MEMOIZATION AND DYNAMIC
PROGRAMMING

In this chapter, we’ll study four problems

that appear to be solvable using recursion.
As you’ll see, while in theory we can use re-

cursion, in practice it leads to an explosion of

work that renders the problems unsolvable. Not to
worry: you'll learn two powerful, related techniques,
called memoization and dynamic programming, that
will lead to shocking performance increases, morph-
ing runtimes from hours or days to seconds. These
techniques aren’t just for the four problems that I've
selected for this chapter. Once you learn these tech-
niques, you’ll be able to solve hundreds of other pro-
gramming problems. If you’re going to read one chap-
ter in this book, read this one.

72

Problem 1: Burger Fervor

Chapter 3

This is UVa problem 10465.

The Problem

A man named Homer Simpson likes to eat and drink. He has ¢ minutes that
he’ll spend eating burgers and drinking beer. There are two kinds of bur-
gers. One of them takes m minutes to eat, and the other takes » minutes

to eat.

Homer likes burgers more than beer, so he’d like to spend the entire ¢
minutes eating burgers. However, doing so isn’t always possible. For exam-
ple,ifm = 4,n = 9,and ¢ = 15, then no combination of the 4-minute and
9-minute burgers can take him exactly 15 minutes to eat. If that’s the case,
he’ll spend as much time as possible eating burgers and then fill the rest of
the time drinking beer. Our task is to determine the number of burgers that
Homer can eat.

Input

We read test cases until there is no more input. Each test case is represented
by a line of three integers: m, the number of minutes it takes to eat the first
kind of burger; n, the number of minutes it takes to eat the second kind of
burger; and ¢, the number of minutes that Homer will spend eating burgers
and drinking beer. Each m, n, and ¢ value is less than 10,000.

Output

For each test case:

e If Homer can spend exactly ¢ minutes eating burgers, then output
the maximum number of burgers that he can eat.

* Otherwise, output the maximum number of burgers that Homer
can eat when maximizing his time eating burgers, a space, and the
number of remaining minutes (during which he’ll drink beer).

The time limit for solving the test cases is three seconds.

Forming a Plan

Let’s start by thinking about a few different test cases. Here’s the first one:

49 22

Here, the first kind of burger takes 4 minutes to eat (m = 4), the second
kind of burger takes 9 minutes to eat (n = 9), and Homer has 22 minutes to
spend (¢ = 22). This is an example in which Homer can fill the entire time by
eating burgers. The maximum number of burgers that Homer can eat here
is three, so 3 is the correct output for this test case.

The three burgers that Homer should eat are one four-minute burger
and two nine-minute burgers. This takes him 1 x 4 +2 x 9 = 22 minutes, as

required. Notice, though, that we are not being asked to indicate the number

of each kind of burger he should eat. All we're asked to do is output the to-

tal number of burgers. When I provide the number of each kind of burger

below, I do so only to offer evidence that the proposed output is feasible.
Here’s another test case:

4954

The correct output here is 11, obtained by eating nine four-minute bur-
gers and two nine-minute burgers. Unlike the 4 9 22 test case, here Homer
has multiple ways to spend exactly 54 minutes eating burgers. For example,
he could eat six nine-minute burgers—that fills up the 54 minutes, too—but,
remember, if we can fill the entire t minutes, then we want to output the
maximum number of burgers.

As noted in the problem description, it’s not always possible for Homer
to completely fill the ¢ minutes by eating burgers. Let’s study the example
that I gave there as our next test case:

49 15

How many burgers should Homer eat here? He can eat a maximum
of three burgers by eating three four-minute burgers. By doing so, Homer
would spend 12 minutes eating burgers, and he would have to spend the re-
maining 15 - 12 = 3 minutes drinking beer. So, he eats three burgers and has
three minutes’ beer drinking time—have we solved this problem?

We have not! Carefully reread the problem description, and zone in on
this: “output the maximum number of burgers that Homer can eat when
maximizing his time eating burgers.” That is, when Homer cannot fill the
entire time by eating burgers, we want to maximize the time that he spends
eating burgers and then the maximum number of burgers he can eat in that
time. The correct output for 4 9 15 is therefore 2 2: the first two means that
he eats two burgers (one four-minute burger and one nine-minute burger,
for a total of 13 minutes) and the second two means that he has to spend 2
minutes (15 - 13) drinking beer.

In the 4 9 22 and 4 9 54 test cases, we’re being asked to solve the prob-
lem for 22 and 54 minutes, respectively. We’ll find in these cases that there
is indeed a way to spend the entire time eating burgers, and we can report
that as our solution. However, in the 4 9 15 case, we’ll find that there is no
way to completely fill the 15 minutes by eating burgers. What do we do
there?

One idea is that we can next try to fill exactly 14 minutes with the four-
minute and nine-minute burgers. If we succeed, then we have our answer:
we report the maximum number of burgers that Homer can eat in exactly
14 minutes, followed by one, the number of minutes Homer spends drink-
ing beer. This would maximize the amount of time that Homer can spend
eating burgers. We already know that eating burgers for exactly 15 minutes
is impossible, so 14 minutes is the next best option.

Let’s see if 14 minutes works. Can we fill exactly 14 minutes with the
four-minute and nine-minute burgers? No! Like the 15-minute case, this is
impossible.

Memoization and Dynamic Programming 73

74

Chapter 3

We can, though, fill exactly 13 minutes by eating two burgers: one four-
minute burger and one nine-minute burger. That leaves Homer two minutes
for drinking beer. This justifies 2 2 as the correct output.

In summary, our plan is to determine whether Homer can eat burgers
for exactly ¢ minutes. If he can, then we’re done: we report the maximum
number of burgers he can eat. If he can’t, then we determine whether Homer
can eat burgers for exactly ¢ - 1 minutes. If he can, then we’re done, and we
report the maximum number of burgers he can eat and the number of min-
utes spent drinking beer. If he can’t, then we move on to trying ¢ -2 minutes,
then ¢ — 3 minutes, and so on, stopping when the time can be completely
filled by eating burgers.

Characterizing Optimal Solutions

Consider the 4 9 22 test case. Whatever combination of burgers and beer we
propose as the solution better take exactly 22 minutes, and it better actually
be doable using the four-minute and nine-minute burgers. Such a solution,
which adheres to the rules of a problem, is called a feasible solution. A so-
lution attempt that does not follow the rules is called an infeasible solution.
For example, having Homer spend 4 minutes eating burgers and 18 minutes
drinking beer is feasible. Having Homer spend 8 minutes eating burgers
and 18 minutes drinking beer is infeasible, because 8 + 18 is not 22. Hav-
ing Homer spend 5 minutes eating burgers and 17 minutes drinking beer is
also infeasible, because there’s no way we can use the four-minute and nine-
minute burgers to get a total of 5 minutes.

Burger Fervor is an optimization problem. An optimization problem in-
volves choosing the optimal (best) solution out of all feasible solutions. There
may be many feasible solutions of varying quality. Some will be really poor,
such as drinking beer for 22 minutes. Others will be optimal. Still others will
be close to but not quite optimal—maybe they’re off by one or two. Our goal
is to cut through the clutter and identify an optimal solution.

Suppose we’re solving a case where the first kind of burger takes m min-
utes to eat, the second kind of burger takes » minutes to eat, and we have to
spend exactly ¢ minutes.

If ¢ = 0, then the correct output is 0, because we can fill the entire zero
minutes by eating zero burgers. As we continue, we’ll therefore focus on
what to do when ¢ is greater than zero.

Let’s think about what an optimal solution for ¢ minutes must look like.
Of course, we can’t possibly know anything specific, such as “Homer eats a
four-minute burger, then a nine-minute burger, then another nine-minute
burger, then...” We haven’t done anything yet to solve the problem, so ob-
taining this level of detail is wishful thinking.

There is, however, something we can say that’s not wishful thinking. It’s
at once so inane that you’d be forgiven for wondering why I am stating it at
all and so powerful that at its core lies a solution strategy for a bewildering
number of optimization problems.

Here it is. Suppose that Homer can fill exactly ¢ minutes by eating bur-
gers. The final burger that he eats, the one that finishes off his ¢ minutes,
must be an m-minute burger or an n-minute burger.

How could that final burger be anything else? Homer can only eat m-
minute and n-minute burgers, so there are only two choices for the last bur-
ger that he eats and so two choices for what the end of the optimal solution
must look like.

If we know that the final burger that Homer eats in an optimal solution
is an m-minute burger, we know he has ¢ — m minutes left to spend. We must
be able to fill those ¢—m minutes with burgers, without drinking any beer: re-
member that we are assuming that Homer can spend the entire ¢ minutes by
eating burgers. If we could spend those ¢ — m minutes optimally, with Homer
eating the maximum number of burgers, then we’d have an optimal solution
to the original problem of ¢ minutes. We’d take the number of burgers that
he can eat in {—m minutes and add one m-minute burger to fill the remaining
m minutes.

Now, what if we knew that the final burger that Homer eats in an opti-
mal solution is an n-minute burger? Then he has ¢ — n minutes left to spend.
Again, by virtue of the entire minutes being spent eating burgers, we know
that it must be possible for Homer to eat burgers for the first ¢ — n of those
minutes. If we could spend those ¢ — » minutes optimally, then we’d have an
optimal solution to the original problem of ¢ minutes. We’d take the number
of burgers that he can eat in ¢ — n minutes and add one n-minute burger to
fill the remaining n minutes.

Now we seem to be squarely in farce territory. We just assumed that we
knew what the final burger was! However, there’s no way we could know
this. We do know that the final burger is an m-minute burger or an n-minute
burger. We definitely don’t know which it is.

The wonderful truth is that we don’t need to know. We can assume that
the final burger is an m-minute burger and solve the problem optimally
given that choice. We then make the other choice—assume that the final
burger is an n-minute burger—and solve the problem optimally given that
choice. In the first case, we have a subproblem of ¢ — m minutes to solve op-
timally; in the second case, we have a subproblem of ¢ — » minutes to solve
optimally. Whenever we have characterized a solution to a problem in terms
of solutions to subproblems, we would do well to try a recursive approach as
we did in Chapter 2.

Solution 1: Recursion

Let’s attempt a recursive solution. We’ll begin by writing a helper function
to solve for exactly ¢ minutes. Once we’re done with that, we’ll write a func-
tion that solves for ¢ minutes, ¢ — 1 minutes, ¢{ — 2 minutes, and so on, until we
can completely fill some number of minutes with burgers.

Memoization and Dynamic Programming 75

76

Chapter 3

The Helper Function: Solving for the Number of Minutes

Each problem and subproblem instance is characterized by three parame-
ters: m, n, and ¢t. We’ll therefore write the body of the following function:

int solve_t(int m, int n, int t)

If Homer can spend exactly t minutes eating burgers, then we’ll return
the maximum number of burgers he can eat. If he can’t spend exactly t min-
utes eating burgers—meaning he must spend at least one minute drinking
beer—then we’ll return -1. A return value of 0 or more means that we’ve
solved the problem using burgers alone; a return value of -1 means that the
problem cannot be solved using burgers alone.

If we call solve_t(4, 9, 22), we expect to get 3 as the return value: three
is the maximum number of burgers that Homer can eat in exactly 22 min-
utes. If we call solve_t(4, 9, 15), we expect to get -1 as the return value: no
combination of four-minute and nine-minute burgers gives us exactly 15
minutes.

We’ve already settled on what to do when ¢ = 0: in this case, we have zero
minutes to spend, and we do so by having Homer eat zero burgers:

if (t == 0)
return 0;

That’s the base case of our recursion. To implement the rest of this
function, we need the analysis from the last section. Remember that, to
solve the problem for ¢ minutes, we think about the final burger that Homer
eats. Maybe it’s an m-minute burger. To check that possibility, we solve the
subproblem for ¢ — m minutes. Of course, the final burger can only be an
m-minute burger if we’ve got at least m minutes to spend. This logic can be
coded as follows:

int first;
if (t >=m)

first = solve t(m, n, t - m);
else

first = -1;

We use first to store the optimal solution to the t - m subproblem, with
-1 indicating “no solution.” If t >= m, then there’s a chance that an m-minute
burger is the final one, so we make a recursive call to compute the optimal
number of burgers that Homer can eat in exactly t - m minutes. That recur-
sive call will return a number greater than -1 if it can be solved exactly or -1
ifit can’t. If t < m, then there’s no recursive call to make: we set first = -1 to
signify that an m-minute burger isn’t the final burger and that it can’t partici-
pate in an optimal solution for t minutes.

Now, what about when an n-minute burger is the final burger? The code
for this case is analogous to the m-minute burger case, this time using the
variable second instead of first:

int second;
if (t >=n)

second = solve t(m, n, t - n);
else

second = -1;

Let’s summarize our current progress:

* The variable first is the solution to the t - m subproblem. Ifit’s -1,
then we can’t fill t - m minutes with burgers. If it’s anything else,
then it gives the optimal number of burgers that Homer can eat in
exactly t - m minutes.

* The variable second is the solution to the t - n subproblem. Ifit’s -1,
then we can’t fill t - n minutes with burgers. If it’s anything else,
then it gives the optimal number of burgers that Homer can eat in
exactly t - n minutes.

There’s a chance that both first and second have values of -1. A value of
-1 for first means that an m-minute burger can’t be the final burger. A value
of -1 for second means that an n-minute burger can’t be the final burger. If
the final burger can’t be an m-minute burger and can’t be an n-minute bur-
ger, then we’re out of options and have to conclude that there’s no way to
solve the problem for t minutes:

if (first == -1 && second == -1)
return -1;

Otherwise, if first or second or both are greater than -1, then we have at
least one solution for t minutes. In this case, we take the maximum of first
and second to choose the better subproblem solution. If we add one to that
maximum, thereby incorporating the final burger, then we obtain the maxi-
mum for the original problem of t minutes:

return max(first, second) + 1;

The full function is given in Listing 3-1.

int max(int vi, int v2) {
if (vi > v2)
return vi;
else
return v2;

int solve t(int m, int n, int t) {
int first, second;

Memoization and Dynamic Programming 77

78

Chapter 3

if (t == 0)

return 0;
if (t >=m)
@ first = solve t(m, n, t - m);
else

first = -1;
if (t »>=n)
® second = solve t(m, n, t - n);
else

second = -1;
if (first == -1 && second == -1)
® return -1;
else
O return max(first, second) + 1;

}

Listing 3-1: Solving for t minutes

Whether or not I've convinced you of this function’s correctness, it’s
worth spending a few minutes getting a feel for what the function does in
practice.

Let’s begin with solve_t(4, 9, 22). The recursive call for first @ solves
the subproblem for 18 minutes (22-4). That recursive call returns 2, because
two is the maximum number of burgers that Homer can eat in exactly 18
minutes. The recursive call for second @ solves the subproblem for 13 min-
utes (22 — 9). That recursive call returns 2 as well, because two is the max-
imum number of burgers that Homer can eat in 13 minutes. That is, both
first and second are 2 in this case; tacking on the final four-minute or nine-
minute burger gives a solution of 3 @ for the original problem of 22 minutes.

Let’s now try solve_t(4, 9, 20). The recursive call for first @ solves the
subproblem for 16 minutes (20 - 4) and yields 4 as a result, but what about
the recursive call for second ®? Well, that one is asked to solve the subprob-
lem for 11 minutes (20 - 9), but there is no way to spend exactly 11 minutes
by eating four-minute and nine-minute burgers! Thus this second recursive
call returns -1. The maximum of first and second is therefore 4 (the value of
first), and so we return 5 @.

So far we’ve seen an example where the two recursive calls both give
subproblem solutions with the same number of burgers and an example
where only one recursive call gives a subproblem solution. Now let’s look
at a case where each recursive call returns a subproblem solution—but where
one is better than the other! Consider solve t(4, 9, 36). The recursive call
for first @ yields 8, the maximum number of burgers that Homer can eat in
exactly 32 minutes (36 - 4). The recursive call for second @ yields 3, the max-
imum number of burgers that Homer can eat in exactly 27 minutes (36 - 9).
The maximum of 8 and 3 is 8, and so we return 9 as the overall solution @.

Finally, try solve_t(4, 9, 15). The recursive call for first @ is asked to
solve for 11 minutes (15 — 4) and, since this is impossible with these kinds
of burger, returns -1. The result is similar to the recursive call for second @:

solving for 6 minutes (15 — 9) is impossible, so it also returns -1. There is
therefore no way to solve for exactly 15 minutes; hence, we return -1 .

The solve and main Functions

Recall from “Forming a Plan” on page 72 that if we can fill exactly ¢t minutes
by eating burgers, then we output the maximum number of burgers. Other-
wise, Homer has to spend at least one minute drinking beer. To figure out
the number of minutes that he must spend drinking beer, we try to solve for
t— 1 minutes, -2 minutes, and so on, until we find a number of minutes that
can be filled by eating burgers. Happily, with our solve_t function, we can
set the t parameter to whatever we want. We can start at the given value of t
and make callsont - 1,t - 2, and so on. We effect this plan in Listing 3-2.

void solve(int m, int n, int t) {
int result, i,
@ result = solve t(m, n, t);
if (result >= 0)
O printf("%d\n", result);
else {
i=1t-1;
® result = solve t(m, n, i);
while (result == -1) {
i--;
® result = solve t(m, n, i);
}
® printf("%d %d\n", result, t - i);
}
}

Listing 3-2: Solution 1

First, we solve the problem for exactly t minutes @. If we get a result
that’s at least zero, then we output the maximum number of burgers @ and
stop.

If it wasn’t possible for Homer to eat burgers for the entire t minutes,
wesetitot - 1,sincet - 1isthe next-best number of minutes that we
should try. We then solve the problem for this new value of i ®. If we don’t
get a value of -1, we're successful and the while loop is skipped. If we’re not
successful, the while loop executes until we successfully solve a subproblem.
Inside the while loop, we decrement the value of i and solve that smaller
subproblem @. The while loop will eventually terminate; for example, we
can certainly fill zero minutes with burgers. Once we escape the while loop,
we’ve found the largest number of minutes, i, that can be filled by burgers.
At that point, result will hold the maximum number of burgers, and t - iis
the number of minutes that remain, so we output both values @.

That’s that. We use recursion in solve_t to solve for t exactly. We tested
solve_t on different kinds of test cases, and everything looked good. Not be-
ing able to solve for t exactly poses no problem: we use a loop inside of solve
to try the minutes one by one, from largest to smallest. All we need now is a

Memoization and Dynamic Programming 79

80

Chapter 3

little main function to read the input and call solve; Listing 3-3 provides the
code.

int main(void) {
int m, n, t;
while (scanf("%d%d%d", &m, &n, &t) != -1)
solve(m, n, t);
return 0;

}

Listing 3-3: The main function

Ah, a harmonious moment. We’re now ready to submit Solution 1 to
the judge. Please do that now. I'll wait. .. and wait... and wait.

Solution 2: Memoization

Solution 1 fails, not because it’s incorrect, but because it’s too slow. If you
submit Solution 1 to the judge, you'll receive a “Time-Limit Exceeded” error.
This reminds us of the “Time-Limit Exceeded” error we received in Solu-
tion 1 of the Unique Snowflakes problem. There, the inefficiency was em-
blematic of doing unnecessary work. Here, as we’ll soon see, the inefficiency
does not lie in doing unnecessary work but in doing necessary work over
and over and over.

The problem description says that ¢ can be any number of minutes less
than 10,000. Surely, then, the following test case should pose no problem
atall:

4 2 88

The m and n values, 4 and 2, are very small. Relative to 10,000, the ¢
value of 88 is very small as well. You may be surprised and disappointed that
our code on this test case may not run within the three-second problem time
limit. On my laptop, it takes about 10 seconds. That’s 10 seconds on a puny
88 test case. While we’re at it, let’s try this slightly bigger test case:

4290

All we did was increase t from 88 to 90, but this small increase has a dis-
proportionate effect on runtime: on my laptop, this test case takes about 18
seconds—almost double what the 88 test case takes! Testing with a t value of
92 just about doubles the runtime again, and so on and so on. No matter
how fast the computer, you're unlikely to ever make it to a t value of even
100. By extrapolating from this trend, it’s unfathomable how much time it
would take to run our code on a test case where t is in the thousands. This
kind of algorithm, in which a fixed increment in problem size leads to a dou-
bling of runtime, is called an exponential-time algorithm.

We’ve established that our code is slow—but why? Where’s the ineffi-
ciency?

Consider a given m, n, t test case. Our solve_t function has three param-
eters, but only the third parameter ¢ ever changes. There are therefore only
t+ 1 different ways that solve_t can be called. For example, if ¢ in a test case is
4, then the only calls that can be made to solve_t are those with ¢ values of 4,
3, 2, 1, and 0. Once we call solve_t with some ¢ value, such as 2, there’s no rea-
son to ever make that same call again: we already have our answer, so there’s
no point kicking off a recursive call to compute that answer again.

Counting the Function Calls

I'm going to take Solution 1 and add some code that counts the number

of times that solve_t is called; see Listing 3-4 for the new solve_t and solve
functions. I added a global variable total_calls that is initialized to 0 on en-
try to solve and is increased by 1 on every call of solve_t. That variable is of
type long long; long or int simply isn’t big enough to capture the explosion of
function calls.

unsigned long long total calls;

int solve t(int m, int n, int t) {
int first, second;
O total calls++;

if (t == 0)

return 0;
if (t >=m)

first = solve t(m, n, t - m);
else

first = -1;
if (t >=n)

second = solve_t(m, n, t - n);
else

second = -1;

if (first == -1 8& second == -1)
return -1;

else
return max(first, second) + 1;

void solve(int m, int n, int t) {
int result, i;
0 total calls = 0;
result = solve t(m, n, t);
if (result >= 0)
printf("%d\n", result);
else {
i=t-1;
result = solve t(m, n, i);
while (result == -1) {
i--;

Memoization and Dynamic Programming 81

82

Chapter 3

result = solve_t(m, n, i);

}
printf("%d %d\n", result, t - i);
}
® printf("Total calls to solve t: %1lu\n", total calls);

}

Listing 3-4: Solution 1, instrumented

At the start of solve_t, we increase total_calls by 1 @ to count this func-
tion call. In solve, we initialize total_calls to 0 @ so that the count of calls is
reset before each test case is processed. For each test case, the code prints
the number of times that solve_t was called ©.

If we give it a go with this input:

4 2 88
42 90

we get this as output:

44
Total calls to solve t: 2971215072
45
Total calls to solve t: 4807526975

We’ve made billions of frivolous calls, when only about 88 or 90 of them
can be distinct. We conclude that the same subproblems are being solved a
staggering number of times.

Remembering Our Answers

Here’s some intuition for the staggering number of calls we make. Suppose
we call solve_t(4, 2, 88). It makes two recursive calls: one to solve t(4, 2, 86)
and the other to solve_t(4, 2, 84). So far, so good. Now consider what will
happen for the solve_t(4, 2, 86) call. It will make two recursive calls of its
own, the first of which is solve_t(4, 2, 84)—exactly one of the recursive calls
made by solve_t(4, 2, 88)! That solve_t(4, 2, 84) work will therefore be per-
formed twice. Once would have been enough!

However, the imprudent duplication is only just beginning. Consider
the two solve_t(4, 2, 84) calls. By reasoning as in the previous paragraph,
each of these calls will eventually lead to two calls of solve_t(4, 2, 80), for a
total of four. Again, once would have been enough!

Well, it would have been enough if we had somehow remembered the
answer from the first time we computed it. If we remember the answer to a
call of solve_t the first time we compute it, we can just look it up later when
we need that answer again.

Remember, don’t refigure. That’s the maxim of a technique called memoiza-
tion. Memoization comes from the word memoize, which means to store as if
on a memo. Itis a clunky word, sure, but one that’s in widespread use.

Using memoization involves two steps:

1. Declare an array large enough to hold the solutions to all possible
subproblems. In Burger Fervor, t is less than 10,000, so an array of
10,000 elements suffices. This array is typically given the name memo.
Initialize the elements of memo to a value reserved to mean “unknown
value.”

2. At the start of the recursive function, add code to check whether
the subproblem solution has already been solved. This involves
checking the corresponding index of memo: if the “unknown value”
is there, then we have to solve this subproblem now; otherwise, the
answer is already stored in memo, and we simply return it, without do-
ing any further recursion. Whenever we solve a new subproblem, we

store its solution in memo.

Let’s augment Solution 1 with memoization.

Implementing Memoization

The appropriate place to declare and initialize the memo array is in solve, since

that’s the function that first gets triggered for each test case. We’ll use a

value of -2 to represent an unknown value: we can’t use positive numbers be-
cause those would be confused with numbers of burgers, and we can’t use -1
because we’re already using -1 to mean “no solution possible.” The updated

solve function is given in Listing 3-5.

#define SIZE 10000

void solve(int m, int n, int t) {
int result, i;
@ int memo[SIZE];
for (i = 0; i <= 1t; i++)
memo[i] = -2;
result = solve_t(m, n, t, memo);
if (result >= 0)
printf("%d\n", result);
else {
i=t-1;
result = solve_t(m, n, i, memo);
while (result == -1) {

i--;
result = solve_t(m, n, i, memo);

}

printf("%d %d\n", result, t - i);

}
}

Listing 3-5: Solution 2, with memoization implemented

Memoization and Dynamic Programming

83

84

Chapter 3

We declare the memo array using the maximum possible size for any test
case @. Then we loop from 0 to t and set each element in the range to -2.
There’s also a small but important change in our calls to solve_t. Now
we’re passing in memo; in this way, solve_t can check memo to determine whether
the current subproblem has already been solved and update memo if it has not.
The updated solve_t code is given in Listing 3-6.

int solve t(int m, int n, int t, int memo[]) {
int first, second;

O if (memo[t] != -2)

return memo[t];

if (t == 0) {

memo[t] = 0;

return memo[t];
}
if (t >=m)

first = solve_t(m, n, t - m, memo);
else

first = -1;
if (t >=n)

second = solve_t(m, n, t - n, memo);
else

second = -1;
if (first == -1 8% second == -1) {
1

memo[t] = -1;
return memo[t];
} else {

memo[t] = max(first, second) + 1;
return memo[t];
}
}

Listing 3-6: Solving for t minutes, with memoization implemented

The game plan is the same as it was in Solution 1, Listing 3-1: if t is o,
solve the base case; otherwise, solve for t - m minutes and t - n minutes and
use the better one.

To this structure we fasten memoization. The huge reduction in time is
realized when we check whether a solution for t is already in the memo array
0, returning that stored result if it is. There is no fussing over whether the
final burger takes m or n minutes. There is no recursion. All we have is an
immediate return from the function.

If we don’t find a solution in memo, then we have work to do. The work
is the same as before—except that, whenever we’re about to return the solu-
tion, we first store it in the memo. Before each of our return statements, we
store the value we’re about to return in memo so that our program maintains a
memory of it.

Testing Our Memoization

I demonstrated that Solution 1 was doomed by showing you two things: that
small test cases took far too long to run and that the slowness was caused by
making an exorbitant number of function calls. How does Solution 2 fare in
terms of these metrics?

Try Solution 2 with the input that bested Solution 1:

42 88
4290

On my laptop, the time taken is imperceptibly small.

How many function calls are made? I encourage you to instrument So-
lution 2 in the way that I did for Solution 1 (Listing 3-4). If you do that and
run it with the above input, you should get this output:

44
Total calls to solve_t: 88
45

Total calls to solve t: 90

88 calls when t is 88. 90 calls when t is 90. The difference between Solu-
tion 2 and Solution 1 is like night and a few billion days. We’ve gone from an
exponential-time algorithm to a linear-time algorithm. Specifically, we now
have an O(¢) algorithm, where ¢ is the number of minutes for the test case.

It’s judge time. If you submit Solution 2, you’ll see that we pass all of the
test cases.

This is certainly a milestone, but it is not the last word on Homer and
his burgers.

Solution 3: Dynamic Programming

We’ll bridge our way from memoization to dynamic programming by mak-
ing explicit the purpose of recursion in Solution 2. Consider the solve_t
code in Listing 3-7; it’s the same as the code in Listing 3-6 except that I'm
now highlighting just the two recursive calls.

int solve t(int m, int n, int t, int memo[]) {
int first, second;
if (memo[t] != -2)
return memo[t];

if (t ==0) {
memo[t] = 0;
return memo[t];
}
if (t >=m)
@ first = solve t(m, n, t - m, memo);
else
first = -1;
if (t >=n)

Memoization and Dynamic Programming 85

86

Chapter 3

® second = solve t(m, n, t - n, memo);

else
second = -1;

if (first == -1 8& second == -1) {
memo[t] = -1;
return memo[t];

} else {

memo[t] = max(first, second) + 1;
return memo[t];
}
}

Listing 3-7: Solving for t minutes, focusing on recursive calls

At the first recursive call @, one of two very different things will happen.
The first is that the recursive call finds its subproblem solution in the memo
and returns immediately. The second is that the recursive call does not find
the subproblem solution in the memo, in which case it carries out its own
recursive calls. All of this is true of the second recursive call @ as well.

When we make a recursive call, and the recursive call finds its subprob-
lem solution in the memo, we have to wonder why we made the recursive
call at all. The only thing that the recursive call will do is check the memo
and return; we could have done that ourselves. If the subproblem solution is
not in the memo, however, then the recursion is really necessary.

Suppose that we could orchestrate things so that the memo array always
holds the next subproblem solution that we need to look up. We want to
know the optimal solution when t is 5. It’s in memo. What about when t is 18?
That’s in memo, too. By virtue of always having the subproblem solutions in
the memo, we’ll never require a recursive call; we can just look up the solu-
tion right away.

Here we have the difference between memoization and dynamic pro-
gramming. A function that uses memoization makes a recursive call to solve
a subproblem. Maybe the subproblem was already solved, maybe it wasn’t—
regardless, it will be solved when the recursive call returns. A function that
uses dynamic programming organizes the work so that a subproblem is al-
ready solved by the time we need it.

We then have no reason to use recursion: we just look up the solution.
Memoization uses recursion to ensure that a subproblem is solved; dynamic
programming ensures that the problem to be solved has no use for recur-
sion.

Our dynamic-programming solution dispenses with the solve_t function
and systematically solves for all values of t in solve. The code is given in List-
ing 3-8.

void solve(int m, int n, int t) {
int result, i, first, second;
int dp[SIZE];

® dp[o] = 0;
for (i =1; i <=t; i++) {

A if (i >=m)
® first = dp[i - m];

else
first = -1;
® if (i »>=n)
second = dp[i - n];
else

second = -1;
if (first == -1 8& second == -1)

® dpli] - -1;
else
® dp[i] = max(first, second) + 1;

}

@ result = dp[t];
if (result >= 0)
printf("%d\n", result);
else {
i=t-1;
result = dp[i];
while (result == -1) {

1--5
O result = dp[i];
}
printf("%d %d\n", result, t - i);

}
}

Listing 3-8: Solution 3, with dynamic programming

The canonical name for a dynamic-programming array is dp. We could
have called it memo, since it serves the same purpose as a memo table, but we
call it dp to follow convention. Once we declare the array, we solve the base
case, explicitly storing the fact that the optimal solution for zero minutes
is to eat zero burgers @. Then we have the loop that controls the order in
which the subproblems are solved. Here, we solve the subproblems from
smallest number of minutes (1) to largest number of minutes (t). The vari-
able i determines which subproblem is being solved. Inside our loop, we
have the familiar check of whether it makes sense to test the m-minute burger
as the final burger @. If so, we look up the solution to the i - m subproblem
in the dp array ©.

Notice how we just look up the value from the array @, without using
any recursion. We can do that because we know, by virtue of the fact that
i - mis less than i, that we’ve already solved subproblem i - m. This is pre-
cisely why we solve subproblems in order, from smallest to largest: larger
subproblems will require solutions to smaller subproblems, so we must en-
sure that those smaller subproblems have already been solved.

Memoization and Dynamic Programming 87

83

Index
Valve

0
0

The next if statement @ is analogous to the previous one @ and handles
the case when the final burger is an n-minute burger. As before, we look up
the solution to a subproblem using the dp array. We know for sure that the
i - nsubproblem has already been solved, because the i - n iteration took
place before this i iteration.

We now have the solutions to both of the required subproblems. All
that’s left to do is store the optimal solution for i in dp[i] ® ®.

Once we’ve built up the dp array, solving subproblems o to t, we can look
up subproblem solutions at will. We thus simply look up the solution to sub-
problem t @, printing it if there’s a solution and looking up solutions to pro-
gressively smaller subproblems if there’s not ©.

Let’s present one example dp array before moving on. For the following
test case:

49 15

the final contents of the dp array are

1
-1

2
-1

5
-1

6
-1

10
-

14
-1

15

-1 -1 121 -1 3 2 -1

3 |4
1

7‘8‘9

1]‘]2‘]3

We can trace the code in Listing 3-8 to confirm each of these subprob-
lem solutions. For example, dp[0], the maximum number of burgers that
Homer can eat in zero minutes, is 0 @. dp[1] is -1 because both tests @ @ fail,
meaning we store -1 @.

As a final example, let’s reverse-engineer how dp[12] got its value of 3.
Since 12 is greater than 4, the first test passes ®@. We then set first to dp[8]
®, which has a value of 2. Similarly, 12 is greater than 9, so the second test
passes @, and we set second to dp[3], which has a value of -1. The maximum
of first and second is therefore 2, so we set dp[12] to 3, one more than that
maximum @®.

Memoization and Dynamic Programming

Chapter 3

We solved Burger Fervor in four steps. First, we characterized what an opti-
mal solution must look like; second, we wrote a recursive solution; third, we
added memoization; fourth, we eliminated the recursion by explicitly solving
subproblems from smallest to largest. These four steps offer a general plan
for tackling many other optimization problems.

Step 1: Structure of Optimal Solutions

The first step is to show how to decompose an optimal solution to a problem
into optimal solutions for smaller subproblems. In Burger Fervor, we did
this by reasoning about the final burger that Homer eats. Is it an m-minute
burger? That leaves the subproblem of filling ¢ — m minutes. What if it is an
n-minute burger? That leaves the problem of filling ¢ - » minutes. We don’t
know which it is, of course, but we can simply solve these two subproblems
to find out.

Often left implicit in these kinds of discussions is the requirement that
an optimal solution to a problem contains within it not just some solution to
the subproblems but optimal solutions to those subproblems. Let’s make this
point explicit here.

In Burger Fervor, when supposing that the final burger in an optimal so-
lution is an m-minute burger, we argued that a solution to the ¢ — m subprob-
lem was part of the solution to the overall ¢ problem. Moreover, an optimal
solution for ¢t must include the optimal solution for ¢ — m: if it didn’t, then
the solution for ¢ wouldn’t be optimal after all, since we could improve it by
using the better solution for ¢ — m! A similar argument can be used to show
that, if the last burger in an optimal solution is an n-minute burger, then the
remaining ¢ - n» minutes should be filled with an optimal solution for ¢ - n.

Let me unpack this a little through an example. Suppose that m = 4,

n =9, and ¢t = 54. The value of an optimal solution is 11. There is an optimal
solution § where the final burger is a nine-minute burger. My claim is that

S must consist of this nine-minute burger along with an optimal solution

for 45 minutes. The optimal solution for 45 minutes is 10 burgers. If S used
some suboptimal solution for the first 45 minutes, then S wouldn’t be an ex-
ample of an optimal 11-burger solution. For example, if S used a suboptimal
five-burger solution for the first 45 minutes, then it would use a total of only
six burgers!

If an optimal solution to a problem is composed of optimal solutions
to subproblems, we say that the problem has optimal substructure. If a prob-
lem has optimal substructure, the techniques from this chapter are likely to
apply.

I've read and heard people claim that solving optimization problems us-
ing memoization or dynamic programming is formulaic, that once you’ve
seen one such problem, you've seen them all, and can just turn the crank
when a new problem arises. I don’t think so. That perspective belies the
challenges of both characterizing the structure of optimal solutions and
identifying that this will be fruitful in the first place. We’ll make headway
with these challenges in this chapter by solving several additional problems
using memoization and dynamic programming. The sheer breadth of prob-
lems that can be solved using these approaches suggests to me that practic-
ing with and generalizing from as many problems as possible is the only way
forward.

Step 2: Recursive Solution

Step 1 not only suggests to us that memoization and dynamic programming
will lead to a solution but also leaves in its wake a recursive approach for
solving the problem. To solve the original problem, try each of the possibili-
ties for an optimal solution, solving subproblems optimally using recursion.
In Burger Fervor, we argued that an optimal solution for ¢ minutes might
consist of an m-minute burger and an optimal solution for ¢ — m minutes or
an n-minute burger and an optimal solution to ¢{—n minutes. Solving the t—m
and ¢ — n subproblems is therefore required and, as these are smaller sub-
problems than ¢, we used recursion to solve them. In general, the number of

Memoization and Dynamic Programming 89

90

Chapter 3

recursive calls depends on the number of available candidates competing to
be the optimal solution.

Step 3: Memoization

If we succeed with Step 2, then we have a correct solution to the problem.
As we saw with Burger Fervor, though, such a solution may require an abso-
lutely unreasonable amount of time to execute. The culprit is that the same
subproblems are being solved over and over, as a result of a phenomenon
known as overlapping subproblems. Really, if we didn’t have overlapping sub-
problems, then we could stop right here: recursion would be fine on its own.
Think back to Chapter 2 and the two problems we solved there. We success-
fully solved those with recursion alone, and that worked because each sub-
problem was solved only once. In Halloween Haul, for example, we calcu-
lated the total amount of candy in a tree. The two subproblems were finding
the total amounts of candy in the left and right subtrees. Those problems
are independent: there’s no way that solving the subproblem for the left sub-
tree could somehow require information about the right subtree, or vice
versa.

If there’s no subproblem overlap, we can just use recursion. When there
is subproblem overlap, it’s time for memoization. As we saw in Burger Fer-
vor, memoization means that we store the solution to a subproblem the first
time we solve it. Then, whenever that subproblem solution is needed in the
future, we simply look it up rather than recalculate it. Yes, the subproblems
still overlap, but now they are solved only once, just like in Chapter 2.

Step 4: Dynamic Programming

Very likely, the solution resulting from Step 3 will be fast enough. Such a so-
lution still uses recursion, but without the risk of duplicating work. As I'll
explain in the next paragraph, sometimes we want to eliminate the recur-
sion. We can do so as long as we systematically solve smaller subproblems
before larger subproblems. This is dynamic programming: the use of a loop
in lieu of recursion, explicitly solving all subproblems in order from smallest
to largest.

So what’s better: memoization or dynamic programming? For many
problems, they are roughly equivalent and, in those cases, you should use
what you find more comfortable. My personal choice is memoization. We’ll
see an example (Problem 3) where the memo and dp tables have multiple di-
mensions. In such problems, I often have trouble getting all of the base
cases and bounds for the dp table correct.

Memoization solves subproblems on an as-needed basis. For example,
consider the Burger Fervor test case where we have a kind of burger that
takes two minutes to eat, a kind of burger that takes four minutes to eat, and
90 minutes of time. A memoized solution will never solve for odd numbers
of minutes, such as 89 or 87 or 85, because those subproblems do not result
from subtracting multiples of two and four from 90. Dynamic programming,
by contrast, solves all subproblems on its way up to 90. The difference here

seems to favor memoized solutions; indeed, if huge swaths of the subprob-
lem space are never used, then memoization may be faster than dynamic
programming. This has to be balanced against the overhead inherent in re-
cursive code though, with all of the calling and returning from functions. If
you’re so inclined, it wouldn’t hurt to code up both solutions to a problem
and see which is faster!

You’ll commonly see people refer to memoized solutions as top-down
solutions and dynamic-programming solutions as bottom-up solutions. It’s
called “top-down” because, to solve large subproblems, we recurse down to
small subproblems. In “bottom-up” solutions, we start from the bottom—the
smallest subproblems—and work our way to the top.

Memoization and dynamic programming are captivating to me. They
can solve so many types of problems; I don’t know another algorithm de-
sign technique that even comes close. Many of the tools that we learn in this
book, such as hash tables in Chapter 1, offer valuable speedups. The truth is
that even without those tools we could solve many problem instances—not in
time to have such solutions accepted by the judge but perhaps still in time to
be practically useful. However, memoization and dynamic programming are
different. They vivify recursive ideas, turning algorithms that are astonish-
ingly slow into those that are astonishingly fast. I hope I can pull you into the
fold with the rest of this chapter and that you won’t stop when the chapter
does.

Problem 2: Moneygrubbers

In Burger Fervor, we were able to solve each problem by considering only
two subproblems. Here, in Problem 2, we’ll see that each subproblem re-
quires more work.

This is UVa problem 10980.

The Problem

You want to buy apples, so you go to an apple store. The store has a price for
buying one apple—for example, $1.75. The store also has m pricing schemes,
where each pricing scheme gives a number n and a price p for buying n ap-
ples. For example, one pricing scheme might state that three apples cost a
total of $4.00; another might state that two apples cost a total of $2.50. You
want to buy at least k apples and to do so as cheaply as possible.

Input
We read test cases until there’s no more input. Each test case consists of the
following lines:
* A line containing the price for buying one apple, followed by the
number m of pricing schemes for this test case. m is at most 20.

* mlines, each of which gives a number » and total price p for buying
n apples. 7 is between 1 and 100.

Memoization and Dynamic Programming 91

92

Chapter 3

* Aline containing integers, where each integer k is between 0 and
100 and gives the desired number of apples to buy.

Each price in the input is a floating-point number with exactly two deci-
mal digits.

In the problem description, I gave the price of one apple as $1.75. I also
gave two pricing schemes: three apples for $4.00 and two apples for $2.50.
Suppose we wanted to determine the minimum price for buying at least
one apple and at least four apples, respectively. Here’s the input for this
test case:

1.75 2
3 4.00
2 2.50
14

Output

For each test case, output the following:

* Aline containing Case c:, where c is the number of the test case
starting at 1.

* For each integer k, a line containing Buy k for $d, where d is the
cheapest way that we can buy at least k apples.

Here’s the output for the above sample input:

Case 1:
Buy 1 for $1.75
Buy 4 for $5.00

The time limit for solving the test cases is three seconds.

Characterizing Optimal Solutions

The problem description specifies that we want to buy at least k apples as
cheaply as possible. This doesn’t mean that buying exactly k apples is the
only option: we can buy more than k if it’s cheaper that way. We’re going
to start by trying to solve for exactly k apples, much as we solved for exactly
¢ minutes in Burger Fervor. Back then, we found a way when necessary to
move from exactly ¢ minutes to smaller numbers of minutes. The hope is
that we can do something similar here, starting with k apples and finding
the cheapest cost for k, k+ 1, k+ 2, and so on. If it ain’t broke. ..

Before just recalling the title of this chapter and diving headlong into
memoization and dynamic programming, let’s make sure that we really do
need those tools.

What’s better: buying three apples for a total of $4.00 (Scheme 1) or two
apples for a total of $2.50 (Scheme 2)? We can try to answer this by calculat-
ing the cost per apple for each of these pricing schemes. In Scheme 1, we
have $4.00/3 = $1.33 per apple, and in Scheme 2 we have $2.50/2 = $1.25

per apple. It looks like Scheme 2 is better than Scheme 1. Let’s also suppose
that we can buy one apple for $1.75. We therefore have the cost per apple,
from cheapest to most expensive, as follows: $1.25, $1.33, $1.75.

Now, suppose that we want to buy exactly k apples. How’s this for an al-
gorithm: at each step, use the cheapest cost per apple, until we’ve bought &
apples?

If we wanted to buy exactly four apples for the above case, then we’d
start with Scheme 2, because it lets us buy apples with the best price per ap-
ple. Using Scheme 2 once costs us $2.50 for two apples, and it leaves us with
two apples to buy. We can then use Scheme 2 again, buying two more apples
(for a total now of four apples) for another $2.50. We’d have spent $5.00 for
the four apples and, indeed, we cannot do better.

Note that just because an algorithm is intuitive or works on one test case
does not mean that it is correct in general. This algorithm of using the best-
available price per apple is flawed, and there are test cases that prove it. Try
to find such a test case before continuing!

Here’s one: suppose that we want to buy exactly three apples, not four.
We’d start with Scheme 2 again, giving us two apples for a total of $2.50.
Now we have only one apple to buy—and the only choice is to pay $1.75 for
the one apple. The total cost is $4.25—but there is a better way. Namely, we
should simply have used Scheme 1 once, costing us $4.00: yes, it has a higher
cost per apple than Scheme 2, but it makes up for that by freeing us from
paying for one apple that has a still higher cost per apple.

It’s tempting to start affixing extra rules to our algorithm to try to fix it;
for example, “if there’s a pricing scheme for exactly the number of apples
that we need, then use it.” Suppose, however, we want to buy exactly three
apples. We can easily break this augmented algorithm by adding a scheme in
which the store sells three apples for $100.00.

When using memoization and dynamic programming, we try all the
available options for an optimal solution, and then pick the best one. In
Burger Fervor, should Homer end with an m-minute burger or an n-minute
burger? We don’t know, so we try both. By contrast, a greedy algorithm is an
algorithm that doesn’t try multiple options: it tries just one. Using the best
price per apple, as we did above, is an example of a greedy algorithm, be-
cause at each step it chooses what to do without considering other options.
Sometimes greedy algorithms work. Moreover, as they often run faster and
are easier to implement than dynamic-programming algorithms, a working
greedy algorithm may be better than a working dynamic-programming algo-
rithm. For this problem, it appears that greedy algorithms—whether the one
above or others that might come to mind—are not sufficiently powerful.

In Burger Fervor, we reasoned that, if it’s possible to spend ¢ minutes
eating burgers, then the final burger in an optimal solution must be an m-
minute burger or an n-minute burger. For the present problem, we want to
say something analogous: that an optimal solution for buying & apples must
end in one of a small number of ways. Here’s a claim: if the available pricing
schemes are Scheme 1, Scheme 2, ..., Scheme m, then the final thing we do

Memoization and Dynamic Programming 93

94

Chapter 3

must be to use one of these m pricing schemes. There can’t be anything else
for us to do, right?

Well, this is not quite true. The final thing that we do in an optimal so-
lution might be buying one apple. We always have that as an option. Rather
than solve two subproblems as in Burger Fervor, we solve m + 1 subproblems:
one for each of the m pricing schemes and one for buying one apple.

Suppose that an optimal solution for buying % apples ends with us pay-
ing p dollars for n apples. We then need to buy & - n apples and add that cost
to p. Importantly, we need to establish that the overall optimal solution for
k apples contains within it an optimal solution for k — n apples. This is the
optimal substructure requirement of memoization and dynamic program-
ming. As with Burger Fervor, optimal substructure holds. If a solution for k
didn’t use an optimal solution for k-n, then that solution for £ cannot be op-
timal after all: it’s not as good as what we’d get if we built it on the optimal
solution for & - n.

Of course, we don’t know what we should do at the end of the solu-
tion to make it optimal. Do we use Scheme 1, use Scheme 2, use Scheme
3, or just buy one apple? Who knows? As in any memoization or dynamic-
programming algorithm, we simply try them all and choose the best one.

Before we look at a recursive solution, note that, for any number &, we
can always find a way to buy exactly k apples. Whether one apple, two ap-
ples, five apples, whatever, we can buy that many. The reason is that we al-
ways have the option of buying one apple, and we can do that as many times
as we like. Compare this to Burger Fervor, where there were values of ¢ such
that ¢ minutes could not be filled by the available burgers. As a consequence
of this difference, here we won’t have to worry about the case where a recur-
sive call on a smaller subproblem fails to find a solution.

Solution 1: Recursion

Like in Burger Fervor, the first thing to do is write a helper function.

The Helper Function: Solving for the Number of Apples

Let’s write the function solve_k, whose job will be analogous to the solve_t
functions that we wrote for Burger Fervor. The function header is as follows:

double solve_k(int num[], double price[], int num_schemes,
double unit_price, int num_items)

Here’s what each parameter is for:

num An array of numbers of apples, one element per pricing scheme.
For example, if we have two pricing schemes, the first for three apples
and the second for two apples, then this array would be [3, 2].

price An array of prices, one element per pricing scheme. For exam-
ple, if we have two pricing schemes, the first with cost 4.00 and the sec-
ond with cost 2.50, then this array would be [4.00, 2.50]. Notice that

num and price together give us all of the information about the pricing
schemes.

num_schemes The number of pricing schemes. It’s the m value from the
test case.

unit_price The price for one apple.

num_items The number of apples that we want to buy.

The solve_k function returns the minimum cost for buying exactly num_items
apples.

The code for solve_k is given in Listing 3-9. In addition to studying this
code on its own, I strongly encourage you to compare it to the solve_t from
Burger Fervor (Listing 3-1). What differences do you notice? Why are these
differences present? Memoization and dynamic-programming solutions
share a common code structure. If we can nail that structure, then we can
focus on what’s different in and specific to each problem.

double min(double vi, double v2) {
if (vi < v2)
return vi;
else
return v2;

double solve k(int num[], double price[], int num_schemes,
double unit price, int num_items) {
double best, result;
int i;
@ if (num_items == 0)
® return o;
else {
® result = solve k(num, price, num_schemes, unit price,
num_items - 1);
® best = result + unit_price;
for (i = 0; i < num_schemes; i++)
® if (num_items - num[i] >= 0) {
@ result = solve k(num, price, num_schemes, unit price,
num_items - num[i]);
® best = min(best, result + price[i]);
}
return best;
}
}

Listing 3-9: Solving for num_items items

We start with a little min function @: we’ll need that for comparing so-
lutions and picking the smaller one. In Burger Fervor, we used a similar max
function, because we wanted the maximum number of burgers. Here, we

Memoization and Dynamic Programming 95

96

Chapter 3

want the minimum cost. Some optimization problems are maximization prob-
lems (Burger Fervor) and others are minimization problems (Moneygrubbers)—
carefully read problem statements to make sure you’re optimizing in the
right direction!

What do we do if asked to solve for 0 apples ®? We return 0 &, because
the minimum cost to buy zero apples is exactly $0.00. Our base cases are
these: zero minutes to spend in Burger Fervor and zero apples to buy. As
with recursion in general, at least one base case is required for any optimiza-
tion problem.

If we’re not in the base case, then num_items will be a positive integer,
and we need to find the optimal way to buy exactly that many apples. The
variable best is used to track the best (minimum-cost) option that has been
found so far.

One option is to optimally solve for num_items - 1 apples @ and add the
cost of the final apple .

We now hit the big structural difference between this problem and Bur-
ger Fervor: a loop inside of the recursive function. In Burger Fervor, we
didn’t need a loop, because we only had two subproblems to try. We just
tried the first one and then tried the second one. Here, though, we have one
subproblem per pricing scheme, and we have to go through all of them. We
check whether the current pricing scheme can be used at all ®: if its number
of apples is no larger than the number that we need, then we can try it. We
make a recursive call to solve the subproblem resulting from removing the
number of apples in this pricing scheme @. (It’s similar to the earlier recur-
sive call where we subtracted one for the single apple @.) If that subproblem
solution plus the price of the current scheme is our best option so far, then
we update best accordingly ©.

The solve Function

We’ve optimally solved for exactly & apples, but there’s this detail from the
problem statement that we haven’t addressed yet: “You want to buy at least

k apples and to do so as cheaply as possible.” Why does the difference be-
tween exactly k apples and at least k apples matter in the first place? Can you
find a test case where it’s cheaper to buy more than £ apples than it is to buy
k apples?

Here’s one for you. We’ll say that one apple costs $1.75. We have two
pricing schemes: Scheme 1 is that we can buy four apples for $3.00; Scheme
2 is that we can buy two apples for $2.00. Now, we want to buy at least three
apples. This test case in the form of problem input is as follows:

1.75 2
4 3.00
2 2.00
3

The cheapest way to buy exactly three apples is to spend $3.75: one ap-
ple for $1.75 and two apples using Scheme 2 for $2.00. However, we can
spend less money by in fact buying four apples, not three. The cheapest way

to buy four apples is to use Scheme 1 once, which costs us only $3.00. That
is, the correct output for this test case is:

Case 1:
Buy 3 for $3.00

(This is a bit confusing, because we’re actually buying four apples, not
three, but it is correct to output Buy 3 here. We always output the number of
apples that we’re asked to buy, whether or not we buy more than that to save
money.)

What we need is a solve function like the one we had for Burger Fervor
in Listing 3-2. There, we tried smaller and smaller values until we found a
solution. Here, we’ll try larger and larger values, keeping track of the mini-
mum as we go. Here’s a first crack at the code:

double solve(int num[], double price[], int num_schemes,
double unit price, int num items) {

double best;

int i;
@ best = solve_k(num, price, num_schemes,

unit_price, num_items);
@ for (i = num_items + 1; i < ?22?; i++)
best = min(best, solve k(num, price, num_schemes,
unit_price, i));
return best;

}

We initialize best to the optimal solution for buying exactly num_items ap-
ples @. Then, we use a for loop to try larger and larger numbers of apples @.
The for loop stops when ... uh oh. How do we know when it’s safe to stop?
Maybe we’re being asked to buy 3 apples, but the cheapest thing to do is to
buy 4 or 5 or 10 or even 20. We didn’t have this problem in Burger Fervor,
because there we were making our way downward, toward zero, rather than
upward.

The game-saving observation is that the number of apples in a given
pricing scheme is at most 100. How does this help?

Suppose we’re being asked to buy at least 50 apples. Might it be best to
buy exactly 60 apples? Sure! Maybe the final pricing scheme in an optimal
solution for 60 apples is for 20 apples. Then we could combine those 20 ap-
ples with an optimal solution for 40 apples to get a total of 60 apples.

Suppose again that we’re buying 50 apples. Could it make sense for us
to buy exactly 180 apples? Well, think about an optimal solution for buying
exactly 180 apples. The final pricing scheme that we use gives us at most 100
apples. Before using that final pricing scheme, we’d have bought at least 80
apples and had done so more cheaply than we did for 180 apples. Crucially,
80 is still greater than 50! Therefore, buying 80 apples is cheaper than buy-
ing 180 apples. Buying 180 apples cannot be the optimal thing to do if we
want at least 50 apples.

Memoization and Dynamic Programming 97

In fact, for 50 apples, the maximum number of apples we should even
consider buying is 149. If we buy 150 or more apples, than removing the
final pricing scheme gives us a cheaper way to buy 50 or more apples.

The input specification for the problem not only limits the number of
apples per pricing scheme to 100 but also limits the number of apples to
buy to 100. In the case in which we are asked to buy 100 apples, then, the
maximum number of apples we should consider buying is 100 + 99 = 199.
Incorporating this observation leads to the solve function in Listing 3-10.

#define SIZE 200

double solve(int num[], double price[], int num_schemes,
double unit price, int num items) {
double best;
int i;
best = solve_k(num, price, num_schemes, unit_price, num_items);
for (i = num_items + 1; i < SIZE; i++)
best = min(best, solve k(num, price, num_schemes,
unit_price, i));
return best;

}

Listing 3-10: Solution 1

Now all we need is a main function and we can start submitting stuff to
the judge.

The main Function

Let’s get a main function written. See Listing 3-11. It’s not completely self-
contained—but all we’ll need is one helper function, get_number, that I'll de-
scribe shortly.

#idefine MAX_SCHEMES 20

int main(void) {
int test_case, num_schemes, num items, more, i;
double unit_price, result;
int num[MAX_SCHEMES];
double price[MAX_SCHEMES];
test_case = 0;
O while (scanf("%1f%d", &unit price, &num_schemes) != -1) {
test _case++;
for (i = 0; 1 < num_schemes; i++)
O scanf("%d%1f", &num[i], &price[i]);
® scanf(" ");
printf("Case %d:\n", test case);
more = get number(&num_items);
while (more) {

98 Chapter 3

result = solve(num, price, num_schemes, unit price,
num_items);
printf("Buy %d for $%.2f\n", num_items, result);
more = get number(&num_items);
}
® result = solve(num, price, num schemes, unit price,
num_items);
® printf("Buy %d for $%.2f\n", num items, result);
}

return 0;

}

Listing 3-11: The main function

We begin by trying to read the first line of the next test case from the in-
put @. The next scanf call @ is in a nested loop, and it reads the number of
apples and price for each pricing scheme. The third occurrence of scanf &
reads the newline character at the end of the last line of pricing-scheme in-
formation. Reading that newline leaves us at the start of the line containing
the numbers of items that we are asked to buy. We can’t just airily keep call-
ing scanf to read those numbers, though, because we have to be able to stop
at a newline. I address this with my get_number helper function, described fur-
ther below. It returns 1 if there are more numbers to read and o if this is the
last number on the line. This explains the code below the loop @ ®: when
the loop terminates because it has read the final number on the line, we still
need to solve that final test case.

The code for get_number is given in Listing 3-12.

int get_number(int *num) {
int ch;
int ret = 0;
ch = getchar();

@ while (ch != ' ' & ch != '\n") {
ret = ret * 10 + ch - '0';
ch = getchar();
}
O *num = ret;
® return ch == ' ';
}

Listing 3-12: The function to get an integer

This function reads an integer value using an approach reminiscent of
Listing 2-17. The loop continues as long as we haven’t yet hit a space or new-
line character @. When the loop terminates, we store what was read in the
pointer parameter passed to this function call ®. I use that pointer param-
eter, rather than return the value, because I use the return value for some-
thing else: to indicate whether or not this is the last number on the line .
That is, if get_number returns 1 (because it found a space after the number

Memoization and Dynamic Programming 99

100

Chapter 3

that it read), it means that there are more numbers on this line; if it returns
0, then this is the final integer on this line.

We’ve got a complete solution now, but its performance is glacial. Even
test cases that look small will take ages, because we’re going all the way up to
299 apples no matter what.

Oh well. Let’s memoize the heck out of this thing.

Solution 2: Memoization

When memoizing Burger Fervor, we introduced the memo array in solve (List-
ing 3-5). That was because each call of solve was for an independent test
case. However, in Moneygrubbers, we have that line where each integer
specifies a number of apples to buy, and we have to solve each one. It would
be wasteful to throw away the memo array before we’ve completely finished
with a test case!

We’re therefore going to declare and initialize memo in main; see Listing 3-
13 for the updated function.

int main(void) {
int test_case, num_schemes, num_items, more, i;
double unit_price, result;
int num[MAX_SCHEMES];
double price[MAX SCHEMES];
@ double memo[SIZE];
test_case = 0;
while (scanf("%1f%d", &unit_price, 8num_schemes) != -1) {
test_case++;
for (i = 0; i < num_schemes; i++)
scanf("%d%1f", &num[i], 8price[i]);
scanf(" ");
printf("Case %d:\n", test_case);
@ for (i = 0; i < SIZE; i++)
® memo[i] = -1;
more = get number(&num_items);
while (more) {
result = solve(num, price, num_schemes, unit price
num_items, memo);
printf("Buy %d for $%.2f\n", num_items, result);
more = get number(&num_items);
}
result = solve(num, price, num_schemes, unit_price,
num_items, memo);
printf("Buy %d for $%.2f\n", num_items, result);
}

return 0;

}

Listing 3-13: The main function, with memoization implemented

We declare the memo array @, and we set each element of memo to -1 (“un-
known” value) @ @. Notice that the initialization of memo occurs just once per
test case. The only other change is that we add memo as a new parameter to
the solve calls.

The new code for solve is given in Listing 3-14.

double solve(int num[], double price[], int num_schemes,
double unit price, int num_items, double memo[]) {
double best;
int i;
best = solve_k(num, price, num_schemes, unit_price,
num_items, memo);

for (i = num_items + 1; i < SIZE; i++)

best = min(best, solve k(num, price, num_schemes,

unit_price, i, memo));

return best;

}

Listing 3-14: Solution 2, with memoization implemented

In addition to adding memo as a new parameter at the end of the parame-
ter list, we pass memo to the solve_k calls. That’s it.

Finally, let’s take a look at the changes required to memoize solve_k. We
will store in memo[num_items] the minimum cost of buying exactly num_items
apples. See Listing 3-15.

double solve k(int num[], double price[], int num_schemes,
double unit_price, int num_items, double memo[]) {
double best, result;
int i;
@ if (memo[num items] != -1)
return memo[num_items];
if (num_items == 0) {
memo[num_items] = 0;
return memo[num_items];
} else {
result = solve k(num, price, num schemes, unit price,
num_items - 1, memo);
best = result + unit_price;
for (i = 0; 1 < num_schemes; i++)
if (num_items - num[i] >= 0) {
result = solve k(num, price, num_schemes, unit price,
num_items - num[i], memo);
best = min(best, result + price[i]);
}

memo[num_items] = best;

Memoization and Dynamic Programming 101

102

return memo[num_items];

}
}

Listing 3-15: Solving for num_items items, with memoization implemented

Remember that the first thing we do when solving with memoization
is check whether the solution is already known @. If any value besides -1 is
stored for the num_items subproblem, we return it. Otherwise, as with any
memoized function, we store a new subproblem solution in memo before re-
turning it.

We’ve now reached a natural stopping point for this problem: this mem-
oized solution can be submitted to the judge and should pass all test cases. If
you’d like more practice with dynamic programming, though, here’s a per-
fect opportunity for you to convert this memoized solution into a dynamic-
programming solution! Otherwise, we’ll put this problem on ice.

Problem 3: Hockey Rivalry

Chapter 3

Our first two problems used a one-dimensional memo or dp array. Let’s look at
a problem whose solution dictates using a two-dimensional array.

I live in Canada, so I suppose we weren’t getting through this book with-
out some hockey. Hockey is a team sport like soccer. .. but with goals.

This is DMO]J problem cco18p1.

The Problem

The Geese played n games, each of which had one of two outcomes: a win
for the Geese (W) or a loss for the Geese (L). There are no tie games. For
each of their games, we know whether they won or lost, and we know the
number of goals that they scored. For example, we might know that their
first game was a win (W) and that they scored four goals in that game. (Their
opponent must therefore have scored fewer than four goals.) The Hawks
also played n games and, the same as the Geese, each game was a win or loss
for the Hawks. Again, for each of their games, we know whether they won or
lost, and we know the number of goals that they scored.

Some of the games that these teams played may have been against each
other, but there are other teams, too, and some of the games may have been
against these other teams.

We have no information about who played whom. We might know that
the Geese won a certain game and that they scored four goals in that game,
but we don’t know who their opponent was—their opponent could have
been the Hawks but also could have been some other team.

A rivalry game is a game where the Geese played the Hawks.

Our task is to determine the maximum number of goals that could have
been scored in rivalry games.

Input

The input contains one test case, the information for which is spread over
five lines as follows:

* The first line contains n, the number of games that each team
played. n is between 1 and 1,000.

* The second line contains a string of length n, where each character
is a W (win) or L (loss). This line tells us the outcome of each game
played by the Geese. For example, WLL means that the Geese won
their first game, lost their second game, and lost their third game.

* The third line contains n integers, giving the number of goals scored
in each game by the Geese. For example, 4 1 2 means that the Geese
scored four goals in their first game, one goal in their second game,
and two goals in their third game.

¢ The fourth line is like the second and tells us the outcome of each
game for the Hawks.

e The fifth line is like the third and tells us the number of goals scored
in each game by the Hawks.

Output
The output is a single integer: the maximum number of goals scored in pos-
sible rivalry games.

The time limit for solving the test case is one second.

About Rivalries

Before jumping to the structure of optimal solutions, let’s be sure that we
understand exactly what’s being asked by working through some test cases.
We’ll start with this one:

3

WWW
251
WWW
785

There can’t be any rivalry games at all here. A rivalry game, like any
game, requires that one team win and the other lose—but the Geese won
all their games and the Hawks won all their games, so the Geese and Hawks
could not have played each other. Since there are no rivalry games possible,
there are no goals scored in rivalry games. The correct output is 0.

Let’s now have the Hawks lose all their games:

WWW
251

Memoization and Dynamic Programming 103

104

Chapter 3

LLL
785

Are there any rivalry games now? The answer is still no! The Geese won
their first game by scoring two goals. For that game to be a rivalry game, it
must be a game where the Hawks lost and where the Hawks scored fewer
than two goals. Since the fewest goals scored by the Hawks was five though,
none of those games can be a rivalry game with the Geese’s first game. Simi-
larly, the Geese won their second game by scoring five goals, but there is no
loss for the Hawks where they scored four goals or fewer. That is, there is no
rivalry involving the Geese’s second game. The same kind of analysis shows
that the Geese’s third game also cannot be part of a rivalry. Again, 0 is the
correct output.

Let’s move past these zero cases. Here’s one:

3

WW
251
LLL
784

We’ve changed the last Hawks game so that they scored four goals in-
stead of five, and this is enough to produce a possible rivalry game! Specifi-
cally, the second game played by the Geese, where the Geese won and scored
five goals, could be a rivalry game with the third game by the Hawks, where
the Hawks lost and scored four goals. That game had nine goals scored in it,
so the correct output here is 9.

Now consider this one:

W
6 2
LL
81

Look at the final game that each team played: the Geese won and scored
two goals, and the Hawks lost and scored one goal. That could be a rivalry
game, with a total of three goals. The first game played by each team can-
not be a rivalry game (the Geese won with six goals and the Hawks could not
have lost the same game with eight goals), so we can’t add any more goals. Is
3 the correct output?

It is not! We chose poorly, matching those final games. What we should
have done is match the first game played by the Geese with the second game
played by the Hawks. That could be a rivalry game, and it has seven goals.
This time we’ve got it: the correct output is 7.

Let’s look at one more example. Try to figure out the maximum before
reading my answer:

4
WLWW

3418
WLLL

5123

The correct output is 20, witnessed by having two rivalry games: the sec-
ond Geese game with the first Hawks game (9 goals there) and the fourth
Geese game with the fourth Hawks game (11 goals there).

Characterizing Optimal Solutions

Consider an optimal solution to this problem: a solution that maximizes the
number of goals scored in rivalry games. What might this optimal solution
look like? Assume that the games for each team are numbered from one

to n.

Option 1. One option is that the optimal solution uses the final game n
played by the Geese and the final game n played by the Hawks as a rivalry
game. That game has a certain number of goals scored in it: call that g. We
can then strip out both of these games and optimally solve the smaller sub-
problem on the Geese’s first n — 1 games and the Hawks’ first n — 1 games.
That subproblem solution, plus g, is the optimal solution overall. Note,
though, that this option is only available if the two » games can really be a
rivalry game. For example, if both teams have a W for that game, then this
cannot be a rivalry game, and Option 1 cannot apply.

Remember this test case from the prior section?

4
WLWW
3418
WLLL
5123

That’s an example of Option 1: we match the two rightmost scores, 8
and 3, and then optimally solve the subproblem for the remaining games.

Option 2. Another option is that the optimal solution has nothing to do
with these final games at all. In that case, we strip out game » played by the
Geese and game n played by the Hawks, and we optimally solve the subprob-
lem on the Geese’s first n — 1 games and the Hawks’ first » — 1 games.

The first test case from the prior section is an example of Option 2:

WWW
251
WW
785

Memoization and Dynamic Programming 105

106

Chapter 3

The 1 and 5 at the right are not part of an optimal solution. The optimal
solution for the other games is the optimal solution overall.

So far we’ve covered the cases where both game n scores are used and
where neither game 7 score is used. Are we done?

To see that we are not done, consider this test case from the prior
section:

2
W
6 2
LL
81

Option 1, matching the 2 and 1, leads to a maximum of three goals in ri-
valry games. Option 2, throwing away both the 2 and 1, leads to a maximum
of zero goals in rivalry games. However, the maximum overall here is seven.
Our coverage of types of optimal solutions, using only Option 1 and Option
2, is therefore spotty.

What we need to be able to do here is drop a game from the Geese but
not from the Hawks. Specifically, we’d like to drop the Geese’s second game
and then solve the subproblem consisting of the Geese’s first game and both
of the Hawks’ games. For symmetry, we should also be able to drop the sec-
ond Hawks game and solve the resulting subproblem on the first Hawks
game and both Geese games. Let’s get these two additional options in there.

Option 3. Our third option is that the optimal solution has nothing to
do with the Geese’s game n. In that case, we strip out game n played by the
Geese, and we optimally solve the subproblem on the Geese’s first n - 1
games and the Hawks’ first n games.

Option 4. Our fourth and final option is that the optimal solution has
nothing to do with the Hawks’ game 7. In that case, we strip out game n
played by the Hawks, and we optimally solve the subproblem on the Geese’s
first » games and the Hawks’ first » — 1 games.

Options 3 and 4 induce a change in the structure of a solution to this
problem—whether that solution uses recursion, memoization, or dynamic
programming. In the previous problems of this chapter, our subproblems
were characterized by only one parameter: ¢ for Burger Fervor and % for
Moneygrubbers. Without Options 3 and 4, we’d have gotten away with a
single parameter, n, for the Hockey Rivalry problem, too. That n parame-
ter would have reflected the fact that we were solving a subproblem for the
first n games played by the Geese and the first n games played by the Hawks.
With Options 3 and 4 in the mix, however, these n values are no longer
yoked: one can change when the other does not. For example, if we’re solv-
ing a subproblem concerning the first five games played by the Geese, this
does not mean that we’re stuck looking at the first five games played by the
Hawks. Symmetrically, a subproblem concerning the first five games played
by the Hawks doesn’t tell us anything about the number of games played by
the Geese.

We therefore need two parameters for our subproblems: 7, the num-
ber of games played by the Geese, and j, the number of games played by the
Hawks.

For a given optimization problem, the number of subproblem parame-
ters could be one, two, three, or more. When confronting a new problem, I
suggest beginning with one subproblem parameter. Then, think about the
possible options for an optimal solution. Perhaps each option can be solved
by solving one-parameter subproblems, in which case additional parameters
are not required. However, sometimes it will be that one or more options
require the solution to a subproblem that cannot be pinned down by one
parameter. In these cases, a second parameter can often help.

The benefit of adding additional subproblem parameters is the larger
subproblem space in which to couch our optimal solutions. The cost is the
responsibility of solving more subproblems. Keeping the number of param-
eters small—one, two, or perhaps three—is key for designing fast solutions to
optimization problems.

Solution 1: Recursion

It’s now time for our recursive solution. Here’s the solve function that we’ll
write this time:

int solve(char outcomei[], char outcome2[], int goalsi[],
int goals2[], int i, int j)

As always, the parameters are of two types: information from the test
case and information about the current subproblem. Here are brief descrip-
tions of the parameters:

outcome1 The array of Wand L characters for the Geese.
outcome2 The array of W and L characters for the Hawks.
goalsi1 The array of goals scored for the Geese.
goals2 The array of goals scored for the Hawks.

i The number of Geese games that we’re considering in this sub-
problem.

j The number of Hawks games that we’re considering in this sub-
problem.

The last two parameters are the ones specific to the current subproblem,
and they are the only parameters that change on recursive calls.

If we started each of the arrays at index 0, as is standard for C arrays,
then we’d have to keep in our minds that information for some game k was
not at index k but at index k-1. For example, information about game four
would be at index 3. To avoid this, we’ll store information about games start-
ing at index 1. In that way, information about game four will be at index 4.
This leaves us with one less mistake to make!

The code for the recursive solution is given in Listing 3-16.

Memoization and Dynamic Programming 107

108

@ int max(int vi, int v2) {
if (vi > v2)
return vi;
else
return v2;

int solve(char outcomei[], char outcome2[], int goalsi[],
int goals2[], int i, int j) {
@ int first, second, third, fourth;
® if (i==01]] j==0)
return 0;

® if ((outcomei[i] == 'W' & outcome2[j] == 'L’ 8&
goalsi[i] > goals2[j]) ||
(outcome1[i] == 'L" && outcome2[j] =
goalsi[i] < goals2[j]))

® first = solve(outcomel, outcome2, goalsi, goals2, i - 1, j - 1) +
goalsi[i] + goals2[j];

"W 8&

else
first = 0;
® second = solve(outcome1, outcome2, goalsi, goals2, i - 1, j - 1);
@ third = solve(outcomel, outcome2, goalsl, goals2, i - 1, j);
® fourth = solve(outcomel, outcome2, goalsi, goals2, i, j - 1);
© return max(first, max(second, max(third, fourth)));

}

Listing 3-16: Solution 1

This is a maximization problem: we want to maximize the number of
goals scored in rivalry games. We start with a max function @—we’ll use that
when we need to determine which of the options is best. We then declare
four integer variables, one for each of the four options @.

Let’s begin with base cases: what do we return if both i and j are 0? In
this case, the subproblem is for the first zero Geese games and zero Hawks
games. Since there are no games, there are certainly no rivalry games; and
since there are no rivalry games, there are no goals scored in rivalry games.
We should therefore return o here.

That isn’t the only base case though. For example, consider the sub-
problem where the Geese play zero games (i = 0) and the Hawks play three
games (j = 3). As with the case in the prior paragraph, there can’t be any
rivalry games here, because the Geese don’t have any games! A similar situ-
ation arises when the Hawks play zero games: even if the Geese play some
games, none of them can be against the Hawks.

That captures all of the base cases. That is, if i has value 0 or j has value
0, then we have zero goals scored in rivalry games ©.

With the base cases out of the way, we must now try the four possible
options for an optimal solution and choose the best one.

Chapter 3

Option 1. Recall that this option is valid only when the final Geese game
and final Hawks game can be a rivalry game. There are two ways for this
game to be a rivalry game:

1. The Geese win, the Hawks lose, and the Geese score more goals
than the Hawks.

2. The Geese lose, the Hawks win, and the Geese score fewer goals
than the Hawks.

We encode these two possibilities @. If the game can be a rivalry game, we
compute the optimal solution for this case @: it consists of the optimal solu-
tion for the first i-1 Geese games and j-1 Hawks games plus the total goals
scored in the rivalry game.

Option 2. For this one, we solve the subproblem for the first i-1 Geese
games and j-1 Hawks games ©®.

Option 3. Here, we solve the subproblem for the first i-1 Geese games
and j Hawks games @. Notice that i changes but j does not. This is exactly
why we need two subproblem parameters here, not one.

Option 4. We solve the subproblem for the first i Geese games and j-1
Hawks games ©. Again, one subproblem parameter changes but the other
does not; it’s a good thing there’s no need for us to keep them at the same
value!

There we go: first, second, third, and fourth—those are the only four pos-
sibilities for our optimal solution. We want the maximum of these, and that
is what we compute and return ©. The innermost max call calculates the max-
imum of third and fourth. Working outward, the next max call calculates the
maximum of that winner and second. Finally, the outermost call calculates
the maximum of that winner and first.

We’re just about there. All we need now is a main function that reads the
five lines of input and calls solve. The code is given in Listing 3-17. Com-
pared to the main function for Moneygrubbers, this is not bad!

#define SIZE 1000

int main(void) {
int i, n, result;
@ char outcome1[SIZE + 1], outcome2[SIZE + 1];
O int goals1[SIZE + 1], goals2[SIZE + 1];
® scanf("%d ", &n);
for (i = 1; i <= n; i++)
scanf("%c", &outcomeli[i]);
for (i = 1; 1 <= n; i++)
scanf("%d ", 8goalsi[i]);
for (i = 1; i <= n; i++)
scanf("%c", &outcome2[i]);
for (i = 1; 1 <= n; it++)
scanf("%d ", &goals2[i]);
result = solve(outcomel, outcome2, goalsi, goals2, n, n);

Memoization and Dynamic Programming 109

110

Chapter 3

printf("%d\n", result);
return 0;

}

Listing 3-17: The main function

We declare the outcome (W and L) @ and goals-scored arrays @. The + 1
there is because of our choice to begin indexing at 1. If we had used just
SIZE, then valid indices would go from zero to 999, when what we need is
to include index 1,000.

We then read the integer on the first line ®, which gives the number
of games played by the Geese and Hawks. There’s a space right after the %d
and before the closing quote. That space causes scanf to read whitespace
following the integer. Crucially, this reads the newline character at the end
of the line, which otherwise would be included when we use scanf to read
individual characters ... which we do next!

We read the W and L information for the Geese and then read the goals-
scored information for the Geese. We then do the same for the Hawks. Fi-
nally, we call solve. We want to solve the problem on all n Geese games and
all » Hawks games, which explains why the last two arguments are n.

Is there any chance you’ll submit this solution to the judge? The “Time-
Limit Exceeded” error should come as no surprise.

Solution 2: Memoization

In Burger Fervor and Moneygrubbers, we used a one-dimensional array for
the memo. That’s because our subproblems had but one parameter: the
number of minutes and number of items, respectively. In contrast, subprob-
lems in Hockey Rivalry have two parameters, not one. We’ll correspondingly
need a memo array with two dimensions, not one. Element memo[1i][]] is
used to hold the solution to the subproblem on the first i Geese games and
the first j Hawks games. Other than switching from one to two dimensions
in the memo, the technique remains as before: return the solution if it’s al-
ready stored, calculate and store it if it’s not.

The updated main function is given in Listing 3-18.

int main(void) {
int i, j, n, result;
char outcome1[SIZE + 1], outcome2[SIZE + 1];
int goalsi[SIZE + 1], goals2[SIZE + 1];
static int memo[SIZE + 1][SIZE + 1];
scanf("%d ", 8&n);
for (i = 1; i <= n; i++)
scanf("%c", 8outcome1[i]);
for (i = 1; i <= n; i++)
scanf("%d ", &goalsi[i]);
for (i = 1; i <= n; i++)
scanf("%c", &outcome2[i]);
for (i = 1; i <= n; i++)

scanf("%d ", &goals2[i]);
for (i = 0; i <= SIZE; i++)
for (j = 0; j <= SIZE; j++)
memo[1][j] = -1;
result = solve(outcomel, outcome2, goalsi, goals2, n, n, memo);
printf("%d\n", result);
return 0;

}

Listing 3-18: The main function, with memoization implemented

Notice that the memo array is huge—over 1 million elements—so we make
the array static as in Listing 1-8.
The memoized solve function is given in Listing 3-19.

int solve(char outcomei[], char outcome2[], int goalsi[],
int goals2[], int i, int j, int memo[SIZE + 1][SIZE + 1]) {
int first, second, third, fourth;
if (memo[i][j] != -1)
return memo[i][]];
if (=01 3=0)
memo[1](3] = 0;
return memo[i][j];
}
if ((outcome1[i] == 'W' && outcome2[j] == 'L' &8&
goalsi[i] > goals2[j]) ||
(outcome1[i] == 'L"' & outcome2[j] == 'W' &&
goalsi[i] < goals2[j]))
first = solve(outcomel, outcome2, goalsi, goals2, i - 1, j - 1, memo) +
goalsi[i] + goals2[j];

else

first = 0;
second = solve(outcomel, outcome2, goalsl, goals2, i - 1, j - 1, memo);
third = solve(outcomel, outcome2, goalsl, goals2, i - 1, j, memo);
fourth = solve(outcomel, outcome2, goalsi, goals2, i, j - 1, memo);
memo[1][j] = max(first, max(second, max(third, fourth)));
return memo[i][]];

}

Listing 3-19: Solution 2, with memoization implemented

This solution passes all test cases and does so quickly. If we simply
wanted to solve this problem, we would stop right now, but here we have the
opportunity to plumb further and learn more about dynamic programming
as we do so.

Solution 3: Dynamic Programming

We just saw that to memoize this problem we needed a two-dimensional memo
array, not a one-dimensional array. To develop a dynamic-programming

Memoization and Dynamic Programming 1m

112

Chapter 3

solution, we’ll correspondingly need a two-dimensional dp array. In Listing 3-
18, we declared the memo array like this:

static int memo[SIZE + 1][SIZE + 1];

and we’ll do likewise for the dp array:

static int dp[SIZE + 1][SIZE + 1];

As in the memo array, element dp[i][j] will hold the subproblem solution
for the first i Geese games and first j Hawks games. Our task, then, is to
solve each of these subproblems and return dp[n][n] once we’re done.

In memoized solutions to optimization problems, it’s not our respon-
sibility to determine an order in which to solve the subproblems. We make
our recursive calls, and those calls return to us the solutions for their corre-
sponding subproblems. In dynamic-programming solutions, however, it is
our responsibility to determine an order in which to solve the subproblems.
We can’t just solve them in any order we want, because then a subproblem
solution might not be available when we need it.

For example, suppose we wanted to fill in dp[3][5]—that’s the cell for the
first three Geese games and the first five Hawks games. Take another look
back at the four options for an optimal solution.

* Option 1 requires us to look up dp[2][4].
* Option 2 also requires us to look up dp[2][4].
* Option 3 requires us to look up dp[2][5].
* Option 4 requires us to look up dp[3][4].

We must arrange it so that these elements of dp are already stored by the
time we want to store dp[3][5].

For subproblems with only one parameter, you generally solve those
subproblems from smallest index to largest index. For subproblems with
more than one parameter, things are not so simple, as there are many more
orders in which the array can be filled. Only some of these orders maintain
the property that a subproblem solution is available by the time we need it.

For the Hockey Rivalry problem, we can solve dp[i][j] if we have al-
ready stored dp[i-1][j-1] (Option 1 and Option 2), dp[i-1][j] (Option 3),
and dp[i][j-1] (Option 4). One technique we can use is to solve all of the
dp[i-1] subproblems before solving any of the dp[i] subproblems. For exam-
ple, this would result in dp[2][4] being solved before dp[3][5], which is ex-
actly what we need to satisfy Options 1 and 2. It would also result in dp[2][5]
being solved before dp[3][5], which is what we need for Option 3. That is,
solving row i-1 before row i satisfies Options 1 to 3.

To satisfy Option 4, we can solve the dp[i] subproblems from smallest
j index to largest j index. That, for example, would solve dp[3][4] before
dp[3][5].

In summary, we solve all of the subproblems in row 0 from left to right,
then all of the subproblems in row 1 from left to right, and so on, until we
have solved all subproblems in row n.

The solve function for our dynamic-programming solution is given in
Listing 3-20.

int solve(char outcome1[], char outcome2[], int goalsi[],
int goals2[], int n) {
int i, j;
int first, second, third, fourth;
static int dp[SIZE + 1][SIZE + 1];

for (i = 0; i <= n; i++)
dplo][i] = 05
for (i = 0; 1 <= n; i++)
dp[i][o] = o;
O for (i = 1; i <= n; i++)
O for (j = 1; j <= n; j++) {
if ((outcomei[i] == 'W' && outcome2[j] == 'L' &&
goalsi[i] > goals2[j]) ||
(outcome1[i] == 'L' &3 outcome2[j] == 'W' 8&
goalsi[i] < goals2[j]))
first = dp[i-1][j-1] + goalsi[i] + goals2[j];
else
first = 0;

second = dp[i-1][j-1];
third = dp[i-1][j];
fourth = dp[il[j-1];
dp[i][j] = max(first, max(second, max(third, fourth)));
}
® return dp[n][n];

}

Listing 3-20: Solution 3, with dynamic programming

We begin by initializing the base case subproblems, which are those in
which at least one of the indices is 0. Then, we hit the double for loop @ 8,
which controls the order in which the non-base-case subproblems are solved.
We first range over the rows @ and then the elements in each row @, which,
as we have argued, is a valid order for solving the subproblems. Once we
have filled in the table, we return the solution for the original problem ©.

We can visualize the array produced by a two-dimensional dynamic-
programming algorithm as a table. This is helpful for getting a feel for how
the elements of the array are filled in. Let’s look at the final array for the
following test case:

4
WLWW
3418
WLLL
5123

Memoization and Dynamic Programming 113

114

Chapter 3

Here’s the resulting array:

4109181920
3(ofo| 9|99
2(0l9| 9|99
1/0[0]| 4|55
ojojojo|o]oO
[O[1]2]3]4

Consider, for example, the computation for the element in row 4, col-
umn 2 or, in terms of the dp table, dp[4][2]. This is the subproblem for the
first four Geese games and first two Hawks games. Looking at the Geese’s
game four and the Hawks’ game two, we see that the Geese won with eight
goals and the Hawks lost with one goal, so this game could be a rivalry game.
Option 1 is therefore a possible option. Nine goals were scored in this game.
To that nine, we add the value at row 3, column 1, which is nine again. This
gives us a total of 18. That’s our maximum so far—now we have to try Op-
tions 2 to 4 to see whether they are better. If you do that, you should ob-
serve that they all happen to have the value nine. We therefore store 18, the
maximum of all available options, in dp[4][2].

The only quantity of real interest here, of course, is that in the topmost,
rightmost cell, corresponding to the subproblem on the full n games for the
Geese and n games for the Hawks. That value, 20, is what we return as the
optimal solution. The other quantities in the table are only useful insofar as
they help us make progress toward calculating that 20.

In terms of the main function, we make one small change to the code of
Listing 3-17: the only thing to do is remove the final n passed to solve, result-
ing in

result = solve(outcomel, outcome2, goalsi, goals2, n);

A Space Optimization

I mentioned in “Step 4: Dynamic Programming” on page 90 that memoiza-
tion and dynamic programming are roughly equivalent. Roughly, because
sometimes there are benefits to be had by choosing one or the other. The
Hockey Rivalry problem furnishes an example of a typical optimization
that we can perform when using dynamic programming but not when using
memoization. The optimization is not one of speed but of space.

Here’s the key question: when solving a subproblem in row i of the dp
array, which rows do we access? Look back at the four options. The only
rows used are i-1 (the previous row) and i (the current row). There’s no i-2
or i-3 or anything else in there. As such, keeping the entire two-dimensional
array in memory is wasteful. Suppose we’re solving subproblems in row 500.
All we need is access to row 500 and row 499. We may as well not have row
498 or 497 or 496 or any other row in memory, because we’ll never look at
these again.

Rather than a two-dimensional table, we can pull through with only two
one-dimensional arrays: one for the previous row and one for the current
row we are solving.

Listing 3-21 implements this optimization.

int solve(char outcomei[], char outcome2[], int goalsi[],
int goals2[], int n) {
int i, j, k;
int first, second, third, fourth;
static int previous[SIZE + 1], current[SIZE + 1];
O for (i =0; i <=n; i++)
® previous[i] = 0;
for (i = 1; i <= n; i++) {

goals2[5]) ||
(outcome1[i] == 'L' &3 outcome2[j] == 'W' 8&
goalsi[i] < goals2[j]))
first = previous[j-1] + goalsi[i] + goals2[j];
else
first = 0;
second = previous[j-1];
third = previous[j];
fourth = current[j-1];
current[j] = max(first, max(second, max(third, fourth)));
}
® for (k = 0; k <= SIZE; k++)
® previous[k] = current[k];
}

return current[n];

for (j = 1; j <= n; j++) {
if ((outcomei[i] == "W' && outcome2[j] == 'L' &&
goalsi[i] »
[

}

Listing 3-21: Solution 3, with space optimization implemented

We initialize previous to all zeros @ @, thereby solving all subproblems
in row 0. In the rest of the code, whenever we previously referred to row i-1,
we now use previous. In addition, whenever we previously referred to row
i, we now use current. Once a new row has been fully solved and stored in
current, we copy current into previous ® @ so that current can be used to solve
the next row.

Problem 4: Ways to Pass

Here’s one final (very short!) example. Our first three problems in this
chapter asked us to maximize (Burger Fervor and Hockey Rivalry) or min-
imize (Moneygrubbers) the value of a solution. I'd like to end the chapter
with a problem of a slightly different flavor: rather than find an optimal so-
lution, we’ll count the number of possible solutions. We’ll see that we can
once again count on memoization and dynamic programming.

Memoization and Dynamic Programming 115

116

Chapter 3

This is UVa problem 10910.

The Problem

Passing a course requires at least p marks. (p isn’t necessarily 50 or 60 or
whatever is needed in school; it could be any positive integer.) A student
took n courses and passed them all.

Adding up all of the student’s marks in these n courses gives a total of ¢
marks that the student earned, but we don’t know how many marks the stu-
dent earned in each course. So we ask the following: in how many distinct
ways could the student have passed all of the courses?

For example, suppose that the student took two courses and earned
a total of nine marks and that each course requires at least three marks to
pass. Then, there are four ways in which the student could have passed these
courses:

¢ three marks in course 1 and six marks in course 2
¢ four marks in course 1 and five marks in course 2
e five marks in course 1 and four marks in course 2

e six marks in course 1 and three marks in course 2

Input
The first line of input is an integer % indicating the number of test cases to
follow. Each of the £ test cases is on its own line and consists of three inte-
gers: n (the number of courses taken, all of which the student passed), ¢ (to-
tal marks earned), and p (marks required to pass each course). Each n, ¢, and
p value is between 1 and 70.

Here is the input for the above example:

293

Output
For each test case, output the number of ways that the marks can be dis-
tributed so that the student passes all courses. For the above example, the
output would be the integer 4.

The time limit for solving the test cases is three seconds.

Solution: Memoization

Notice here that there’s no optimal way to distribute the marks. A student
crushing it in one course and barely passing all others is as good a solution
as any. (As a teacher, that was hard to write.)

As there’s no optimal solution, it doesn’t make sense to think about the
structure of an optimal solution. Rather, let’s think about what any solution
must look like. In the first course, the student must have earned at least p

marks and at most ¢ marks. Each of these choices leads to a new subproblem
with one fewer course. Suppose that the student earns m marks in the first
course. Then we solve the subproblem on n — 1 courses in which the student
earned exactly ¢ — m marks.

Rather than using max or min to choose a best solution, we use addition to
total the number of solutions.

With practice, you’ll often be able to identify when memoization or dy-
namic programming is required without first stepping through a nonper-
formant recursive solution. Memoization adds so little code to a recursive
solution that it can make sense to come out of the gate with memoization. I
present a complete, memoized solution to Ways to Pass in Listing 3-22.

#define SIZE 70

int solve(int n, int t, int p, int memo[SIZE + 1][SIZE + 1]) {
int total, m;
if (memo[n][t] != -1)
return memo[n][t];
O if (n==028 t == 0)
return 1;
A if (n == 0)
return 0;
total = 0;
for (m = p; m <= t; m++)
total = total + solve(n - 1, t - m, p, memo);
memo[n][t] = total;
return memo[n][t];

}

int main(void) {

int k, i, x, y, n, t, p;

int memo[SIZE + 1][SIZE + 1];

scanf("%d", 8k);

for (i = 0; i< k; i++) {
scanf("%d%d%d", &n, &t, &p);
for (x = 0; x <= SIZE; X++)

for (y = 0; y <= SIZE; y++)
memo[x][y] = -1;

printf("%d\n", solve(n, t, p, memo));

}

return 0;

}

Listing 3-22: Solution with memoization implemented

What’s going on with the base cases @ ®? The base case is when the
number of courses n is 0, but there are two subcases here. First, suppose
that t is also 0. How many ways are there to distribute zero marks to pass
zero courses? It’s easy to err here and say that the answer is zero—but the

Memoization and Dynamic Programming 117

118

answer is one, because we can succeed here by not allocating any marks at
all. That’s certainly a way to pass zero courses! Now, what if nis 0 but t is
greater than 0? Here the answer really is zero: there is no way to distribute a
positive number of marks across zero courses.

The rest of the code tries each legal number m of marks for the current
course, and it solves the subproblem with one fewer course and m fewer
marks to distribute.

Summary

Notes

Chapter 3

I've presented what I think of as the core of memoization and dynamic pro-
gramming: explicating the structure of an optimal solution, developing a
recursive algorithm, speeding it up through memoization, and optionally
replacing the recursion by filling a table. Once you’re comfortable solving
problems with one- or two-dimensional tables, I'd suggest working on prob-
lems where three or more dimensions are required. The principles are the
same as what I’ve presented here, but you’ll have to work harder to discover
and relate the subproblems.

Ideas related to dynamic programming often make cameos in other al-
gorithms. In the next chapter, for example, you’ll see that we’ll once again
store results for later lookup. In Chapter 6, you’ll see a problem in which
dynamic programming plays a supporting role, speeding up computation
required by the main algorithm of interest.

Hockey Rivalry is originally from the 2018 Canadian Computing Olympiad.

Many algorithm textbooks delve deeper into the theory and application
of memoization and dynamic programming. My favorite treatment is Algo-
rithm Design by Jon Kleinberg and Eva Tardos (2006).

