air Force. The problem is that the Air Force at the time did not want to spend money funding mathematical research. To get around that, Bellman came up with a meaningless name (Dynamic Programming) so that he could continue working on it secretly as apparently nobody would question or try to really understand what that new term was all about. More info about that story can be found in this excellent MIT lesson¹.

[image: Image for post]
Richard Bellman
This post shows a general strategy to tackle DP problems using mathematical induction. It comes down to these 3 steps:
1. Write down a formula that describes the solution of the problem as a “mix” of subproblems of the same type. By “mix” I mean using some sort of logic. Sometimes a simple addition/subtraction/multiplication will be enough. Other times you might need to define a separate function. In induction terms this is called the hypothesis.
2. Compute all the initial happy cases, ie, the cases that don’t require knowledge of the subproblems to be solved. In induction terms this is called the base case.
3. Apply the formula you found in step 1 to the remaining cases that were not in 2.
It is better to illustrate the above with an example. Let’s solve a classic DP problem: Finding the shortest path on a grid.
In the image bellow, we want to find the shortest path between the top-left corner of the grid to the bottom-right corner.

[image: Image for post]
Original grid. The blue cell represents the starting pointing of the path and the red cell the ending. Let’s assume our grid indexes start at 1 and go until ’n’ (the # of rows) and ‘m’ (the # of columns)
The only moves allowed are from top to bottom and from left to right.

[image: Image for post]
Valid moves for an arbitrary cell.
Each time you visit a cell, you increase your path number by the amount in that cell. For example, if you decide to go to the red cell by first going through the first row and then going down the last column, your cost would be 5+3+2+1+(-2)+7+4+(-3)+2+7+2=28. The problem asks you to find what is the minimum cost to get to the red cell given the moving restrictions above.
We have a few strategies to solve this:
1. Brute force
This approach simply tests ALL possible paths. Whenever the algorithm reaches the red cell, it checks if that is the shortest path found so far. The complexity of this algorithm is O(n+m)! where ‘n’ is the number of rows and ‘m’ is the number or columns of the grid².
2. Backtracking
This is just a bit better than Brute force. In Brute force the algorithm only stops when it reaches the bottom-right corner of the grid. Backtracking is a bit smarter. There is no need to continue down the path if the current sum is already larger than then smallest path currently known. The complexity of this algorithm is also O(n+m)! since in the worst case, no backtracking is performed and the algorithm needs to check every path until the end, just like brute force.
3. Dynamic programming
In order to find a DP algorithm that solves this problem, let’s follow our recipe. First, let’s define the solution as a “mix” of subproblems. Let’s assume that we have the solution for a certain 2x2 sub-grid (this is our induction hypnotises):

[image: Image for post]
A small section of the shortestPath grid. Do not mistake this with the standard grid. The shortestPath grid keeps track of the shortestPath from cell [1, 1] to cell [x, y]. The shortestPath from the blue cell (not shown in the picture) to the cell [u, v] is 100. Likewise, the shortestPaths from the blue cell to [u, v+1] and [u+1, v] are 115 and 120. With that info we can calculate the shortestPath between the blue cell to [u+1, v+1]. Here ‘u’ and ‘v’ are indexes.
In the image above, we know that the shortest path from the top-left corner (the blue cell) to the [u, v] cell is 100. Likewise, the shortest path from the top-left corner to the cell [u+1, v] is 120 and the one in [u, v+1] is 115. You are probably wondering HOW we got these numbers. For now just assume we magically have them (ie, that is our induction hypothesis). Well, in order to find the shortest path to the cell [u+1, v+1] we only have 2 options: either the path is coming from above (ie, from cell [u, v+1]) or from the left (ie, from cell [u+1, v]) because we only allow moves from left to right and from top to bottom. We know both the shortest paths from the cell above and from the cell on the left (115 and 120). Therefore, we just need to choose the one that has the shortest path so far (115) and sum the value of the cell [u+1, v+1] itself. That yields us that the shortest path from the top-left corner to cell [u+1, v+1] is 115 + grid[u+1, v+1]. We can mathematically equate the above:
shortestPath[u+1][v+1] = min(shortestPath[u][v+1],
 shortestPath[u+1][v]) + grid[u+1][v+1]
We have our recursive formula that step 1 requires. Now, let’s go to step 2, ie, find the happy cases.
Notice that shortestPath[0, 0] = grid[0, 0] (you started in the top-left corner and arrived in the top-left corner. Therefore the cost is only the value of ‘grid’ in that coordinate).
shortestPath[0][0] = grid[0][0];
We can now calculate the value of shortestPath[0, 1]. Since we are in the top of the grid, the only way to arrive in cell [0, 1] is from cell [0, 0]. Therefore shortestPath[0, 1] = shortestPath[0, 0] + grid[0, 1] = 5 + 3 = 8. We can then go to the next cell, [0, 2]. The same idea applies, ie, shortestPath[0, 2] = shortestPath[0, 1] + g[0, 2] = 8 + 2 = 10. In fact, yon can do that for the whole first row of the grid:
//'m': The number of columns in the grid
for(int k=2; k<=m; k++){
 shortestPath[1][k] = shortestPath[1][k-1] + grid[1][k];
}
And we can use the same idea to fill the first column of the grid:
//'n': The number of rows in the grid
for(int k=2; k<=n; k++){
 shortestPath[k][1] = shortestPath[k-1][1] + grid[k][1];
}
Once we’ve done the above, we have our happy cases (ie, our induction base case) done:
Here is a picture of what we have so far:

[image: Image for post]
shortestPath grid. The happy cases have been found. Again, do not mistake this with the standard grid. This is the grid where the memorisation happens. The original grid remains intact.
Now we can go to step 3, ie, apply the general formula until we get our answer:
for(int i=2; i<=n; i++){
 for(int j=2; j<=m; j++){
 shortestPath[i][j] = min(shortestPath[i-1][j],
 shortestPath[i][j-1]) + grid[i][j];
 }
}
In the end, your answer will be in shortestPath[n][m], where ’n’ is the number of rows in your grid and ‘m’ the number of columns.
Notice the complexity of this algorithm is just O(n*m). Dynamic Programming algorithms will usually yield polynomial time complexities.
Sources:
1. “Optimization problems” by MIT OpenCourseware: https://www.youtube.com/watch?v=uK5yvoXnkSk (24:11)
2. “Counting paths on a grid” by Art of Problem Solving: https://www.youtube.com/watch?v=M8BYckxI8_U
Dynamic Programming: Cutting Sticks
[image: Tiago]

Jan 8, 2019·4 min read

This article will walk you through a problem called Cutting Sticks¹ from UVA (Universidad de Valladolid)’s problem set². Read the original problem before continuing this article.
We have a stick (wood) that needs to be cut:

[image: Image for post]
The cuts must be done in certain parts of the stick. You must cut the stick in all marked places. For example, consider a stick of size 10 and 3 places marked in it (positions 2, 4 and 7) where the cuts must be made.
The cost to make a cut is the same as the size of the stick. For instance, if you have a stick of size 10 and you need to make one cut (anywhere) in it, that will cost you 10.
It is not difficult to notice that depending on the order you perform the cuts, your total cost will be different. For example, if you cut the stick on positions 2, 4 and 7 (in this order), the total cost will be 10+8+6=24. A better way to cut that stick would be by starting on position 4, then 2 then 7. That would yield a cost of 10+4+6=20,

[image: Image for post]
Example of 2 ways to perform the cuts. Notice the one on the right is better than the left one as the total cost to perform all 3 cuts is smaller.
The problem asks you to find the minimum possible cost given the size of the stick and the places where it needs to be cut.
Let’s define a few things:
· N: The size of the original stick
· k: The position (index) where a generic cut is made.
· optimalCost(initialIndex, endIndex): A function that returns the best cost to cut a stick that starts in initialIndex and ends in endIndex.
Notice that we want to find optimalCost(0, N).
Here is the key observation to solve this problem. Whenever we make a cut, we divide the stick into 2 other sticks. Those 2 new sticks will then need to be cut again (if there is a cut to be made on it) or will remain intact (if there is no further cutting to be made). Notice that those 2 new sticks that need to be cut represent the same problem again, except that now we have a new stick with a new size and new places (i.e, new indexes) to cut it. With that in mind, we just need to find the best way to cut those 2 new sub-sticks and sum their cost with the cost of the original cut you made.
We can equate the above like this:
optimalCost(initialStickPosition, endStickPosition) =
 optimalCost(initialStickPosition, k) +
 optimalCost(k, endStickPosition) +
 sizeOfTheCurrentStick
Here 'k’is one of the original positions where the stick should be cut.
We also have that sizeOfTheCurrentStick = endStickPosition — initialStickPosition so the final recursive formula is:
optimalCost(initialStickPosition, endStickPosition) =
 optimalCost(initialStickPosition, k) +
 optimalCost(k, endStickPosition) +
 (endStickPosition - initialStickPosition)
Now we only have to loop through all possible places where the cut can be made (i.e, all possible'k's)and select the one that yields the minimum cost:
Coding nextCutIndex() is trivial and there are many ways to do it, so I won’t pollute the code in this article with it.
With the above, the problem is technically solved, but there is one issue with it: a lot of sub-problems will be recalculated over and over again, making our program slow. That is where Dynamic Programming can help us. All we have to do is to store the best cut for the sub-sticks we have found. Then, the next time we need to find its value, we can just look it up without having to go through the recursion again:
Here’m’ is our matrix that will hold the best costs already calculated. If you don’t do this memorisation step and you try to submit your code on the UVA website, you will get a Time limit exceeded error, meaning your program is too slow to process all test cases they have.
Notice the approach we have taken is a top-down one because we start the recursion with the highest stick possible and proceed on cutting it into sub-sticks until there is nothing more to cut. Sometimes it is easier to think about a DP problem this way. Nothing stops you from using a bottom-up approach though (as we have done in our first DP article³).
You can find my full C++ implementation here⁴.
Sources:
1. “Cutting Sticks”: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=944
2. UVA’s problem set index: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8
3. “Dynamic Programming: An induction approach”: https://medium.com/@tiagot/dynamic-programming-an-induction-approach-b5c5e73c4a19
4. Complete solution: https://github.com/TheCoinTosser/Competitive-Programming/blob/c3e390a4b7bda82cd6479dfe52d22c7ed3dab405/UVA/10003__Cutting_Sticks.cpp

Dynamic programming deep-dive: Chain Matrix Multiplication
Apr 25, 2019 • Avik Das
In a previous article, I introduced the concept of dynamic programming (DP), and I went over three example problems. In this article, I’ll do a deep-dive into a much harder problem.
I initially wanted to present three problems in order to show as many examples as possible. However, I realized I needed to spend more time explaining my thought process at each step. In this article, I’ll work through only a single problem, emphasizing the visuals that allow me to solve the problem using dynamic programming.
The Matrix Chain Multiplication Problem
To get the most out of the next example, some linear algebra knowledge is helpful. However, if you’re not familiar with the topic, you’ll need to take the following definitions as givens. (If you want a refresher, Math is Fun goes over matrix multiplication, but you don’t need to know all the details.)
A matrix, for the purposes of this problem, is a two-dimensional array of numbers, with some number of rows and columns. To multiply two matrices together, the number of columns in the first matrix must match the number of rows the second matrix. Suppose the dimensions are r1×dr1×d and d×c2d×c2. Then, multiplying these matrices requires r1×d×c2r1×d×c2 operations. The result is a matrix with dimensions r1×c2r1×c2.
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/single-multiplication.png]
Multiplying two matrices can result in a smaller matrix (left) or a larger one (right) depending on the dimensions of the original matrices. When multiplying many matrices, it's beneficial to introduce small matrices into the chain.
Multiplying matrices is associative, meaning in a chain of multiplied matrices, you can perform the multiplications in any order. Given the following matrices:
· AA, of dimensions 2×102×10
· BB, of dimensions 10×310×3
· CC, of dimensions 3×83×8
The following computations yield the same result, but require different number of operations:
· (AB)C(AB)C. The first multiplication generates a 2×32×3 matrix, which is then multiplied by CC. This requires (2×10×3)+(2×3×8)=108(2×10×3)+(2×3×8)=108 operations.
· A(BC)A(BC). The first multiplication generates a 10×810×8 matrix, which is then multiplied by AA. This requires (10×3×8)+(2×10×8)=400(10×3×8)+(2×10×8)=400 operations.
It’s much faster to multiply ABAB first, then multiply the result by CC.
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/possible-orders.png]
Multiplying the first two matrices first (left) introduces a small matrix, allowing for more efficient calculation. Multiplying the last two matrices first (right) introduces a large matrix, leading to a longer calculation.
The Chain Matrix Multiplication Problem asks, given a sequence of matrices, what is the fewest number of operations needed to compute the product of all the matrices? In other words, if we were to parenthesize the given chain of matrix multiplications optimally, how many operations would it take to evaluate that expression?
Break the problem into subproblems
When breaking down a problem, consider what choices you have. In the Chain Matrix Multiplication Problem, the fundamental choice is which smaller parts of the chain to calculate first, before combining them together.
For example, say there are five matrices being multiplied: ABCDEABCDE. One option is to compute ABAB and CDECDE first, then combine the results. Then, to calculate CDECDE, one option is to calculate DEDE first before multiplying CC by the result. This yields the order (AB)(C(DE))(AB)(C(DE)).
Notice that at each point, we introduced a split, a point in the sequence with left and right subsequences. These subsequences would be multiplied first, yielding two new matrices that can then be multiplied together to form the final result. In this example, we first introduced a split between BB and CC, then a split between CC and DD.
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/possible-splits.png]
In one possible ordering, we first split between BB and CC, then between CC and DD. For completeness, subsequences of length 22 are split as well, but no further computation happens after those splits.
Now, the question is which splits do we choose? Well, the ones that require the fewest operations to compute! To find the best split at each level, we have to try every possible split at that level. In the example above, when deciding where to split ABCDEABCDE, we have to try four possible splits:
· (A)(BCDE)(A)(BCDE)
· (AB)(CDE)(AB)(CDE)
· (ABC)(DE)(ABC)(DE)
· (ABCD)(E)(ABCD)(E)
Out of these splits, we pick whichever one requires the fewest operations. The same choice must be made when deciding how to split CDECDE, which requires trying two possible splits.
Is this subproblem structure suitable for a dynamic programming approach? Yes, it is! Firstly, the subproblems are recursive: when finding the optimal split for a sequence, we have to consider the optimal splits for its subsequences. Secondly, the subproblems overlap. In the example above, we have to optimize the subsequence DEDE when optimizing any sequence ending with DEDE.
Define a recurrence relation
Now that we’ve identified the subproblems, we need to formalize that intuition into a recursive function called a recurrence relation. Recall one desired property of this function is it should have integer inputs. This allows ordering the subproblems.
Given our definition of splits above, it sounds like we have a single integer input: the location of the split. But what happens after the split? How do we distinguish between the left and right subsequences?
We actually need to identify not the split point, but the resulting subsequences. That means we want to base our function on two integers (i,k)(i,k) that correspond to a subsequence starting at index ii and ending at index kk, inclusive. And given that subsequence, we want to know f(i,k)f(i,k), the fewest number of operations needed to multiply the subsequence (i,k)(i,k). This is convenient because, for a starting sequence of length nn, the final result we want is f(0,n−1)f(0,n−1).
First, we need a base case. An easy one is simply the case where there is only one matrix, namely f(i,i)f(i,i) for any ii between 00 and n−1n−1. The number of operations needed to multiply a single matrix? Zero, since there’s nothing to multiply!
Next, we need a way to combine subproblems.
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/subproblem-combination.png]
When splitting a sequence, each subsequence introduces an intermediate matrix whose size depends on the first and last elements of the subsequence.
Suppose we’re optimizing a subsequence (i,k)(i,k). Let’s say we’ve picked a split after index jj. How many operations does this split require? We can figure that out:
1. The left subsequence extends from index ii to jj, inclusive. So, it will take f(i,j)f(i,j) operations to calculate the product of that subsequence. The product will be a matrix with the same number of rows as matrix ii and the same number of columns as matrix jj. Call these dimensions ri×cjri×cj.
2. The right subsequence extends from index j+1j+1 to kk, inclusive. It will take f(j+1,k)f(j+1,k) operations to calculate the product. The product will be a matrix with the same number of rows as matrix j+1j+1 and the same number of columns as matrix kk. But, notice that matrix j+1j+1 has the same number of rows as the number of columns in matrix jj. So the product has dimensions cj×ckcj×ck.
3. Combining the two resulting matrices then takes ri×cj×ckri×cj×ck operations.
The total number of operations needed to multiply all the matrices in the overall subsequence is the sum of the three factors above. We then minimize this number across all possible split points in the subsequence:
f(i,i)f(i,k)=0=mini≤j<k[f(i,j)+f(j+1,k)+(ri×cj×ck)]f(i,i)=0f(i,k)=mini≤j<k[f(i,j)+f(j+1,k)+(ri×cj×ck)]
Inspecting the subproblem DAG
Let’s draw out the directed acyclic graph (DAG) for a problem in which we have five matrices to multiply, ABCDEABCDE.
Because our recurrence relation has two integer inputs, we can lay out our subproblems in a two-dimensional table. Recall that each subproblem corresponds to a particular subsequence. Let’s start by putting the end indices on the horizontal axis, increasing from left to right, and the start indices on the vertical axis, increasing from top to bottom. This puts our desired answer at the top right:
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/dag-01-base.png]
The final subproblem we want to solve at the top right. The entire input sequence starts at index 00 and ends at index 44.
The input subsequence needs to be broken down into pairs of subsequences. Let’s start by considering a split after index 11, meaning breaking down the original sequence into ABAB and CDECDE. The first subproblem, (0,1)(0,1), shares the start index with the original sequence, so that subproblem appears in the same row as the original subproblem. Similarly, the second subsequence, (2,4)(2,4), shares the end index with the original sequence, so that subproblem appears in the same column as the original subproblem.
This pattern of one subproblem appearing in the same row and one subproblem appearing in the same column as the original subproblem will show up consistently.
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/dag-02-first-split.png]
Breaking down the original sequence (0,4)(0,4) into two subsequences (0,1)(0,1) and (2,4)(2,4).
One of these subproblems, (0,1)(0,1), only has one possible split point, after index 00. The other subproblem, (2,4)(2,4), has multiple split points, so let’s split after index 22. This splits CDECDE into CC and DEDE, resulting in subsequences (2,2)(2,2) and (3,4)(3,4):
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/dag-03-second-split.png]
Both the subsequences (0,1)(0,1) and (2,4)(2,4) from the previous step are broken up into further subsequences.
Finally, the subsequence (3,4)(3,4) has one possible split point, after index 33, so we end up breaking the corresponding subproblem into subproblems (3,3)(3,3) and (4,4)(4,4). At this point, we’ve reached base cases along all our paths, leaving some subproblems untouched.
This particular set of split points corresponds to the order (AB)(C(DE))(AB)(C(DE)).
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/dag-04-final.png]
The final dependency graph for splitting first after index 11, then after index 22 (as well as splitting two-element subsequences at their single split points). Unexplored subproblems are shown de-emphasized.
One point to note is only half of the entries in the table are valid subproblems, because it’s required the start index be less than or equal to the end index.
The above dependency graph corresponds to only one choice of split points. We actually need to explore every possible split point. What does this look like? The full dependency graph showing every single connection is a bit too busy to make sense of, but let’s look at all the dependencies for just the biggest subproblem, corresponding to (0,4)(0,4).
The full sequence has four possible split points, after indices 00, 11, 22, and 33. For each possible split point jj, the two subproblems we need to consider are (0,j)(0,j) and (j+1,4)(j+1,4). As we saw earlier, the first of each pair of subproblems will be on the same row as original problem, and the second one will be on the same column. With that knowledge, we can enumerate each pair of dependencies:
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/multiple-split-points.gif]
The possible split points for (0,4)(0,4) are shown one by one, along with the full set of dependencies.
The pattern is exactly the same for all the subproblems: go down all the entries in the same row and column as the subproblem.
Bottom-up implementation
With such a deep analysis of the dependency graph, we have a really good idea of how to approach an implementation. The only remaining part is defining an order in which to solve the subproblems. Intuitively, it seems we should go along the left-most diagonal of the dependency graph, as those cells have no dependency. But what does that diagonal correspond to?
This is where the visual structure of the dependency graph really shines. Let’s rotate the graph so the left-most diagonal is now at the bottom:
[image: https://avikdas.com/assets/images/2019-04-25-dynamic-programming-deep-dive-chain-matrix-multiplication/rotated-dag.png]
A rotated view of the dependency graph shows we can solve subproblems not based on indices, but based on subsequence length.
Now, it’s clear the cells in each row have the same difference between their start and end indices. Thus, the bottom row corresponds to subsequences of length 11, followed by subsequences of length 22 in the row above, and so on. This intuition also makes it clear any cell depends only on cells in lower rows, which makes sense since subsequences can only depend on shorter subsequences. Even more strictly, no row depends on itself either.
This gives us a natural order in which to proceed:
1. Proceed in increasing order of subsequence length, from 11 to nn inclusive. Call this length ll.
2. Solve all subproblems corresponding to subsequences of length ll, in any order. An easy option is to proceed in increasing order of start index, from 00 to n−ln−l inclusive.
The only remaining aspect is how to represent the input. For simplicity, we will specify a list of pairs, with each pair representing the number of rows and columns for the corresponding matrix in the original sequence.
In Python:
def chain_matrix(matrices):
 # Ideally do error checking to make sure the columns of each matrix match
 # the rows of the next matrix.

 def cols(i): return matrices[i][1]
 def rows(i): return matrices[i][0]

 n = len(matrices)
 f = {} # cached values of the recurrence relation

 for l in range(1, n + 1):
 for start in range(0, n - l + 1):
 # Base case
 if l == 1:
 f[(start, start)] = 0
 continue

 # Recursive case
 end = start + l - 1
 f[(start, end)] = min(
 f[(start, mid)] +
 f[(mid + 1, end)] +
 rows(start) * cols(mid) * cols(end)
 for mid in range(start, end) # end is exclusive
)

 return f[(0, n - 1)]
Try it with the original example presented at the beginning of the article:
print(chain_matrix([(2, 10), (10, 3), (3, 8)]))
Time and space complexity
Suppose the input sequence has nn matrices.
The dependency graph is an n×nn×n table, and about half of the cells correspond to valid subproblems. Thus, there are approximately n22n22 subproblems in the dependency graph, meaning on the order of O(n2)O(n2) subproblems to calculate. Unfortunately, we can’t throw away intermediate values because of how later subproblems depend on many earlier subproblems. This means the space complexity is O(n2)O(n2).
To compute a subproblem, we have to look at all the “smaller” subproblems in the same row and same column in the table. That means, we might have to do as many as O(n)O(n) calculations to put the smaller subproblems together into a single bigger subproblem. This applies to all O(n2)O(n2) subproblems, so the final time complexity is O(n3)O(n3). Not great, but at least it’s not exponential!

The Chain Matrix Multiplication Problem is an example of a non-trivial dynamic programming problem. When applying the framework I laid out in my last article, we needed deep understanding of the problem and we needed to do a deep analysis of the dependency graph:
1. We identified the subproblems as breaking up the original sequence into multiple subsequences.
2. We formulated a recurrence relation by analyzing how subproblems combined to form larger results.
3. We determined an ordering for the subproblems by visualizing the dependency graph as a two-dimensional table from multiple angles.
4. Finally, we implemented the recurrence relation by solving the subproblems in order.
Dynamic Programming: Longest Increasing Subsequence (LIS)
[image: Tiago]

Tiago

Feb 3, 2019·5 min read

This article will walk you through how to solve another classic DP problem: Longest Increasing Subsequence (LIS). To make it a bit more fun, we are going to pick another problem from the UVA¹ database: Strategic Defence Initiative². Read that problem first before continuing this article.
In short, the problem states that there are some enemy missiles heading your way and you are equiped with a missile system to intercept them. For every missile you launch, the next one can only be launched at a higher altitude than the previous one (because of a flaw in your missile system). Your task is to write a program to find the maximum amount of enemy missiles that can be intercepted using your missiles, as well as printing out exactly which enemy missiles will be hit.
Here is an example:

[image: Image for post]
The number bellow each missile is its height. We can write it down as an array:
enemyMissileHeights = [2, 5, 1, 3, 4, 8, 3, 6, 7]
What we want is the Longest Increasing Subsequence of enemy missiles to hit. Notice that your subsequence does not need to be continuos. Skipping some elements (in this problem, some enemy missiles) will usually give you a longer sequence (which is what we are looking for). Spoiler alert: the Longest Increasing Subsequence of this example is: 2, 3, 4, 6, 7.
You can try solving this problem using Brute Force but that would yield you an exponential time solution. It is easy to prove that. Let’s say you have a program that goes through all possible subsequences in order to find out which one is the largest. Notice that, for any given item in the original array, that item would either be in the sub-sequence or it would not. Therefore, we have 2 possible states for each item (enemy missile). Assuming we have ‘n’ enemy missiles and each one can be in 2 states (they either are in the sub-sequence or they are not), we have 2ⁿ possible subsequences to visit (this is also known as the powerset³). Therefore, that solution would have a O(2ⁿ) complexity, way too slow for any decent-sized sequence. The particular UVA problem we are solving does not give you the maximum size of ‘n’ (a mistake from their end) but through some trial and error, I found out they expect your program to work for sequences of up to 1000 items.
2¹⁰⁰⁰ = 10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376 possible subsequences
Clearly we need a better approach. Let’s define a few things first.
Let a[1..n] be our original enemyMissileHeights array, i.e, each value inside this array contains the height of a missile. In our example this would be:
a[1] = 2
a[2] = 5
a[3] = 1
a[4] = 3
a[5] = 4
a[6] = 8
a[7] = 3
a[8] = 6
a[9] = 7
Let LIS[k] be the Longest Increasing Subsequence of a[1..k], for 1≤k≤n. Notice our goal is to find LIS[n].
Let’s follow the induction approach to solve DP problems I wrote in my first article⁴. The first step is to find our induction hypothesis.
Let’s assume that, for a given sub-array a[1..m] (1≤m<n), we already know what the size of the largest increasing subsequence for all arrays a[1..k] (1≤k≤m) are. In other words, we assume we know what the values of LIS[1], LIS[2],…,LIS[k] are. This is our hypothesis.
Now, let’s append one new item to the original array ‘a’, ie, let’s add a[m+1]. We now have the array a[1..m+1]. How do we find LIS[m+1] (knowing we already have LIS[k] for 1≤k≤m)? All we have to do is find the largest LIS[k] such as a[k] < a[m+1] (because the next missile has to go higher than any previous one). If no such ‘k’ exists that satisfies the previous inequality, that means a new longest increasing subsequence is starting in a[m+1] and therefore LIS[m+1] = 1.

[image: Image for post]
Our induction hypothesis is completed. Let’s now go to step 2, ie, find our base case:
We know that LIS[1] = 1 (because there is only one item in the array a[1..1] = a[1] = 2) and therefore that item must also be the Longest Increasing Subsequence). Notice we are storing how many items there are in the longest increasing subsequence in the LIS array, not the value of the item itself (2 in this case). That is why LIS[1] = 1 and not 2.
With the base case done and the recursive formula found, we can finally code the heart of our program:
After the above is processed, we will have our answer in LIS[n]. Notice the complexity of this algorithm is just O(n²), way better than the brute force approach.
So far we have found how long the Longest Increasing Sequence of the array a[1..n] is. Again, that value is inside LIS[n]. The UVA problem also asks us to print the sequence itself. There are many ways to do that. In my full code solution⁵ I chose to keep track of the parent of each item that make up the Longest Increasing Subsequence in a new array (parent[1..n]). For instance, in our example this is what the parent array would look like in the end:
parent[1]: -1 //No parent
parent[2]: 1
parent[3]: -1 //No parent
parent[4]: 1
parent[5]: 4
parent[6]: 5
parent[7]: 1
parent[8]: 5
parent[9]: 8
To find the final path, we just need to keep track of the index of the latest item that is inside the largest LIS we found. Let’s call that variable lastIndexOfLargestLis. Then we just need to do lastIndexOfLargestLis = parent[lastIndexOfLargestLis] until we reach the end of the sequence (i.e, until parent[lastIndexOfLargestLis] == -1). In the end you will get the index sequence in reverse order. You can then invert the sequence however you want. In my code I simply used the .reverse() method available in the implementation of stl::list.
You can find my full C++ implementation here⁵.
Sources:
1. UVA’s problem set index: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8
2. “Strategic Defense Initiative”: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=438
3. Powerset definition: https://en.wikipedia.org/wiki/Power_set
4. “Dynamic Programming: An induction approach”: https://medium.com/@tiagot/dynamic-programming-an-induction-approach-b5c5e73c4a19
5. Complete solution: https://github.com/TheCoinTosser/Competitive-Programming/blob/master/UVA/497__Strategic_Defence_Initiative.cpp

image5.png
S":r) r"lﬁ’ statk

image6.png

image7.png

image8.png
S5

image9.png

image10.png
) %%
10x%

i_J LD

image11.png
(pn p)(c (@ BN

image12.png

image13.png
INDEX —

END

START

o, Y

INDEX —>

image14.png
END INDEX —

OSTART INDEY —>

Ty

I

T
o o

0,1

image15.png
END INDEX —

OSTART INDEY —>

2,2

image16.png
END INDEX —

OSTART INDEY —>
T T J o
I}
2y

~

<

2,2

image17.gif
END INDEX —

START

INDEX —>

Skt ofser
L

1ndex

©

image18.png

image19.png
~

2

g!

“4

=0

“

™

~j

image20.png
[k] <alm+1,1<k<m

LISm + 1] = {max(LIS[k:]) +1, a
Ak

image1.jpeg

image2.png

image3.png

image4.png

