Asymptotic Notation

Growth of Functions and

Aymptotic Notation

When we study algorithms, we are interested in charachegyittiem
according to their efficiency.

We are usually interesting in the order of growth of the ragrtime
of an algorithm, not in the exact running time. This is alsemed to
as theasymptotic running time.

We need to develop a way to talk about rate of growth of fumstiso
that we can compare algorithms.

Asymptotic notation gives us a method for classifying functions
according to their rate of growth.

Asymptotic Notation

Big-O Notation

Definition: f(n) = O(g(n)) iff there are two positive constants
andng such that

1f(n)] <clg(n)| forall n > ng
If f(n)is nonnegative, we can simplify the last condition to
0< f(n) <cg(n)foralln > ng
We say that f(n) is big-O ofg(n).”

As n increasesf(n) grows no faster thag(n). In other wordsg(n)
IS anasymptotic upper bound on f(n).

f(n)

f(n) = O(g(n)

Asymptotic Notation

Example: n* + n = O(n?)

Proof:
Here, we havef(n) = n” + n, andg(n) = n?
Notice that ifn > 1, n < n? is clear.
Also, notice that ifn > 1, n? < n? is clear.

Side Note:In general, ifa < b, thenn® < n® whenevem > 1. This
fact is used often in these types of proofs.

Therefore,
n2+n§n3+n3 — 213

We have just shown that

n®+n<2n’foralln>1

Thus, we have shown that +n = O(n?)
(by definition of Big-O, with ng = 1, andc = 2.)

Asymptotic Notation

Big-{) notation

Definition: f(n) = Q(g(n)) iff there are two positive constants
andng such that

|f(n)| > clg(n)| forall n > ng

If f(n)is nonnegative, we can simplify the last condition to
0<cg(n) < f(n)foralln > ng

We say that f(n) is omega ofy(n).”

As n increasesf(n) grows no slower thag(n). In other words,
g(n) is anasymptotic lower bound on f(n).

f(n)

Asymptotic Notation

Example: n® + 4n* = Q(n?)

Proof:
e Here, we havef(n) = n? + 4n?, andg(n) = n?
e It is not too hard to see thataf > 0,
n> < n> + 4n?
We have already seen thatif> 1,
n2 < n3
Thus whem > 1,
n? < n> < n> + 4n?

Therefore,
In®? <n3+4n’foralln>1

e Thus, we have shown that + 4n? = Q(n?)
(by definition of Big{2, with nyp = 1, andc = 1.)

Asymptotic Notation

Big-© notation

Definition: f(n) = ©(g(n)) iff there are three positive constarts
co andng such that

cilg(n)| < |f(n)] < calg(n)| forall n > ng

If f(n)is nonnegative, we can simplify the last condition to
0<ci1g9(n) < f(n)<cyg(n)foralln>ng

We say that f(n) is theta ofg(n).”

As n increasesf(n) grows at the same rate ag2). In other words,
g(n) is anasymptotically tight bound on f(n).

Asymptotic Notation

Example: n* + 5n + 7 = ©(n?)

Proof:
e Whenn > 1,
n? +5n+7<n°+5n%+7m? < 13n?

e Whenn > 0,
n? <n®+5n+T

e Thus, whem >1
In? <n?+5n+7<13n?

Thus, we have shown that + 5n + 7 = ©(n?)
(by definition of Big©, withng = 1, ¢y = 1, andecy = 13.)

Asymptotic Notation

Arithmetic of Big-O, (2, and © notations

e Transitivity:
— f(n) € O(g(n)) andg(n) € O(h(n)) = f(n) € O
— f(n) € ©(g(n)) andg(n) € ©(h(n)) = f(n) € ©
— f(n) € Q(g(n)) andg(n) € Q(h(n)) = f(n) € Q(n(n))
e Scaling: if f(n) € O(g(n)) then for anyk > 0, f(n) € O(kg(n))

)
e Sums: iff;(n) € O(gi(n)) andfz(n) € O(g2(n)) then
(f1 + f2)(n) € O(maz(g1(n), g2(n)))

Asymptotic Notation

Strategies for Big-O

Sometimes the easiest way to prove tfgt) = O(g(n)) is to takec
to be the sum of the positive coefficientsfifn).

We can usually ignore the negative coefficients. Why?

Example: To prove5n? + 3n + 20 = O(n?), we pick
c=5+3+20=28. Thenifn > ng =1,

5n° +3n420 <5n+3n° +20n° = 28n?,
thussn? + 3n + 20 = O(n?).

This is not always so easy. How would you show that

(vV2)l°g™ 1+ 1og* n 4+ n* is O(2™)? Or thatn® = O(n? — 13n + 23)?
After we have talked about the relative rates of growth otsalv
functions, this will be easier.

In general, we simply (or, in some cases, with much efforg fin
valuesc andng that work. This gets easier with practice.

Asymptotic Notation

Strategies for{) and ©

e Proving that af(n) = Q(g(n)) often requires more thought.
— Quite often, we have to pick < 1.

— A good strategy is to pick a value efwhich you think will work,
and determine which value af, is needed.

— Being able to do a little algebra helps.

— We can sometimes simplify by ignoring termsfifn) with the
positive coefficients. Why?

e The following theorem shows us that proviyign) = ©(g(n)) is

nothing new:

— Theorem: f(n) = ©(g(n)) ifand only if f(n) = O(g(n)) and
f(n) =Q(g(n)).

— Thus, we just apply the previous two strategies.

e We will present a few more examples using a several different
approaches.

Asymptotic Notation

Show that in* + 3n = O(n?)

Proof:

. . 1 1 7
e Notice that ifn > 1, 5712 +3n < 577,2 +3n? = §n2

1
Thus,in2 + 3n = O(n?)

1
Also, whenn > 0, §n2 < —n?+3n

1
2

1
SO§n2 + 3n = Q(n?)

Sincein? + 3n = O(n?) andin? + 3n = Q(n?),
1
577,2 + 3n = O(n?)

11

Asymptotic Notation 12

Show that (nlogn — 2n + 13) = Q(nlogn)

Proof. We need to show that there exist positive constamtisdn, such

that
0 <cnlogn <nlogn—2n+ 13 foralln > ng.

Since nlogn—2n <nlogn—2n+ 13,
we will instead show that

cnlogn < nlogn — 2n,

which is equivalent to

2
c<1-— , whenn > 1.

logn

If n > 8, then2/(logn) < 2/3, and pickinge = 1/3 suffices. Thus if
c = 1/3 andngy = 8§, then for alln > ng, we have

0<cnlogn <nlogn—2n <nlogn—2n+ 13.

Thus(nlogn —2n + 13) = Q(nlogn).

Asymptotic Notation

Show that in? — 3n = ©(n?)

Proof:
e \We need to find positive constants ¢y, andng such that

1
0<cn?< 577,2 —3n<cyn?foralln > ng

. 1 3
Dividing by n?, we get0 < ¢; < 5 - < ¢5
n

— 2 holds forn > 10 ande; = 1/5

< ¢y holds forn > 10 andcy, = 1.

Thus, ifc; = 1/5, co = 1, andny = 10, then for alln > ny,

1
0<cin?< §n2 — 3n < con? for all n > ny.

Thus we have shown thgt? — 3n = O(n?).

13

Asymptotic Notation 14

Asymptotic Bounds and Algorithms

In all of the examples so far, we have assumed we knew the exact
running time of the algorithm.

In general, it may be very difficult to determine the exactiag
time.

Thus, we will try to determine a bounds without computing éRact
running time.
Example: What is the complexity of the following algorithm?
for (i =0; I < n; i ++4)
for (j =0; j <n; j ++)
a[i][1] =bli][]] * X
Answer: O(n?)

We will see more examples later.

Asymptotic Notation 15

Summary of the Notation

f(n)€O(g(n)) = f =g
f(n)eQgn))=f=g
f(n)€O(g(n) = frg

It is important to remember that a Big-O bound is onlyupper
bound. So an algorithm that i©(n?) might not ever take that much
time. It may actually run irfD(n) time.

Conversely, a2 bound is only dower bound. So an algorithm that
IS (2(n logn) might actually bed(2™).

Unlike the other bounds, @-bound is precise. So, if an algorithm is
©(n?), it runs in quadratic time.

It is also important to realize th#tteory andpractice don’t always
agree! What do | mean by this?

Asymptotic Notation

Common Rates of Growth

In order for us to compare the efficiency of algorithms, wed@eknow
some common growth rates, and how they compare to one anothsr
IS the goal of the next several slides.

Letn be the size of input to an algorithm, ahdome constant. The
following are common rates of growth.

e Constant©(k), for example©(1)
e Linear:O(n)

e Logarithmic:©(log, n)

e nlogn: O(nlog, n)

e Quadratic:0(n?)

e Polynomial:0(n")

e Exponential:©(k™)
We'll take a closer look at each of these classes.

16

Asymptotic Notation

Classification of algorithms -O(1)

e Operations are performédtimes, where: is some constant,
iIndependent of the size of the input

e This is the best one can hope for, and most often unattainable

e Examples:

int Fifth Element(int A[],int n) {
return Al 5];

}

int Partial _Sunm(int Al],int n) {
I nt sune0;
for(int 1=0;i<42;i ++)
SuUnMFSuUmtA[i] ;
return sum

17

Asymptotic Notation

Classification of algorithms -G (n)

Running time is linear
As n increases, run time increases in proportion

Algorithms that attain this look at each of thanputs at most some
constant: times.

Examples:

void sumfirst _n(int n) {
I nt 1, sunm=0;
for (i=1;i<=n;i++)
sum = sum + i;
}
void msumfirst n(int n) {
I nt 1, k, sum=0;
for (i=1;i<=n;i++)
for (k=1; k<7; k++)
sum = sum + 1 ;

18

Asymptotic Notation 19

Classification of algorithms -©(logn)

e A logarithmic function is the inverse of an exponential ftiog, i.e.
b* = n IS equivalent tac = log, n)

e Always increases, but at a slower ratenascreases. (Recall that the
derivative oflogn is % a decreasing function.)

e Typically found where the algorithm can systematicallyagm
fractions of the input.

e Examples:

I nt binarysearch(int a[], int n, int val) {
int =1, r=n, m
while (r>=1) {
m= (l+r)/2;
| (a[m==val) return m
| f (a[m >val) r=m1;
el se | =mtl; }
return -1;

Asymptotic Notation 20

Classification of algorithms -©(n logn)

e Combination ofO(n) andO(logn)

e Found in algorithms where the input is recursively brokemnip a
constant number of subproblems of the same type which can be
solved independently of one another, followed by reconmgrthe
sub-solutions.

e Example: Quicksort isO(nlogn).

Perhaps now is a good time for a reminder that when speaking

asymptotically, the base of logarithms is irrelevant. Tikisecause of the
identity
log, blogy n = log,n.

Asymptotic Notation

Classification of algorithms -O(n?)

We call this class quadratic.

As n doubles, run-time quadruples.

However, it is still polynomial, which we consider to be good
Typically found where algorithms deal with all pairs of data

Example:
I nt rconpute_suns(int A[], int n) {

int Mn][n];
int 1,];
for (i=0;i<n;i++)
for (J=0;]<n;j++)
MiTLII=AT]+AL]]
return M

}

More generally, if an algorithm i®(n*) for constant it is called a
polynomial-time algorithm.

21

Asymptotic Notation 22

Classification of algorithms -©(2")

We call this class exponential.

This class is, essentially, as bad as it gets.
Algorithms that use brute force are often in this class.
Can be used only for small values+ofn practice.

Example: A simple way to determine atl bit numbers whose
binary representation hasnon-zero bits is to run through all the
numbers from 1 t@", incrementing a counter when a number khas
nonzero bits. It is clear this is exponentiakin

Asymptotic Notation

Comparison of growth rates

logn

n logn

27’L

0
0.6931
1.099
1.386
1.609
1.792
1.946
2.079
2.197
2.303
2.398
2.485
2.565
2.639
2.708
2.773
2.833
2.890

7
1
2
3
4
5
6
7
8
9

T T T = W =S SOy SRy STt
0 O O i W N K+~ O

0
1.39
3.30
5.55
8.05

10.75
13.62
16.64
19.78
23.03
26.38
29.82
33.34
36.95
40.62
44.36
48.16
52.03

2

4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144

log logm

m

23

Asymptotic Notation

More growth rates

11n?

27’L

n
1
2
3
4
5]
6
7
8
9

e e e e e
© 00 J O Ot = W N~ O

11
44
99

2

4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

24

Asymptotic Notation

More growth rates

n? + 99 n | n3 4+ 234

103
135
199
295
423
583
775
999
1255
1543
1863
2215
2599
3015
3463
3943
4455
4999
5575

8

216
1000
2744
5832
10648
17576
27000
39304
54872
74088
97336
125000
157464
195112
238328
287496
343000
405224

242
450
1234
2978
6066
10882
17810
27234
39538
55106
74322
97570
125234
157698
195346
238562
287730
343234
405458

Asymptotic Notation

Polynomial Functions

Asymptotic Notation

Slow Growing Functions

27

Asymptotic Notation

Fast Growing Functions Part 1

28

Asymptotic Notation

Fast Growing Functions Part 2

500000
450000
400000
350000
300000

250000
200000
150000
100000

50000

0

0

29

Asymptotic Notation

Why Constants and Non-Leading Terms Don’t Matter
4e+08 |) » \ \ :
1000000*x --=--+

3.5e+08 300000*x**2 + 300*X :
3e+08 :
2.5e+08

2e+08
1.5e+08
1e+08
5e+07
0

Asymptotic Notation

Classification Summary

We have seen that when we analyze functions asymptotically:
e Only the leading term is important.
e Constants don’t make a significant difference.

e The following inequalities hold asymptotically:

c < logn < log?n < v/n <n < nlogn

n < nlogn <ntt < n? <nd <nt <2m

e In other words, an algorithm that é(n log(n)) is more efficient
than an algorithm that i® (n?).

31

