
Jedra, kvarki in leptoni (Nuclei, quarks, and leptons)

17. november 2021

Work in progress!

1 Lie Groups and its Representations

Lie groups are continuous groups, parametrized by real parameters αk:

g(α) = eiαkTk , (1)

such that g(0) = e. Tk are Hermitian generators of the group. The group product is defined
as

g(β)g(α) = eiβ·T eiα·T

= ei(β+α)·T− 1
2

[β·T,α·T ]+···
(2)

where we have used the Baker-Campbell-Hausdorff formula,

eAeB = eA+B+ 1
2

[A,B]+ 1
12

[A,[A,B]]− 1
12

[B,[A,B]]+···. (3)

The product (2) should be member of the group and thus the commutators of generators have
to be proportional to generators:

[β · T, α · T ] = iγ(β, α) · T. (4)

Parameters γ depend on arbitrary α in β. Also all further terms of the exponent (2) are
nested commutators thus the condition (4) is sufficient to show that the group is closed under
multiplication. If we choose for α and β unity vectors in directions a and b,

β(a) = (0, . . . ,
a
1, . . . , 0)

α(b) = (0, . . . , 1
b
, . . . , 0),

(5)

we obtain a commutation relations (Lie algebra)

[Ta, Tb] = iγ(ab)
c Tc. (6)
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Here fabc ≡ γ
(ab)
c are called the structure constants of the group that unambiguously define

the structure of the Lie group. Working in a specific representation (of a compact Lie group),
we can always choose generators to be orthogonal in the following sense:

Tr(TaTb) =
1

2
δab. (7)

A unitary representation of the group is a set of unitary matrices U(g(α)) that faithfully
reproduces the group multiplication law:

U(g(α))U(g(β)) = U(g(α)g(β)). (8)

A shorthand notation is introduced:

U(α) ≡ U(g(α)) = 1 + iα · T + · · · , (9)

where Ta are now Hermitian matrices for a given representation.

Exercise 1.1

Show that the inverse element is g(α)−1 = g(−α).

1. Prove that the structure constants are antisymmetric in the first two indices, fabc =
−fbac and that they are real.

2. Show that we can calculate the structure constants directly from the generators as

fabc = −2iTr ([Ta, Tb]Tc) .

Use the above relation to show complete antisymmetry of fabc.

3. Check the Jacobi identity

[Ta, [Tb, Tc]] + [Tb, [Tc, Ta]] + [Tc, [Ta, Tb]] = 0.

2 Rotation group SO(N)

The defining representation of the rotation group SO(N) is defined as:

SO(N) = {O ∈ O(N) | detO = 1} , (10)

O(N) =
{
O ∈ GLN (IR) | OTO = 1

}
, (11)

The above groups are also the defining representations of dimension N .

2.1 Eigenstates and representations of SO(3) (problems)

Problems:

1. Show that if O is an orthogonal matrix, O ∈ O(N), then detO = ±1.

2. Show that the scalar product vTw of two vectors v, w ∈ IRN is not changed upon
rotating both vectors by O.
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3. Determine the number of real parameters needed to specify orthogonal matrix O. Sol.:
N(N − 1)/2

4. Assume O is an orthogonal matrix sufficiently close to identity, O = 1 + A, where A
is infinitesimal. Show that A is antisymmetric matrix. What is the dimension of the
vector space of N ×N antisymmetric matrices?

5. For rotations in the plane, i.e. SO(2), write explicit form of small rotation, O = 1 + εA,
where ε is infinitesimal. Determine the generator A. Is the group Abelian or non-
Abelian? Derive the explicit matrix for rotation by finite angle α.

6. Find the generator matrices of SO(3) for the j = 1 representation. Use them to find
the explicit form of the finite rotation matrix d1

m′m(θ) =
〈
jm′

∣∣ e−iθJ2 ∣∣ jm〉
.

7. Consider how a vector field A(r) = (A1(r), A2(r), A3(r)) transforms under SO(3) ro-
tation R, that acts on vectors as r → r′ = Rr. The rotated field is then A′(r) =
RA(R−1r) and you can consider R that corresponds to an infinitesimal rotation aro-
und the axis dφ. Show that in this case the rotated field can be written as

A′(r) = U(dφ)A(r) = [1− i dφ · (`+ s)]A(r).

Determine operators ` and s. Show that spin of a vector field A is s = 1 and that
matrices s are equivalent to the usual spin-1 generators with diagonal J3 (show that
the matrices are similar, i.e. related by basis transformation).

8. Explicitly write out direct product of three s = 1/2 quarks, i.e., spin wave-function of
baryons.

3 SU(2) group and isospin

The SU(2) group in the defining representation can be written as an exponent of the traceless
Hermitian matrix:

U(α) = exp(−iαaσa/2), a = 1, 2, 3. (12)

The SU(2) algebra is identical to the SO(3) algebra with structure constants fabc = εabc.

3.1 Problems

1. Show that the group SU(2) has the same algebra (structure constants) as SO(3). Thus
same state labels and ladder operators can be used on eigenstates of isospin.

2. Write down the isospin rotation that transforms between nucleon doublet eigenstates,
n→ p, and the other rotation that transforms p→ n.

3. Deuteron is a bound state of a proton and a neutron. We do not observe bound states
of pp or nn. What are the possible states of spin and orbital angular momentum if
the total wave function should obey the Pauli exclusion principle under interchange of
nucleons? Narrow down the selection if you take into account that deuteron has positive
parity and that its spin is j = 1.

4. Calculate the ratio of deuteron production cross-section rates

σ(pn→ dπ) : σ(pp→ dπ) : σ(nn→ dπ).
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4 SU(3) group role in flavour of light quarks and chromodyna-
mics

1. Count the number of generators T a of SU(3) and write down the Gell-Mann matrices
λa = 2T a.

2. Check that there are three SU(2) subalgebras of SU(3): (T1, T2, T3), (T4, T5, (3/4)Y − (1/2)T3) ≡
(V1, V2, V3), (T6, T7, (3/4)Y + (1/2)T3) ≡ (U1, U2, U3).

3. (m,n) notation for irreducible representation of SU(3) denotes Check the dimension
formula dim = (1/2)(m+1)(n+1)(m+n+2) on the case of baryon octet and decuplet.
Compare the result with the Young tableau’s “factors over hooks”.

4. Use Young tableaux to determine direct product of baryon states 3⊗ 3⊗ 3

⊗ ⊗

5. Direct products of SU(3) representations. The fundamental representation ψi, i = 1, 2, 3
(or i = u, d, s, or i = R,G,B) or simply 3, transforms under the U ∈ SU(3) as

ψi 7→ ψ
′i = U ij ψ

j , (ψ 7→ Uψ).

A single upper index (fundamental) is denoted by a single box Young tableau, . On
the other hand, antifundamental representation 3̄ is defined as the transformation of
complex conjugate ψ∗:

ψ∗i 7→ ψ∗
′i = (U ij )∗ψ∗j , (ψ∗ 7→ U∗ψ∗, or ψ† 7→ ψ†U †).

By convention we label the antifundamental reprentation with lower indices:

φi 7→ φ′i = U j
i φj ,

where U j
i ≡ (U ij )∗.

(a) Use the unitarity of U to calculate U j
k U

i
j (similarly for U k

j U
j
i ). Show then that

φiψ
i is invariant. This is equivalent to saying that tensor δik is invariant.

(b) Another invariant tensor is antisymmetric tensor εijk with ε123 = 1. Use the
property detU = 1 (unimodularity) to show invariance of ε under SU(3) transfor-
mation:

ε′ijk = U m
i U n

j U o
k εmno

(Hint: Check that the right-hand side is completely antisymmetric in indices (ijk),
thus it must be proportional to εijk.) Equivalent statement is that antisymmetric
“contraction” of three fundamentals , εijkψ

iφjωk is a singlet, or in terms of Young
tableau:

1 = .

(c) We can lower the indices. Show that antisymmetric “contraction” of two upper in-
dices results in an object χk = εkijψ

iφj that indeed transforms as antifundamental.
Or in terms of Young tableau:

3̄ = .
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Employ unitarity and unimodularity of U .

6. Write down the wavefunction of the proton, using the fact that total spin and isospin
should be 1/2 and that the total wavefunction of flavour and spin should be completely
symmetric under interchange of any pair of quarks.

7. Try to write down completely antisymmetric wave function of the proton. In this case
color part of the wavefunction would not be required. It turns out this possibility is
in conflict with the experimentally determined magnetic moment of the proton, µexp

p =
2.79µN (See also Exercise 2.18 in [1]).

8. Determine the wavefunction of Σ0 and Λ baryons. Λ is an isospin singlet, Σ0 can
be obtained from Σ+. Check that the magnetic moment of the Λ baryon equals the
magnetic moment of the s-quark: µs = −e0~/(6ms) = −µN mp/(3ms).

9. Calculate the probability of finding a d quark with spin ↑ in baryonic state |Ξ, ↓〉.
(Answer: 1/3).

10. We study strong decays Σ∗0 → Σ+π− and Ξ∗0 → Ξ−π+. Quantum numbers of the
states are given in the following table:

B I I3 Y U U3

Σ∗0 1
Ξ∗0 1
Σ+ 1
Ξ− 1
π± 0

(a) Fill out missing values in the table.

(b) Write down flavour, spin, and colour part of the wavefunctions of Σ∗0 and Ξ∗0,
both members of the baryon decuplet with JP = (3/2)+.

(c) Calculate the ratio of decay widths Γ(Σ∗0 → Σ+π−)/Γ(Ξ∗0 → Ξ−π+). Employ
the invariance of strong interactions under U -spin.

11. Hyperfine splitting between baryon octet and decuplet. Calculate parameter κ for a
hyperfine splitting model, describing a baryon masses:

Mbarion = m1 +m2 +m3 + κ

(
~s1 · ~s2

m1m2
+
~s2 · ~s3

m2m3
+
~s3 · ~s1

m3m1

)
,

where take into account mq = mu = md = 300 MeV and ms = 500 MeV. Measured
mass splitting between JP = (3/2)+ and (1/2)+ states (both isotriplets) is ∆M =
MΣ∗ −MΣ = 195 MeV.

12. Assume there exist baryons composed of 4 quarks. Their wave function is

|ψ〉flavour, spin ⊗ |χ〉color ,

where |ψ〉flavour, spin is symmetric to quark interchange.
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(a) Determine dimension of baryonic multiplet with spin 2 for flavour symmetry SU(3)flavour

of quarks {u, d, s}. Write down wavefunction of state |ψ〉flavour, spin with maximal
Y and T3, and sketch all states in plane (T3, Y ). Take into account that the baryon
number of a quark is 1/4. Label quark composition of each state.

(b) Determine wave function of state |ψ〉flavour, spin with quantum numbers (T3, Y ) =
(1/2, 0) with spin projection S3 = 1. Determine the probability that both u-quarks
have spin ↑.

(c) Would such baryon states be possible with SU(3) group of strong (colour) interac-
tions? Note that |χ〉colour should be completely antisymmetric.

13. Write down complete wavefunctions of the lightest pseudoscalar mesons 3̄⊗ 3 = 8⊕ 1.
Argue, why these states with ` = 0 have JP = 0−. Determine the charge conjugation
parity of neutral mesons, like η8 and π0.

14. Write down wavefunctions of the vector meson octet. Determine the magnetic moment
of ρ± and ρ0. (Answer: ±(µu − µd), 0.)

15. η and η′, wave functions, mixing angle.

16. Argue with color factors due to single gluon exchanges that the nonrelativistic potential
between qq̄ in the color singlet state is attractive. Alternatively, suppose that mesons
were in the color octet configuration. In this case, show that the potential is repulsive
for a meson with color structure 1/

√
2(RR̄−GḠ).

5 Lorentzova in Poincaré-jeva grupa

Posplošitev Galilejeve transformacije na Lorentzovo omogoča, da se pri transformacijah med
inercialnimi sistemi ohranja hitrost svetlobe, c = 1. Dogodke xµ opǐsemo s četverci v prostoru
Minkowskega

xµ = (t,x) = (x0, x1, x2, x3). (13)

Lorentzova transformacija štirivektorja je

x′µ = Λµνx
ν . (14)

Za potovanje elektromagnetnega valovanja velja |x| = t ali t2 − x2 = 0, kar lahko zapǐsemo
s produktom x · x = 0, kjer je skalarni produkt med dvema četvercema definiran kot x · y =
xµηµνy

ν . Vpeljali smo metrični tenzor

ηµν = diag(1,−1,−1,−1)µν (15)

s kovariantnima (spodnjima) indeksoma. Množenje s kovariantnim metričnim tenzorjem na-
redi iz kontravariantnega četverca xµ kovarianten četverec xµ ≡ ηµνx

ν = (t,−x). Določi
komponente ηµν ter pokaži, da je ηµν = δµν . Izračunaj ηµνηµν .

Princip posebne relativnosti potem prevedemo na zahtevo, da je skalarni produkt invari-
anten na Lorentzove transformacije, torej x′ · y′ = x · y:

Λµρx
ρΛνωy

ωηµν = xρyωηρω,

⇒ ΛµρΛ
ν
ωηµν = ηρω.

(16)

Iz zahteve (16) določi komponente inverzne Lorentzove transformacije (Λ−1)µν . Matrike Λ
definirajo grupo SO(1, 3).
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5.1 Problems

1. Write down the infinitesimal Lorentz transformation Λµν = δµν + ωµν . How many
independent ωµν are there? Write down the generators Jµν of Lorentz transformations

Λαβ =
[
exp( i2ωµνJ

µν)
]α
β

(notice how matrices [Jµν ]αβ should be antisymmetric and

purely imaginary, therefore Hermitian). We identify rotation generators with J i =
1
2ε
ijkJ jk and boosts with Ki = J0i.

2. Starting from the infinitesimal form of boost along 1-direction, derive the explicit matrix
form of finite boost, i.e., use ω01 = −ω10 = ω and use expand the exponential. What is
the correspondence of ω with β and γ?

3. Show that Lorentz transformations (SO(1, 3)) can be implemented by SL(2,C), acting
on Hermitian matrix V = vµσµ (do the parameter counting!). Here σµ = (1,σ), σ̄µ =
(1,−σ). Determine the inverse transformation, from V → vµ. Note that v2 does not
change by SL(2,C) transformations A acting as AV A†. For given A determine the
Lorentz transformation Λ.

4. Demonstrate that the 4-dimensional representation Jµν = i
4 [γµ, γν ], where the anticom-

mutator of gamma matrices is {γµ, γν} = 2ηµν , satisfies the Lorentz algebra:

[Jµν , Jρσ] = i (ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ) . (17)

5. Transformation of the Dirac bispinor ψ(x) 7→ ψ′(x′) = U(ω)ψ(x) in the Dirac equation
rotates the gamma matrices as γν 7→ UΛνµγ

µU−1. Using the infinitesimal ω show that
γν is not changed under this transformation. Show the equivalent relation, U−1γνU =
Λνµγ

µ.
(iγµ∂µ −m)ψ(x) = 0, (18)

is indeed an invariant equation.

6. Determine how σµν = i
2 [γµ, γν ] transforms under Hermitian conjugation.

7. Show that p̄siσµνψ transforms under Lorentz transformation as a two-index Lorentz
tensor.

8. Use the parity operator UP = γ0 to show that ψ̄γ5ψ is a pseudoscalar and that ψ̄γµγ5ψ
is a axial-vector.

9. Calculate the following traces:

Tr(γµγνγαγβ) =

Tr(γµγνγαγβγ5) =

5.2 Poincaré-jeve transformacije

Splošne transformacije iz danega inercialnega sistema v katerikoli drug inercialni sistem tvorijo
Poincaré-jevo grupo. Dogodki se transformirajo kot

x′µ = Λµνx
ν + aµ (19)
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kjer je Λ Lorentzova transformacija in a konstanten vektor. Kjer ne bo nujno bomo zamolčali
indekse in pisali x′ = Λx+ b. Sledeč poglavje 2 [2] je komponiranje Poincaré-jev takšno:

x′′ = Λ′x′ + b = Λ′Λx+ Λ′a+ b, (20)

torej

(Λ′, b) ◦ (Λ, a) = (Λ′Λ,Λ′a+ b),

⇒ (Λ, a)−1 = (Λ−1,−Λ−1a)
(21)

5.3 Problems

1. Show that P 2 = PµP
µ commutes with the generators of the Poincaré group. Employ

the commutation relations of the Poincaré algebra (see Ch. 2.4 in [2]):

[Jµν , Jρσ] = i (ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ) ,
[Pµ, Jρσ] = i (ηµρP σ − ηµσP ρ) ,
[Pµ, P ρ] = 0.

Calculate the action of P 2 on the eigenstate |p, j, jz〉.

2. Derive the matrix form of the momentum generator, (Pµ)αβ, acting on four-vectors.

Compare infinitesimal transformation x′α = xα + aα with [exp(iaµP
µ)]αβx

β. (Sol.:
(Pµ)αβ = −i∂µδαβ )

3. Pauli-Lubanski vector is defined as

Wµ = −1

2
εµνρσJ

νρP σ,

where ε0123 = −1. Calculate the action of Wµ and W 2 = WµW
µ on the one-particle

state |p, j, jz〉.

6 EM scattering of electrons on µ−, p

6.1 e−µ− → e−µ−

6.2 Problems

1. Calculate the invariant amplitude M for elastic scattering e(k)µ(p) → e(k′)µ(p′). The
muon is initially at rest, whereas electron can be considered ultrarelativistic. Do the
spin sums and averaging to find |M|2.

2. Derive the two-body phase space element for the above case.
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