
Chapter 5

Greedy algorithms

A game like chess can be won only by thinking ahead: a player who is focused entirely on
immediate advantage is easy to defeat. But in many other games, such as Scrabble, it is
possible to do quite well by simply making whichever move seems best at the moment and not
worrying too much about future consequences.

This sort of myopic behavior is easy and convenient, making it an attractive algorithmic
strategy. Greedy algorithms build up a solution piece by piece, always choosing the next
piece that offers the most obvious and immediate benefit. Although such an approach can be
disastrous for some computational tasks, there are many for which it is optimal. Our first
example is that of minimum spanning trees.

5.1 Minimum spanning trees
Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which nodes are computers, undirected edges are
potential links, and the goal is to pick enough of these edges that the nodes are connected.
But this is not all; each link also has a maintenance cost, reflected in that edge’s weight. What
is the cheapest possible network?

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

One immediate observation is that the optimal set of edges cannot contain a cycle, because
removing an edge from this cycle would reduce the cost without compromising connectivity:

Property 1 Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called
trees. The particular tree we want is the one with minimum total weight, known as the
minimum spanning tree. Here is its formal definition.

139

140 Algorithms

Input: An undirected graph G = (V,E); edge weights we.
Output: A tree T = (V,E ′), with E′ ⊆ E, that minimizes

weight(T) =
∑

e∈E′

we.

In the preceding example, the minimum spanning tree has a cost of 16:

A

B

C

D

E

F

1

4

2 5
4

However, this is not the only optimal solution. Can you spot another?

5.1.1 A greedy approach
Kruskal’s minimum spanning tree algorithm starts with the empty graph and then selects
edges from E according to the following rule.

Repeatedly add the next lightest edge that doesn’t produce a cycle.

In other words, it constructs the tree edge by edge and, apart from taking care to avoid cycles,
simply picks whichever edge is cheapest at the moment. This is a greedy algorithm: every
decision it makes is the one with the most obvious immediate advantage.

Figure 5.1 shows an example. We start with an empty graph and then attempt to add
edges in increasing order of weight (ties are broken arbitrarily):

B − C, C −D, B −D, C − F, D − F, E − F, A−D, A−B, C −E, A− C.

The first two succeed, but the third, B − D, would produce a cycle if added. So we ignore it
and move along. The final result is a tree with cost 14, the minimum possible.

The correctness of Kruskal’s method follows from a certain cut property, which is general
enough to also justify a whole slew of other minimum spanning tree algorithms.

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.

B

A 6 5

3

42 FD

C E

5 41 24

B

A

FD

C E

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 141

Trees
A tree is an undirected graph that is connected and acyclic. Much of what makes trees so
useful is the simplicity of their structure. For instance,

Property 2 A tree on n nodes has n− 1 edges.

This can be seen by building the tree one edge at a time, starting from an empty graph.
Initially each of the n nodes is disconnected from the others, in a connected component by
itself. As edges are added, these components merge. Since each edge unites two different
components, exactly n− 1 edges are added by the time the tree is fully formed.

In a little more detail: When a particular edge {u, v} comes up, we can be sure that u
and v lie in separate connected components, for otherwise there would already be a path
between them and this edge would create a cycle. Adding the edge then merges these two
components, thereby reducing the total number of connected components by one. Over the
course of this incremental process, the number of components decreases from n to one,
meaning that n− 1 edges must have been added along the way.

The converse is also true.

Property 3 Any connected, undirected graph G = (V,E) with |E| = |V | − 1 is a tree.

We just need to show that G is acyclic. One way to do this is to run the following iterative
procedure on it: while the graph contains a cycle, remove one edge from this cycle. The
process terminates with some graph G′ = (V,E′), E′ ⊆ E, which is acyclic and, by Property 1
(from page 139), is also connected. Therefore G′ is a tree, whereupon |E ′| = |V | − 1 by
Property 2. So E ′ = E, no edges were removed, and G was acyclic to start with.

In other words, we can tell whether a connected graph is a tree just by counting how
many edges it has. Here’s another characterization.

Property 4 An undirected graph is a tree if and only if there is a unique path between any
pair of nodes.

In a tree, any two nodes can only have one path between them; for if there were two
paths, the union of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If
these paths are unique, then the graph is also acyclic (since a cycle has two paths between
any pair of nodes).

142 Algorithms

Figure 5.2 T ∪ {e}. The addition of e (dotted) to T (solid lines) produces a cycle. This cycle
must contain at least one other edge, shown here as e′, across the cut (S, V − S).

��

��

� ��

� �� �

�	
�

� �

����

��

��

��
��

� ��

� ��

e

S V − S

e′

5.1.2 The cut property
Say that in the process of building a minimum spanning tree (MST), we have already chosen
some edges and are so far on the right track. Which edge should we add next? The following
lemma gives us a lot of flexibility in our choice.

Cut property Suppose edges X are part of a minimum spanning tree of G = (V,E). Pick any
subset of nodes S for which X does not cross between S and V − S, and let e be the lightest
edge across this partition. Then X ∪ {e} is part of some MST.

A cut is any partition of the vertices into two groups, S and V −S. What this property says
is that it is always safe to add the lightest edge across any cut (that is, between a vertex in S
and one in V − S), provided X has no edges across the cut.

Let’s see why this holds. Edges X are part of some MST T ; if the new edge e also happens
to be part of T , then there is nothing to prove. So assume e is not in T . We will construct a
different MST T ′ containing X ∪ {e} by altering T slightly, changing just one of its edges.

Add edge e to T . Since T is connected, it already has a path between the endpoints of e, so
adding e creates a cycle. This cycle must also have some other edge e′ across the cut (S, V −S)
(Figure 8.3). If we now remove this edge, we are left with T ′ = T ∪ {e} − {e′}, which we will
show to be a tree. T ′ is connected by Property 1, since e′ is a cycle edge. And it has the same
number of edges as T ; so by Properties 2 and 3, it is also a tree.

Moreover, T ′ is a minimum spanning tree. Compare its weight to that of T :

weight(T ′) = weight(T) + w(e)− w(e′).

Both e and e′ cross between S and V − S, and e is specifically the lightest edge of this type.
Therefore w(e) ≤ w(e′), and weight(T ′) ≤ weight(T). Since T is an MST, it must be the case
that weight(T ′) = weight(T) and that T ′ is also an MST.

Figure 5.3 shows an example of the cut property. Which edge is e′?

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 143

Figure 5.3 The cut property at work. (a) An undirected graph. (b) Set X has three edges, and
is part of the MST T on the right. (c) If S = {A,B,C,D}, then one of the minimum-weight
edges across the cut (S, V − S) is e = {D,E}. X ∪ {e} is part of MST T ′, shown on the right.

(a) A

B

C E

FD

2 2 3

3

41

1

2 1

(b)

Edges X:

A

B

C E

FD

MST T :

A

B

C E

FD

(c)

The cut:

A

B

C E

FD

e

S V − S

MST T ′:

A

B

C E

FD

5.1.3 Kruskal’s algorithm
We are ready to justify Kruskal’s algorithm. At any given moment, the edges it has already
chosen form a partial solution, a collection of connected components each of which has a tree
structure. The next edge e to be added connects two of these components; call them T1 and
T2. Since e is the lightest edge that doesn’t produce a cycle, it is certain to be the lightest edge
between T1 and V − T1 and therefore satisfies the cut property.

Now we fill in some implementation details. At each stage, the algorithm chooses an edge
to add to its current partial solution. To do so, it needs to test each candidate edge u − v to
see whether the endpoints u and v lie in different components; otherwise the edge produces a
cycle. And once an edge is chosen, the corresponding components need to be merged. What
kind of data structure supports such operations?

We will model the algorithm’s state as a collection of disjoint sets, each of which contains
the nodes of a particular component. Initially each node is in a component by itself:

makeset(x): create a singleton set containing just x.

We repeatedly test pairs of nodes to see if they belong to the same set.

find(x): to which set does x belong?

144 Algorithms

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) 6= find(v):
add edge {u, v} to X
union(u, v)

And whenever we add an edge, we are merging two components.

union(x, y): merge the sets containing x and y.

The final algorithm is shown in Figure 5.4. It uses |V | makeset, 2|E| find, and |V | − 1
union operations.

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D, F,G,H}.

E H

B C F

A

D

G

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 145

In addition to a parent pointer π, each node also has a rank that, for the time being, should
be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x 6= π(x) : x = π(x)
return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.

Merging two sets is easy: make the root of one point to the root of the other. But we have
a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx
else:

π(rx) = ry
if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

146 Algorithms

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B), . . . ,makeset(G):

A0 B0 C0 D0 E0 F0 0G

After union(A,D),union(B,E),union(C,F):

A0 B0 C0

G0F1E1D1

After union(C,G),union(E,A):

B

1

F1

C 0G

0

E

D2

A0 0

After union(B,G):

A

G0

FE1

0

C0

D2

B0

1

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 147

Path compression
With the data structure as presented so far, the total time for Kruskal’s algorithm becomes
O(|E| log |V |) for sorting the edges (remember, log |E| ≈ log |V |) plus another O(|E| log |V |) for
the union and find operations that dominate the rest of the algorithm. So there seems to be
little incentive to make our data structure any more efficient.

But what if the edges are given to us sorted? Or if the weights are small (say, O(|E|)) so
that sorting can be done in linear time? Then the data structure part becomes the bottleneck,
and it is useful to think about improving its performance beyond log n per operation. As it
turns out, the improved data structure is useful in many other applications.

But how can we perform union’s and find’s faster than log n? The answer is, by being a
little more careful to maintain our data structure in good shape. As any housekeeper knows,
a little extra effort put into routine maintenance can pay off handsomely in the long run, by
forestalling major calamities. We have in mind a particular maintenance operation for our
union-find data structure, intended to keep the trees short— during each find, when a series
of parent pointers is followed up to the root of a tree, we will change all these pointers so
that they point directly to the root (Figure 5.7). This path compression heuristic only slightly
increases the time needed for a find and is easy to code.

function find(x)
if x 6= π(x) : π(x) = find(π(x))
return π(x)

The benefit of this simple alteration is long-term rather than instantaneous and thus neces-
sitates a particular kind of analysis: we need to look at sequences of find and union opera-
tions, starting from an empty data structure, and determine the average time per operation.
This amortized cost turns out to be just barely more than O(1), down from the earlier O(log n).

Think of the data structure as having a “top level” consisting of the root nodes, and below
it, the insides of the trees. There is a division of labor: find operations (with or without path
compression) only touch the insides of trees, whereas union’s only look at the top level. Thus
path compression has no effect on union operations and leaves the top level unchanged.

We now know that the ranks of root nodes are unaltered, but what about nonroot nodes?
The key point here is that once a node ceases to be a root, it never resurfaces, and its rank
is forever fixed. Therefore the ranks of all nodes are unchanged by path compression, even
though these numbers can no longer be interpreted as tree heights. In particular, properties
1–3 (from page 145) still hold.

If there are n elements, their rank values can range from 0 to log n by Property 3. Let’s
divide the nonzero part of this range into certain carefully chosen intervals, for reasons that
will soon become clear:

{1}, {2}, {3, 4}, {5, 6, . . . , 16}, {17, 18, . . . , 216 = 65536}, {65537, 65538, . . . , 265536}, . . .

Each group is of the form {k + 1, k + 2, . . . , 2k}, where k is a power of 2. The number of groups
is log∗ n, which is defined to be the number of successive log operations that need to be applied

148 Algorithms

Figure 5.7 The effect of path compression: find(I) followed by find(K).

B0

D0

I0 J0 K0

H0

C1

1 G1

A3

F

E2

−→
B0

0D

K0

J0

I0

H0

C1 F1

G1

A3

E2

−→ B0

D H0 J 0

I0 K0 G1C1 F1E2

A

0

3

to n to bring it down to 1 (or below 1). For instance, log∗ 1000 = 4 since log log log log 1000 ≤ 1.
In practice there will just be the first five of the intervals shown; more are needed only if
n ≥ 265536, in other words never.

In a sequence of find operations, some may take longer than others. We’ll bound the
overall running time using some creative accounting. Specifically, we will give each node a
certain amount of pocket money, such that the total money doled out is at most n log∗ n dollars.
We will then show that each find takes O(log∗ n) steps, plus some additional amount of time
that can be “paid for” using the pocket money of the nodes involved—one dollar per unit of
time. Thus the overall time for m find’s is O(m log∗ n) plus at most O(n log∗ n).

In more detail, a node receives its allowance as soon as it ceases to be a root, at which point
its rank is fixed. If this rank lies in the interval {k + 1, . . . , 2k}, the node receives 2k dollars.
By Property 3, the number of nodes with rank > k is bounded by

n

2k+1
+

n

2k+2
+ · · · ≤ n

2k
.

Therefore the total money given to nodes in this particular interval is at most n dollars, and
since there are log∗ n intervals, the total money disbursed to all nodes is ≤ n log∗ n.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 149

Now, the time taken by a specific find is simply the number of pointers followed. Consider
the ascending rank values along this chain of nodes up to the root. Nodes x on the chain fall
into two categories: either the rank of π(x) is in a higher interval than the rank of x, or else
it lies in the same interval. There are at most log∗ n nodes of the first type (do you see why?),
so the work done on them takes O(log∗ n) time. The remaining nodes—whose parents’ ranks
are in the same interval as theirs—have to pay a dollar out of their pocket money for their
processing time.

This only works if the initial allowance of each node x is enough to cover all of its payments
in the sequence of find operations. Here’s the crucial observation: each time x pays a dollar,
its parent changes to one of higher rank. Therefore, if x’s rank lies in the interval {k +
1, . . . , 2k}, it has to pay at most 2k dollars before its parent’s rank is in a higher interval;
whereupon it never has to pay again.

150 Algorithms

A randomized algorithm for minimum cut
We have already seen that spanning trees and cuts are intimately related. Here is another
connection. Let’s remove the last edge that Kruskal’s algorithm adds to the spanning tree;
this breaks the tree into two components, thus defining a cut (S, S) in the graph. What
can we say about this cut? Suppose the graph we were working with was unweighted, and
that its edges were ordered uniformly at random for Kruskal’s algorithm to process them.
Here is a remarkable fact: with probability at least 1/n2, (S, S) is the minimum cut in the
graph, where the size of a cut (S, S) is the number of edges crossing between S and S. This
means that repeating the process O(n2) times and outputting the smallest cut found yields
the minimum cut in G with high probability: an O(mn2 log n) algorithm for unweighted
minimum cuts. Some further tuning gives the O(n2 log n) minimum cut algorithm, invented
by David Karger, which is the fastest known algorithm for this important problem.

So let us see why the cut found in each iteration is the minimum cut with probability at
least 1/n2. At any stage of Kruskal’s algorithm, the vertex set V is partitioned into connected
components. The only edges eligible to be added to the tree have their two endpoints in
distinct components. The number of edges incident to each component must be at least
C, the size of the minimum cut in G (since we could consider a cut that separated this
component from the rest of the graph). So if there are k components in the graph, the
number of eligible edges is at least kC/2 (each of the k components has at least C edges
leading out of it, and we need to compensate for the double-counting of each edge). Since the
edges were randomly ordered, the chance that the next eligible edge in the list is from the
minimum cut is at most C/(kC/2) = 2/k. Thus, with probability at least 1− 2/k = (k− 2)/k,
the choice leaves the minimum cut intact. But now the chance that Kruskal’s algorithm
leaves the minimum cut intact all the way up to the choice of the last spanning tree edge is
at least

n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · 2

4
· 1
3

=
1

n(n− 1)
.

5.1.5 Prim’s algorithm
Let’s return to our discussion of minimum spanning tree algorithms. What the cut property
tells us in most general terms is that any algorithm conforming to the following greedy schema
is guaranteed to work.

X = { } (edges picked so far)
repeat until |X| = |V | − 1:
pick a set S ⊂ V for which X has no edges between S and V − S
let e ∈ E be the minimum-weight edge between S and V − S
X = X ∪ {e}

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges
X always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge, namely, the lightest edge
between a vertex in S and a vertex outside S (Figure 5.8). We can equivalently think of S as

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 151

Figure 5.8 Prim’s algorithm: the edges X form a tree, and S consists of its vertices.

��

��

� ��

� �� �

�	
�

� �

����

��

� ��

��

��

��� ��

� �� �
 ! !

" "
" "
#
#

$ $% %

e

S V − S

X

growing to include the vertex v 6∈ S of smallest cost:

cost(v) = min
u∈S

w(u, v).

This is strongly reminiscent of Dijkstra’s algorithm, and in fact the pseudocode (Figure 5.9)
is almost identical. The only difference is in the key values by which the priority queue is
ordered. In Prim’s algorithm, the value of a node is the weight of the lightest incoming edge
from set S, whereas in Dijkstra’s it is the length of an entire path to that node from the
starting point. Nonetheless, the two algorithms are similar enough that they have the same
running time, which depends on the particular priority queue implementation.

Figure 5.9 shows Prim’s algorithm at work, on a small six-node graph. Notice how the
final MST is completely specified by the prev array.

152 Algorithms

Figure 5.9 Top: Prim’s minimum spanning tree algorithm. Below: An illustration of Prim’s
algorithm, starting at node A. Also shown are a table of cost/prev values, and the final MST.
procedure prim(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the array prev

for all u ∈ V :
cost(u) =∞
prev(u) = nil

Pick any initial node u0

cost(u0) = 0

H = makequeue (V) (priority queue, using cost-values as keys)
while H is not empty:

v = deletemin(H)
for each {v, z} ∈ E:

if cost(z) > w(v, z):
cost(z) = w(v, z)
prev(z) = v
decreasekey(H, z)

B

A 6 5

3

42 FD

C E

5 41 24

B

A

FD

C E

Set S A B C D E F

{} 0/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil
A 5/A 6/A 4/A ∞/nil ∞/nil

A,D 2/D 2/D ∞/nil 4/D
A,D,B 1/B ∞/nil 4/D
A,D,B,C 5/C 3/C
A,D,B,C, F 4/F

