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Work in progress!

1 Lie Groups and its Representations

Lie groups are continuous groups, parametrized by real parameters ay:
gla) = e, (1)

such that g(0) = e. T} are Hermitian generators of the group. The group product is defined
as

9(B)g(a) = P Te>T
_ (i(B+a) T-L[BT.aT] 4+ (2)
where we have used the Baker-Campbell-Hausdorff formula,

eAeB — A+B+35[A B+ 5 [A[AB]-35(B,[A,B]]+ 3)

The product (2) should be member of the group and thus the commutators of generators have
to be proportional to generators:

Parameters v depend on arbitrary « in 3. Also all further terms of the exponent (2) are
nested commutators thus the condition (4) is sufficient to show that the group is closed under
multiplication. If we choose for o and 8 unity vectors in directions a and b,

Bl =(o,...,

1
5
a®=(0,....1,....0), ’

we obtain a commutation relations (Lie algebra)

[Ta, Ty] = i{*V'T. (6)

C



Here fue = ’y((;ab) are called the structure constants of the group that unambiguously define

the structure of the Lie group. Working in a specific representation (of a compact Lie group),
we can always choose generators to be orthogonal in the following sense:

1
Te(ToTh) = 50u- (7)

A unitary representation of the group is a set of unitary matrices U(g(«)) that faithfully
reproduces the group multiplication law:

U(g(a))U(g(8)) = Ulg(a)g(B))- (8)
A shorthand notation is introduced:
Ul)=U(g(a)) =1+ia-T+---, (9)

where T, are now Hermitian matrices for a given representation.
Exercise 1.1
Show that the inverse element is g(a) ™! = g(—a).

1. Prove that the structure constants are antisymmetric in the first two indices, fup. =
— frac and that they are real.

2. Show that we can calculate the structure constants directly from the generators as
Jabe = =2iTrx ([T, T]T¢) .
Use the above relation to show complete antisymmetry of fupc.
3. Check the Jacobi identity

[Tm [Tbﬂ TCH + [Tb’ [TC, Ta]] + [TC’ [Ta,TbH =0.

2 Rotation group SO(N)

The defining representation of the rotation group SO(N) is defined as:
SON)={O € O(N) | detO=1}, (10)
O(N)={0eGLy(R) | OTO=1}, (11)

The above groups are also the defining representations of dimension N.

2.1 Eigenstates and representations of SO(3) (problems)
Problems:

1. Show that if O is an orthogonal matrix, O € O(N), then det O = +£1.

2. Show that the scalar product v7w of two vectors v,w € IR" is not changed upon
rotating both vectors by O.



Determine the number of real parameters needed to specify orthogonal matrix O. Sol.:
N(N —-1)/2

Assume O is an orthogonal matrix sufficiently close to identity, O = 1 + A, where A
is infinitesimal. Show that A is antisymmetric matrix. What is the dimension of the
vector space of NV X N antisymmetric matrices?

For rotations in the plane, i.e. SO(2), write explicit form of small rotation, O = 1+ €A,
where € is infinitesimal. Determine the generator A. Is the group Abelian or non-
Abelian? Derive the explicit matrix for rotation by finite angle «.

Find the generator matrices of SO(3) for the j = 1 representation. Use them to find
the explicit form of the finite rotation matrix d.,,,(6) = (jm’ | e~ 1072 | jm).

Consider how a vector field A(r) = (A;(r), A2(r), Az(r)) transforms under SO(3) ro-
tation R, that acts on vectors as r — 7 = Rr. The rotated field is then A'(r) =
RA(R™7r) and you can consider R that corresponds to an infinitesimal rotation aro-
und the axis d¢p. Show that in this case the rotated field can be written as

Al(r) = U(d)A(r) = [L —ide - (£ + )] A(r).

Determine operators £ and s. Show that spin of a vector field A is s = 1 and that
matrices s are equivalent to the usual spin-1 generators with diagonal J3 (show that
the matrices are similar, i.e. related by basis transformation).

Explicitly write out direct product of three s = 1/2 quarks, i.e., spin wave-function of
baryons.

3 SU(2) group and isospin

The SU(2) group in the defining representation can be written as an exponent of the traceless
Hermitian matrix:

U(a) = exp(—iag04/2), a=1,23. (12)

The SU(2) algebra is identical to the SO(3) algebra with structure constants fupe = €qpe-

3.1

1.

Problems

Show that the group SU(2) has the same algebra (structure constants) as SO(3). Thus
same state labels and ladder operators can be used on eigenstates of isospin.

Write down the isospin rotation that transforms between nucleon doublet eigenstates,
n — p, and the other rotation that transforms p — n.

Deuteron is a bound state of a proton and a neutron. We do not observe bound states
of pp or nn. What are the possible states of spin and orbital angular momentum if
the total wave function should obey the Pauli exclusion principle under interchange of
nucleons? Narrow down the selection if you take into account that deuteron has positive
parity and that its spin is j = 1.

Calculate the ratio of deuteron production cross-section rates

o(pn — dr) : o(pp — dn) : o(nn — dn).



4 SU(3) group role in flavour of light quarks and chromodyna-
mics
1. Count the number of generators T of SU(3) and write down the Gell-Mann matrices
A =277,

2. Check that there are three SU(2) subalgebras of SU(3): (T1,T»,T3), (T4, T5, (3/4)Y — (1/2)T3) =
(‘/la ‘/'2, ‘/é)v (T67 T7a (3/4)Y + (1/2)T3) = (Ula U2a U3)

3. (m,n) notation for irreducible representation of SU(3) denotes Check the dimension
formula dim = (1/2)(m+1)(n+1)(m+n+2) on the case of baryon octet and decuplet.
Compare the result with the Young tableau’s “factors over hooks”.

4. Use Young tableaux to determine direct product of baryon states 3 ® 3 ® 3
e

5. Direct products of SU(3) representations. The fundamental representation 1*,i = 1,2,3
(or i =wu,d,s, or i = R,G, B) or simply 3, transforms under the U € SU(3) as

Yt = UL, (Y U).

A single upper index (fundamental) is denoted by a single box Young tableau, [ ]. On
the other hand, antifundamental representation 3 is defined as the transformation of
complex conjugate 1*:

Y = (U)W, W e U or T e g U,
By convention we label the antifundamental reprentation with lower indices:
¢ &= U/ g5,
where U7 = )=

a) Use the unitarity of U to calculate U, iy, similarly for U, *U 7). Show then that
k 7 J )
¢i1p" is invariant. This is equivalent to saying that tensor 612 is invariant.

(b) Another invariant tensor is antisymmetric tensor €, with e€j03 = 1. Use the
property det U = 1 (unimodularity) to show invariance of € under SU(3) transfor-
mation:

E;]k = UimanUkOEmno
(Hint: Check that the right-hand side is completely antisymmetric in indices (ijk),

thus it must be proportional to €;r.) Equivalent statement is that antisymmetric
“contraction” of three fundamentals [ ], €;;51)"¢’ w is a singlet, or in terms of Young

tableau:
- @

(¢c) We can lower the indices. Show that antisymmetric “contraction” of two upper in-
dices results in an object xx = €i;1'¢’ that indeed transforms as antifundamental.
Or in terms of Young tableau:
5=H



10.

11.

12.

Employ unitarity and unimodularity of U.

Write down the wavefunction of the proton, using the fact that total spin and isospin
should be 1/2 and that the total wavefunction of flavour and spin should be completely
symmetric under interchange of any pair of quarks.

Try to write down completely antisymmetric wave function of the proton. In this case
color part of the wavefunction would not be required. It turns out this possibility is
in conflict with the experimentally determined magnetic moment of the proton, up, * =

2.79un (See also Exercise 2.18 in [1]).

Determine the wavefunction of £ and A baryons. A is an isospin singlet, £° can
be obtained from Y. Check that the magnetic moment of the A baryon equals the
magnetic moment of the s-quark: ps = —eoh/(6ms) = —pn myp/(3my).

Calculate the probability of finding a d quark with spin 1 in baryonic state |Z,]).
(Answer: 1/3).

—_

We study strong decays ¥ — Yt7~ and =*0 — =~ 7t. Quantum numbers of the
states are given in the following table:

B|I|L|Y|U| U
0 1
=011
Tt |1
= |1
7t | 0

(a) Fill out missing values in the table.

(b) Write down flavour, spin, and colour part of the wavefunctions of ¥** and Z*0,
both members of the baryon decuplet with J¥ = (3/2)*.

(c) Calculate the ratio of decay widths I'(X*0 — *77)/T(2*0 — Z=7T). Employ
the invariance of strong interactions under U-spin.

Hyperfine splitting between baryon octet and decuplet. Calculate parameter k for a
hyperfine splitting model, describing a baryon masses:

5§15 §-853 835
Mbarion:m1+m2+m3+/ﬁ< + + >

mi1ms moms m3mmy

where take into account mg, = m, = mgq = 300 MeV and my = 500 MeV. Measured
mass splitting between J© = (3/2)% and (1/2)* states (both isotriplets) is AM =
Mg+ — My, = 195 MeV.

Assume there exist baryons composed of 4 quarks. Their wave function is

W]>ﬂavour, spin ® |X>color ’

where [1) is symmetric to quark interchange.

flavour, spin



(a) Determine dimension of baryonic multiplet with spin 2 for flavour symmetry SU (3)gavour
of quarks {u,d, s}. Write down wavefunction of state [¢)g, our, spin With maximal
Y and T3, and sketch all states in plane (T3,Y"). Take into account that the baryon
number of a quark is 1/4. Label quark composition of each state.

(b) Determine wave function of state |{)g,our, spin With quantum numbers (73,Y) =
(1/2,0) with spin projection S5 = 1. Determine the probability that both u-quarks
have spin 1.

(c) Would such baryon states be possible with SU(3) group of strong (colour) interac-
tions? Note that |x) should be completely antisymmetric.

colour

13. Write down complete wavefunctions of the lightest pseudoscalar mesons 3 ® 3 = 8 @ 1.
Argue, why these states with £ = 0 have J© = 0~. Determine the charge conjugation
parity of neutral mesons, like ng and 7Y.

14. Write down wavefunctions of the vector meson octet. Determine the magnetic moment
of p* and p°. (Answer: +(pty — pa),0.)

15. n and 7/, wave functions, mixing angle.

16. Argue with color factors due to single gluon exchanges that the nonrelativistic potential
between g in the color singlet state is attractive. Alternatively, suppose that mesons
were in the color octet configuration. In this case, show that the potential is repulsive
for a meson with color structure 1/v2(RR — GG).

5 Lorentzova in Poincaré-jeva grupa

Posplositev Galilejeve transformacije na Lorentzovo omogoca, da se pri transformacijah med
inercialnimi sistemi ohranja hitrost svetlobe, ¢ = 1. Dogodke x* opiSemo s ¢etverci v prostoru
Minkowskega

o = (t,x) = (2, z!, 22, 2°). (13)
Lorentzova transformacija Stirivektorja je
't = AF 3. (14)

Za potovanje elektromagnetnega valovanja velja |x| = t ali t> — 2? = 0, kar lahko zapisemo
s produktom x - x = 0, kjer je skalarni produkt med dvema Cetvercema definiran kot = -y =
x#n,,y”. Vpeljali smo metricni tenzor

N = diag(1l, =1, =1, -1),, (15)
s kovariantnima (spodnjima) indeksoma. MnozZenje s kovariantnim metri¢nim tenzorjem na-
redi iz kontravariantnega Cetverca a* kovarianten cetverec x, = n,x” = (t,—x). Doloci

komponente n*v ter pokaZi, da je n", = 64 . Izracunaj n* Nyw -
Princip posebne relativnosti potem prevedemo na zahtevo, da je skalarni produkt invari-
anten na Lorentzove transformacije, torej 2’ -y = z - y:
AR PN Gy N = 2Py N, (16)
= A“pA”wnW = Npw-
Iz zahteve (16) doloc¢i komponente inverzne Lorentzove transformacije (A=1)# . Matrike A
definirajo grupo SO(1, 3).



5.1

1.

5.2

Problems

Write down the infinitesimal Lorentz transformation A¥, = 6", + w",. How many
independent Wy are there? Write down the generators J*¥ of Lorentz transformations
A% = [exp(Swpuw J* )} 8 (notice how matrices [J#*]*? should be antisymmetric and
purely imaginary, therefore Hermitian). We identify rotation generators with J! =
%eiijjk and boosts with K = J%,

. Starting from the infinitesimal form of boost along 1-direction, derive the explicit matrix

form of finite boost, i.e., use wp; = —wi9 = w and use expand the exponential. What is
the correspondence of w with 5 and 7

Show that Lorentz transformations (SO(1,3)) can be implemented by SL(2,C), acting
on Hermitian matrix V' = v*o, (do the parameter counting!). Here o = (1,0), o* =
(1,—0). Determine the inverse transformation, from V — v#. Note that v? does not
change by SL(2,C) transformations A acting as AV A!. For given A determine the
Lorentz transformation A.

Demonstrate that the 4-dimensional representation J** = i'[fy“, ~*], where the anticom-
mutator of gamma matrices is {y*, "} = 2n"¥, satisfies the Lorentz algebra:

JH | JPO] = (nPP JHT 4 gho JVP — P JVT _ VT JHPY 17
[ n n n n

. Transformation of the Dirac bispinor 1(x) — ¢/(z') = U(w)t(z) in the Dirac equation

rotates the gamma matrices as v — UAY Ay*U™ L. Using the infinitesimal w show that

Y is not changed under this transformatlon Show the equivalent relation, U~ '4*U =

AI/
,u
(17" 0y — m)(z) =0, (18)
is indeed an invariant equation.

Determine how o#*¥ = %[7“ ~¥] transforms under Hermitian conjugation.

Show that psic#”y transforms under Lorentz transformation as a two-index Lorentz
tensor.

Use the parity operator Up = 7° to show that 1)7%¢ is a pseudoscalar and that 1y*y>y
is a axial-vector.

Calculate the following traces:
Tr(v"9"7*y%) =
Te(y"9" 7y "y°) =

Poincaré-jeve transformacije

Splosne transformacije iz danega inercialnega sistema v katerikoli drug inercialni sistem tvorijo
Poincaré-jevo grupo. Dogodki se transformirajo kot

o = A* 2 4 et (19)



kjer je A Lorentzova transformacija in a konstanten vektor. Kjer ne bo nujno bomo zamolcali
indekse in pisali ' = Az + b. Slede¢ poglavje 2 [2] je komponiranje Poincaré-jev taksno:

2" =Na' +b=NAz+Na+b, (20)
torej
(') o (Aa) = (NA, Na + ),

= (Aa)' = (A7 —Aa) (21)

5.3 Problems

1. Show that P? = P,P* commutes with the generators of the Poincaré group. Employ
the commutation relations of the Poincaré algebra (see Ch. 2.4 in [2]):

[T, JP7) = 0 (O JH 4 T — R T g T,
[P, J7) = i (P — 7 PP,
[P", PP] = 0.
Calculate the action of P2 on the eigenstate |p, j, 5.).

2. Derive the matrix form of the momentum generator, (PH)O‘B, acting on four-vectors.
Compare infinitesimal transformation z'* = z% 4 o with [exp(iauP“)]aﬂmﬁ . (Sol.:

(Pu)aﬁ = —i9u5§)
3. Pauli-Lubanski vector is defined as
1
W, = —ieu,,pJJ”pP",
where €123 = —1. Calculate the action of W, and wW? = W,WH# on the one-particle
state |p, J, jz)-

6 EM scattering of electrons on p—, p
6.1 e pu —eu
6.2 Problems

1. Calculate the invariant amplitude M for elastic scattering e(k)u(p) — e(k")u(p’). The
muon is initially at rest, whereas electron can be considered ultrarelativistic. Do the
spin sums and averaging to find |[M]2.

2. Derive the two-body phase space element for the above case.
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