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1. Skalarni produkt

V tem razdelku bomo definirali skalarni produkt na realnih in kompleksnih
vektorskih prostorih ter si ogledali nekaj primerov.

Začnimo z realnimi vektorskimi prostori.

Definicija skalarnega produkta nad R
Naj bo V vektorski prostor nad obsegom realnih števil R. Preslikava, ki
vsakemu paru vektorjev u, v ∈ V priredi realno število 〈u, v〉 je skalarni
produkt, če zadošča naslednjim lastnostim:

1 Za vsak neničeln v ∈ V velja 〈v , v〉 > 0.

2 Za vsaka u, v ∈ V velja 〈v , u〉 = 〈u, v〉.
3 Za vsake u1, u2, v ∈ V ter α1, α2 ∈ R velja
〈α1u1 + α2u2, v〉 = α1〈u1, v〉+ α2〈u2, v〉.

Opomba: Prvi lastnosti pravimo pozitivna definitnost, drugi simetričnost,
tretji pa linearnost v prvem faktorju.
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Oglejmo si nekaj preprostih posledic aksiomov:

Za vse u, v1, v2 ∈ V ter vse β1, β2 ∈ R velja

〈u, β1v1 + β2v2〉 = β1〈u, v1〉+ β2〈u, v2〉

Tej lastnosti pravimo linearnost v drugem faktorju. Dokažemo jo
takole: 〈u, β1v1 + β2v2〉 = 〈β1v1 + β2v2, u〉 = β1〈v1, u〉+ β2〈v2, u〉 =
β1〈u, v1〉+ β2〈u, v2〉 kjer smo pri prvem in tretjem enačaju uporabili
simetričnost, pri drugem enačaju pa linearnost v prvem faktorju.

Za vsak v ∈ V velja
〈v , 0〉 = 〈0, v〉 = 0.

Če v linearnosti v prvem faktorju vstavimo α1 = α2 = 0, dobimo
〈0, v〉 = 〈0 · u1 + 0 · u2, v〉 = 0〈u1, v〉+ 0〈u2, v〉 = 0. Iz simetričnosti
sledi 〈v , 0〉 = 0.

Za vsak v ∈ V velja 〈v , v〉 ≥ 0. Enačaj velja natanko tedaj, ko je
v = 0. To sledi iz pozitivne definitnosti in iz 〈0, 0〉 = 0.
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Oglejmo si primere skalarnih produktov na realnih vektorskih prostorih.

Primer: Standardni skalarni produkt na Rn

Običajnemu skalarnemu produktu iz prvega semestra bomo tu pravili
standardni skalarni produkt na Rn. Definiran je z

〈(α1, . . . , αn), (β1, . . . , βn)〉 = α1β1 + . . .+ αnβn

Pokazali smo že, da zadošča lastnostim (1),(2),(3).

Seveda standardni skalarni produkt ni edini skalarni produkt na Rn.
Klasifikacijo vseh skalarnih produktov na Rn bomo obdelali v naslednjem
poglavju. Tu pokažimo samo, da jih je neskončno.

Dodatni primeri skalarnih produktov na Rn

Za vsako n-terico δ = (δ1, . . . , δn) strogo pozitivnih realnih števil je s

〈(α1, . . . , αn), (β1, . . . , βn)〉 = δ1α1β1 + . . .+ δnαnβn

definiran skalarni produkt na Rn. (Preveri lastnosti (1),(2),(3)!)
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Na funkcijskih prostorih je skalarni integral običajno definiran z integralom.

Primer: Standardni skalarni produkt na C[a, b]

Za dve zvezni funkciji f , g iz intervala [a, b] v R definirajmo.

〈f , g〉 =

∫ b

a
f (x)g(x) dx .

Preverimo lastnosti (1),(2),(3), torej je to skalarni produkt.

Konstruirajmo še neskončno mnogo drugih skalarnih produktov na C[a, b].

Dodatni primeri skalarnih produktov na C[a, b]

Naj bo w ∈ C[a, b] taka funkcija, ki zadošča w(x) > 0 za vsak x ∈ [a, b]. S

〈f , g〉 =

∫ b

a
w(x)f (x)g(x) dx .

je definiran skalarni produkt na Rn. (Preveri lastnosti (1),(2),(3)!)
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Razširimo zdaj definicijo na kompleksne vektorske prostore. Spomnimo se,
da za z = a + bi (kjer a, b ∈ R in i2 = −1) definiramo z̄ = a− bi .

Definicija skalarnega produkta nad C
Naj bo V vektorski prostor nad obsegom kompleksnih števil C. Preslikava,
ki vsakemu paru vektorjev u, v ∈ V priredi kompleksno število 〈u, v〉 je
skalarni produkt, če zadošča naslednjim lastnostim:

1 Za vsak neničeln v ∈ V velja 〈v , v〉 ∈ R in 〈v , v〉 > 0.

2 Za vsaka u, v ∈ V velja 〈v , u〉 = 〈u, v〉.
3 Za vsake u1, u2, v ∈ V ter α1, α2 ∈ C velja
〈α1u1 + α2u2, v〉 = α1〈u1, v〉+ α2〈u2, v〉.

Opomba: Lastnosti (2) pravimo konjugirana simetričnost. Lastnosti (1) in
(3) sta enaki kot v realnem primeru.
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Opomba: Pomembna razlika z realnim primerom je, da tu nimamo
linearnosti v drugem faktorju ampak konjugirano linearnost, se pravi

〈u, β1v1 + β2v2〉 = β̄1〈u, v1〉+ β̄2〈u, v2〉

za vse u, v1, v2 ∈ V ter vse β1, β2 ∈ C. To sledi iz 〈u, β1v1 + β2v2〉 =
〈β1v1 + β2v2, u〉 = β1〈v1, u〉+ β2〈v2, u〉 = β̄1〈v1, u〉+ β̄2〈v2, u〉 =
= β̄1〈u, v1〉+ β̄2〈u, v2〉. Pri prvem in četrtem enačaju smo upoštevali
konjugirano simetričnost, pri drugem enačaju linearnost v prvem faktorju.
Pri tretjem enačaju smo upoštevali z1 + z2 = z̄1 + z̄2 in z1z2 = z̄1z̄2.

Opomba: Tudi tu velja 〈v , 0〉 = 〈0, v〉 = 0 za vsak v ∈ V .

Opomba: Tudi tu velja 〈v , v〉 ≥ 0 za vsak v ∈ V . Enačaj velja natanko
tedaj, ko je v = 0.
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Primer: Standardni skalarni produkt na Cn.

Za dve kompleksni n-terici definirajmo njun standardni skalarni produkt

〈(α1, . . . , αn), (β1, . . . , βn)〉 = α1β̄1 + . . .+ αnβ̄n.

Pozor, za razliko od realnega primera imamo tu β̄i namesto βi .

Opomba: Če
∑

i αi β̄i zamenjamo z
∑

i δiαi β̄i , kjer so δi > 0 fiksni,
dobimo drug skalarni produkt na Cn.

Standardni skalarni produkt na C([a, b],C)

Za dve zvezni funkciji f , g iz intervala [a, b] v C definirajmo.

〈f , g〉 =

∫ b

a
f (x)g(x) dx .

Pozor, za razliko od realnega primera imamo tu g(x) namesto g(x).

Opomba: Če vzamemo
∫ b
a w(x)f (x)g(x) dx , kjer je w(x) zvezna in za

vsak x realna in strogo pozitivna, potem dobimo drug skalarni produkt.
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2. Norma porojena iz skalarnega produkta

Definicija norme je podobna kot v prvem semestru.

Definicija norme

Naj bo V realen ali kompleksen vektorski prostor s skalarnim produktom.
Za vsak element v ∈ V definirajmo njegovo normo z

‖v‖ =
√
〈v , v〉.

Dokažimo najprej pomožno trditev.

Trditev (Cauchy-Schwartzova neenakost)

Naj bo V vektorski prostor s skalarnim produktom. Za vsaka u, v ∈ V je

|〈u, v〉| ≤ ‖u‖‖v‖

V dokazu bomo večkrat potrebovali, da je zz̄ = |z |2 za vsak z ∈ C.
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Dokaz: Naj bo α = 〈v , v〉, β = 〈u, v〉 in w = αu − βv . Potem velja

0 ≤ 〈w ,w〉 = αᾱ〈u, u〉 − αβ̄〈u, v〉 − βᾱ〈v , u〉+ ββ̄〈v , v〉.

Opazimo, da je

αβ̄〈u, v〉 = βᾱ〈v , u〉 = ββ̄〈v , v〉 = |〈u, v〉|2〈v , v〉 = |〈u, v〉|2‖v‖2

in
αᾱ〈u, u〉 = |〈v , v〉|2〈u, u〉 = ‖v‖4‖u‖2.

Torej je
0 ≤ 〈w ,w〉 = ‖v‖4‖u‖2 − |〈u, v〉|2‖v‖2.

Če je v 6= 0, lahko kraǰsamo ‖v‖2 in dobimo

|〈u, v〉|2 ≤ ‖v‖2‖u‖2.

S korenjenjem potem dobimo Cauchy-Schwartzovo neenakost. Če je
v = 0, potem Cauchy-Schwartzova neenakost očitno drži.
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Trditev (Osnovne lastnosti norme)

Naj bo V vektorski prostor s skalarnim produktom. Pripadajoča norma
zadošča naslednjim lastnostim:

1 Za vsak neničeln v ∈ V je ‖v‖ > 0.

2 Za vsak v ∈ V in vsak skalar α je ‖αv‖ = |α|‖v‖.
3 Za vsaka u, v ∈ V je ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Dokaz: Lastnost (1) sledi iz pozitivne definitnosti skalarnega produkta.

Lastnost (2) sledi iz ‖αv‖2 = 〈αv , αv〉 = αᾱ〈v , v〉 = |α|2‖v‖2, kjer smo
upoštevali linearnost v prvem in konjugirano linearnost v drugem faktorju.

Lastnost (3) sledi iz ‖u + v‖2 = 〈u + v , u + v〉 =
〈u, u〉+ 〈u, v〉+ 〈v , u〉+ 〈v , v〉 = 〈u, u〉+ 2Re(〈u, v〉) + 〈v , v〉 ≤
‖u‖2 + 2|〈u, v〉|+ ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.
Upoštevali smo, da za z = a + ib velja z + z̄ = 2a ≤ 2

√
a2 + b2 = 2|z |.

Uporabili smo tudi Cauchy-Schwartzovo neenakost.
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Vemo, kako se norma izraža s skalarnim produktom. Ali znamo tudi
skalarni produkt izraziti z normo? Odgovor nam daje:

Trditev (Polarizacijske identitete)

1 Če je V vektorski prostor nad R, potem za vsaka u, v ∈ V velja

〈u, v〉 =
1

4

(
‖u + v‖2 − ‖u − v‖2

)
2 Če je V vektorski prostor nad C, potem za vsaka u, v ∈ V velja

〈u, v〉 =
1

4

3∑
k=0

ik‖u + ikv‖2
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Dokaz: V realnem primeru velja

1∑
k=0

(−1)k‖u + (−1)kv‖2 =
1∑

k=0

(−1)k〈u + (−1)kv , u + (−1)kv〉 =

=
1∑

k=0

(
(−1)k〈u, u〉+ (−1)2k〈v , u〉+ (−1)2k〈u, v〉+ (−1)3k〈v , v〉

)
=

=
( 1∑
k=0

(−1)k
)
〈u, u〉+

( 1∑
k=0

(−1)2k
)
〈v , u〉+

( 1∑
k=0

(−1)2k
)
〈u, v〉+

+
( 1∑
k=0

(−1)3k
)
〈v , v〉 = 2〈v , u〉+ 2〈u, v〉 = 4〈u, v〉,

pri čemer smo upoštevali, da je

1∑
k=0

(−1)k =
1∑

k=0

(−1)3k = 0 in
1∑

k=0

(−1)2k = 2.
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V kompleksnem primeru velja

3∑
k=0

ik‖u + ikv‖2 =
3∑

k=0

ik〈u + ikv , u + ikv〉 =

=
3∑

k=0

(
ik〈u, u〉+ i2k〈v , u〉+ ik īk〈u, v〉+ i2k īk〈v , v〉

)
=

=
( 3∑
k=0

ik
)
〈u, u〉+

( 3∑
k=0

i2k
)
〈v , u〉+

( 3∑
k=0

ik īk
)
〈u, v〉+

+
( 3∑
k=0

(
i2k īk

)
〈v , v〉 = 4〈u, v〉,

pri čemer smo upoštevali, da je

3∑
k=0

ik =
3∑

k=0

i2k =
3∑

k=0

i2k īk = 0 in
3∑

k=0

ik īk = 4.
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3. Ortogonalne baze
Kot med dvema vektorjema iz Rn je pravi natanko tedaj, ko je njun
standardni skalarni produkt enak nič. Za splošne skalarne produkte
nimamo več geometrijske intuicije, zato pravokotnost definiramo s
pomočjo skalarnega produkta.

Definicija ortogonalnosti vektorjev

Naj bo V vektorski prostor s skalarnim produktom. Vektorja u, v ∈ V sta
pravokotna (s tujko ortogonalna), če velja 〈u, v〉 = 0.

Opomba: Ničelni vektor je pravokoten na vse vektorje, zato ni zanimiv.

Opomba: Neničeln vektor ne more biti pravokoten sam nase.

Primer

Vektorja (1, 2) in (2,−3) iz R2 sta pravokotna glede na skalarni produkt

〈(α1, α2), (β1, β2)〉 = 3α1β1 + α2β2,

nista pa pravokotna glede na standardni skalarni produkt.
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Definicija ortogonalne množice

Naj bo V vektorski prostor s skalarnim produktom. Množica vektorjev iz
V je ortogonalna, če ne vsebuje ničelnega vektorja in če sta vsaka dva
različna vektorja iz te množice pravokotna.

Primer

Vektorji (1, 1, 1, 1, 1, 1, 1, 1), (−1,−1,−1,−1, 1, 1, 1, 1),
(−1,−1, 1, 1,−1,−1, 1, 1) in (−1, 1,−1, 1,−1, 1,−1, 1)
tvorijo ortogonalno množico v R8 za standardni skalarni produkt.

Primer

Funkcije fk(x) = sin kπx
a , kjer k = 1, 2, 3, . . ., tvorijo neskončno

ortogonalno množico v C[0, a] za standardni skalarni produkt.

Dokaz: Velja 〈fk(x), fl(x)〉 =
∫ a

0 sin kπx
a sin lπx

a dx =
1
2

∫ a
0 cos (k−l)πx

a dx − 1
2

∫ a
0 cos (k+l)πx

a dx = 0, če k 6= l .
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Trditev

Vsaka ortogonalna množica je linearno neodvisna.

Dokaz: Recimo, da so v1, . . . , vk neničelni paroma pravokotni vektorji iz V .
Če je α1v1 + . . .+αkvk = 0 za neke skalarje α1, . . . , αk , moramo pokazati,
da velja α1 = . . . = αk = 0. Opazimo, da za vsak i velja 0 = 〈0, vi 〉 =
= 〈α1v1 + . . .+ αkvk , vi 〉 = α1〈v1, vi 〉+ . . .+ αi 〈vi , vi 〉+ . . .+ αk〈vk , vi 〉.
Ker je 〈v1, vi 〉 = . . . = 〈vi−1, vi 〉 = 〈vi+1, vi 〉 = . . . = 〈vk , vi 〉 = 0, je
0 = αi 〈vi , vi 〉. Ker je vi 6= 0 za vsak i , odtod sledi αi = 0 za vsak i .

Definicija ortogonalne baze

Ortogonalna množica v V , ki je ogrodje za V , je ortogonalna baza za V .

Primer

Standardna baza v Rn je ortogonalna baza glede na standardni skalarni
produkt.
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Definicija ortonormirane baze

Vektorjem z normo 1 pravimo normirani vektorji. Ortogonalni množici,
v kateri so vsi elementi normirani, pravimo ortonormirana množica.
Ortonormirani množici, ki je baza, pravimo ortonormirana baza.

Opomba: Definicijo ortonormiranosti množice {v1, . . . , vn} se običajno na
kratko pove z naslednjo formulo

〈vi , vj〉 =

{
0 če i 6= j
1 če i = j
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Opomba: Vsak neničeln vektor lahko spremenimo v normiran vektor tako,
da ga delimo z njegovo normo. Pravimo, da smo element normirali.
Vsako ortogonalno množico lahko spremenimo v ortonormirano množico
tako, da vse njene elemente normiramo.

Primer normiranja ortogonalne baze

Vektorji (−1
2 , 1, 1), (1,−1

2 , 1), (1, 1,−1
2 ) tvorijo ortogonalno bazo za R3,

ki ni normirana. Če te vektorje normiramo (delimo s 3
2 ), dobimo vektorje

(−1
3 ,

2
3 ,

2
3 ), ( 2

3 ,−
1
3 ,

2
3 ), ( 2

3 ,
2
3 ,−

1
3 ), ki tvorijo ortonormirano bazo za R3.
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