
Asymptotic Notation 1

Growth of Functions and

Aymptotic Notation

• When we study algorithms, we are interested in characterizing them
according to their efficiency.

• We are usually interesting in the order of growth of the running time
of an algorithm, not in the exact running time. This is also referred to
as theasymptotic running time.

• We need to develop a way to talk about rate of growth of functions so
that we can compare algorithms.

• Asymptotic notation gives us a method for classifying functions
according to their rate of growth.

Asymptotic Notation 2

Big-O Notation

• Definition: f(n) = O(g(n)) iff there are two positive constantsc
andn0 such that

|f(n)| ≤ c |g(n)| for all n ≥ n0

• If f(n) is nonnegative, we can simplify the last condition to

0 ≤ f(n) ≤ c g(n) for all n ≥ n0

• We say that “f(n) is big-O ofg(n).”

• As n increases,f(n) grows no faster thang(n). In other words,g(n)
is anasymptotic upper bound onf(n).

f(n) = O(g(n))

n0

cg(n)

f(n)

Asymptotic Notation 3

Example: n2 + n = O(n3)

Proof:

• Here, we havef(n) = n2 + n, andg(n) = n3

• Notice that ifn ≥ 1, n ≤ n3 is clear.

• Also, notice that ifn ≥ 1, n2 ≤ n3 is clear.

• Side Note: In general, ifa ≤ b, thenna ≤ nb whenevern ≥ 1. This
fact is used often in these types of proofs.

• Therefore,
n2 + n ≤ n3 + n3 = 2n3

• We have just shown that

n2 + n ≤ 2n3 for all n ≥ 1

• Thus, we have shown thatn2 + n = O(n3)
(by definition of Big-O, with n0 = 1, andc = 2.)

Asymptotic Notation 4

Big-Ω notation

• Definition: f(n) = Ω(g(n)) iff there are two positive constantsc
andn0 such that

|f(n)| ≥ c |g(n)| for all n ≥ n0

• If f(n) is nonnegative, we can simplify the last condition to

0 ≤ c g(n) ≤ f(n) for all n ≥ n0

• We say that “f(n) is omega ofg(n).”

• As n increases,f(n) grows no slower thang(n). In other words,
g(n) is anasymptotic lower bound onf(n).

n0

cg(n)

f(n)

Asymptotic Notation 5

Example: n3 + 4n2 = Ω(n2)

Proof:

• Here, we havef(n) = n3 + 4n2, andg(n) = n2

• It is not too hard to see that ifn ≥ 0,

n3 ≤ n3 + 4n2

• We have already seen that ifn ≥ 1,

n2 ≤ n3

• Thus whenn ≥ 1,
n2 ≤ n3 ≤ n3 + 4n2

• Therefore,
1n2 ≤ n3 + 4n2 for all n ≥ 1

• Thus, we have shown thatn3 + 4n2 = Ω(n2)
(by definition of Big-Ω, with n0 = 1, andc = 1.)

Asymptotic Notation 6

Big-Θ notation

• Definition: f(n) = Θ(g(n)) iff there are three positive constantsc1,
c2 andn0 such that

c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| for all n ≥ n0

• If f(n) is nonnegative, we can simplify the last condition to

0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0

• We say that “f(n) is theta ofg(n).”

• As n increases,f(n) grows at the same rate asg(n). In other words,
g(n) is anasymptotically tight bound onf(n).

c2g(n)

c1g(n)

f(n)

n0

Asymptotic Notation 7

Example: n2 + 5n+ 7 = Θ(n2)

Proof:

• Whenn ≥ 1,

n2 + 5n+ 7 ≤ n2 + 5n2 + 7n2 ≤ 13n2

• Whenn ≥ 0,
n2 ≤ n2 + 5n+ 7

• Thus, whenn ≥ 1

1n2 ≤ n2 + 5n+ 7 ≤ 13n2

Thus, we have shown thatn2 + 5n+ 7 = Θ(n2)
(by definition of Big-Θ, with n0 = 1, c1 = 1, andc2 = 13.)

Asymptotic Notation 8

Arithmetic of Big-O, Ω, andΘ notations

• Transitivity:

– f(n) ∈ O(g(n)) andg(n) ∈ O(h(n)) ⇒ f(n) ∈ O(h(n))

– f(n) ∈ Θ(g(n)) andg(n) ∈ Θ(h(n)) ⇒ f(n) ∈ Θ(h(n))

– f(n) ∈ Ω(g(n)) andg(n) ∈ Ω(h(n)) ⇒ f(n) ∈ Ω(h(n))

• Scaling: iff(n) ∈ O(g(n)) then for anyk > 0, f(n) ∈ O(kg(n))

• Sums: iff1(n) ∈ O(g1(n)) andf2(n) ∈ O(g2(n)) then
(f1 + f2)(n) ∈ O(max(g1(n), g2(n)))

Asymptotic Notation 9

Strategies for Big-O

• Sometimes the easiest way to prove thatf(n) = O(g(n)) is to takec
to be the sum of the positive coefficients off(n).

• We can usually ignore the negative coefficients. Why?

• Example: To prove5n2 + 3n+ 20 = O(n2), we pick
c = 5 + 3 + 20 = 28. Then ifn ≥ n0 = 1,

5n2 + 3n+ 20 ≤ 5n2 + 3n2 + 20n2 = 28n2,

thus5n2 + 3n+ 20 = O(n2).

• This is not always so easy. How would you show that
(
√
2)logn + log2 n+ n4 isO(2n)? Or thatn2 = O(n2 − 13n+ 23)?

After we have talked about the relative rates of growth of several
functions, this will be easier.

• In general, we simply (or, in some cases, with much effort) find
valuesc andn0 that work. This gets easier with practice.

Asymptotic Notation 10

Strategies forΩ andΘ

• Proving that af(n) = Ω(g(n)) often requires more thought.

– Quite often, we have to pickc < 1.

– A good strategy is to pick a value ofc which you think will work,
and determine which value ofn0 is needed.

– Being able to do a little algebra helps.

– We can sometimes simplify by ignoring terms iff(n) with the
positive coefficients. Why?

• The following theorem shows us that provingf(n) = Θ(g(n)) is
nothing new:

– Theorem: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and
f(n) = Ω(g(n)).

– Thus, we just apply the previous two strategies.

• We will present a few more examples using a several different
approaches.

Asymptotic Notation 11

Show that 1

2
n
2 + 3n = Θ(n2)

Proof:

• Notice that ifn ≥ 1,
1

2
n2 + 3n ≤ 1

2
n2 + 3n2 =

7

2
n2

• Thus,
1

2
n2 + 3n = O(n2)

• Also, whenn ≥ 0,
1

2
n2 ≤ 1

2
n2 + 3n

• So
1

2
n2 + 3n = Ω(n2)

• Since1
2n

2 + 3n = O(n2) and 1
2n

2 + 3n = Ω(n2),
1

2
n2 + 3n = Θ(n2)

Asymptotic Notation 12

Show that (n log n− 2n+ 13) = Ω(n log n)

Proof: We need to show that there exist positive constantsc andn0 such
that

0 ≤ c n logn ≤ n log n− 2n+ 13 for all n ≥ n0.

Since n log n− 2n ≤ n log n− 2n+ 13,

we will instead show that

c n logn ≤ n logn− 2n,

which is equivalent to

c ≤ 1− 2

log n
, whenn > 1.

If n ≥ 8, then2/(log n) ≤ 2/3, and pickingc = 1/3 suffices. Thus if
c = 1/3 andn0 = 8, then for alln ≥ n0, we have

0 ≤ c n logn ≤ n log n− 2n ≤ n log n− 2n+ 13.

Thus(n logn− 2n+ 13) = Ω(n logn).

Asymptotic Notation 13

Show that 1

2
n
2 − 3n = Θ(n2)

Proof:

• We need to find positive constantsc1, c2, andn0 such that

0 ≤ c1n
2 ≤ 1

2
n2 − 3n ≤ c2n

2 for all n ≥ n0

• Dividing by n2, we get0 ≤ c1 ≤ 1

2
− 3

n
≤ c2

• c1 ≤ 1
2 − 3

n
holds forn ≥ 10 andc1 = 1/5

• 1
2 − 3

n
≤ c2 holds forn ≥ 10 andc2 = 1.

• Thus, ifc1 = 1/5, c2 = 1, andn0 = 10, then for alln ≥ n0,

0 ≤ c1n
2 ≤ 1

2
n2 − 3n ≤ c2n

2 for all n ≥ n0.

Thus we have shown that12n
2 − 3n = Θ(n2).

Asymptotic Notation 14

Asymptotic Bounds and Algorithms

• In all of the examples so far, we have assumed we knew the exact
running time of the algorithm.

• In general, it may be very difficult to determine the exact running
time.

• Thus, we will try to determine a bounds without computing theexact
running time.

• Example: What is the complexity of the following algorithm?

for (i = 0; i < n; i ++)
for (j = 0; j < n; j ++)

a[i][j] = b[i][j] * x;

Answer: O(n2)

• We will see more examples later.

Asymptotic Notation 15

Summary of the Notation

• f(n) ∈ O(g(n)) ⇒ f � g

• f(n) ∈ Ω(g(n)) ⇒ f � g

• f(n) ∈ Θ(g(n)) ⇒ f ≈ g

• It is important to remember that a Big-O bound is only anupper
bound. So an algorithm that isO(n2) might not ever take that much
time. It may actually run inO(n) time.

• Conversely, anΩ bound is only alower bound. So an algorithm that
is Ω(n logn) might actually beΘ(2n).

• Unlike the other bounds, aΘ-bound is precise. So, if an algorithm is
Θ(n2), it runs in quadratic time.

• It is also important to realize thattheory andpractice don’t always
agree! What do I mean by this?

Asymptotic Notation 16

Common Rates of Growth

In order for us to compare the efficiency of algorithms, we need to know
some common growth rates, and how they compare to one another. This
is the goal of the next several slides.

Let n be the size of input to an algorithm, andk some constant. The
following are common rates of growth.

• Constant:Θ(k), for exampleΘ(1)

• Linear:Θ(n)

• Logarithmic:Θ(logk n)

• n log n: Θ(n logk n)

• Quadratic:Θ(n2)

• Polynomial:Θ(nk)

• Exponential:Θ(kn)

We’ll take a closer look at each of these classes.

Asymptotic Notation 17

Classification of algorithms -Θ(1)

• Operations are performedk times, wherek is some constant,
independent of the size of the inputn.

• This is the best one can hope for, and most often unattainable.

• Examples:

int Fifth_Element(int A[],int n) {
return A[5];

}

int Partial_Sum(int A[],int n) {
int sum=0;
for(int i=0;i<42;i++)

sum=sum+A[i];
return sum;

}

Asymptotic Notation 18

Classification of algorithms -Θ(n)

• Running time is linear

• As n increases, run time increases in proportion

• Algorithms that attain this look at each of then inputs at most some
constantk times.

• Examples:
void sum_first_n(int n) {

int i,sum=0;
for (i=1;i<=n;i++)

sum = sum + i;
}

void m_sum_first_n(int n) {
int i,k,sum=0;
for (i=1;i<=n;i++)

for (k=1;k<7;k++)
sum = sum + i;

}

Asymptotic Notation 19

Classification of algorithms -Θ(log n)

• A logarithmic function is the inverse of an exponential function, i.e.
bx = n is equivalent tox = logb n)

• Always increases, but at a slower rate asn increases. (Recall that the
derivative oflog n is 1

n
, a decreasing function.)

• Typically found where the algorithm can systematically ignore
fractions of the input.

• Examples:

int binarysearch(int a[], int n, int val) {
int l=1, r=n, m;
while (r>=1) {

m = (l+r)/2;
if (a[m]==val) return m;
if (a[m]>val) r=m-1;
else l=m+1; }

return -1;
}

Asymptotic Notation 20

Classification of algorithms -Θ(n log n)

• Combination ofO(n) andO(logn)

• Found in algorithms where the input is recursively broken upinto a
constant number of subproblems of the same type which can be
solved independently of one another, followed by recombining the
sub-solutions.

• Example: Quicksort isO(n log n).

Perhaps now is a good time for a reminder that when speaking
asymptotically, the base of logarithms is irrelevant. Thisis because of the
identity

loga b logb n = logan.

Asymptotic Notation 21

Classification of algorithms -Θ(n2)

• We call this class quadratic.

• As n doubles, run-time quadruples.

• However, it is still polynomial, which we consider to be good.

• Typically found where algorithms deal with all pairs of data.

• Example:
int *compute_sums(int A[], int n) {

int M[n][n];
int i,j;
for (i=0;i<n;i++)

for (j=0;j<n;j++)
M[i][j]=A[i]+A[j];

return M;
}

• More generally, if an algorithm isΘ(nk) for constantk it is called a
polynomial-time algorithm.

Asymptotic Notation 22

Classification of algorithms -Θ(2n)

• We call this class exponential.

• This class is, essentially, as bad as it gets.

• Algorithms that use brute force are often in this class.

• Can be used only for small values ofn in practice.

• Example: A simple way to determine alln bit numbers whose
binary representation hask non-zero bits is to run through all the
numbers from 1 to2n, incrementing a counter when a number hask
nonzero bits. It is clear this is exponential inn.

Asymptotic Notation 23

Comparison of growth rates

logn n n logn n
2

n
3 2n

0 1 0 1 1 2

0.6931 2 1.39 4 8 4

1.099 3 3.30 9 27 8

1.386 4 5.55 16 64 16

1.609 5 8.05 25 125 32

1.792 6 10.75 36 216 64

1.946 7 13.62 49 343 128

2.079 8 16.64 64 512 256

2.197 9 19.78 81 729 512

2.303 10 23.03 100 1000 1024

2.398 11 26.38 121 1331 2048

2.485 12 29.82 144 1728 4096

2.565 13 33.34 169 2197 8192

2.639 14 36.95 196 2744 16384

2.708 15 40.62 225 3375 32768

2.773 16 44.36 256 4096 65536

2.833 17 48.16 289 4913 131072

2.890 18 52.03 324 5832 262144

log logm logm m

Asymptotic Notation 24

More growth rates

n 100n n
2 11n2

n
3 2n

1 100 1 11 1 2

2 200 4 44 8 4

3 300 9 99 27 8

4 400 16 176 64 16

5 500 25 275 125 32

6 600 36 396 216 64

7 700 49 539 343 128

8 800 64 704 512 256

9 900 81 891 729 512

10 1000 100 1100 1000 1024

11 1100 121 1331 1331 2048

12 1200 144 1584 1728 4096

13 1300 169 1859 2197 8192

14 1400 196 2156 2744 16384

15 1500 225 2475 3375 32768

16 1600 256 2816 4096 65536

17 1700 289 3179 4913 131072

18 1800 324 3564 5832 262144

19 1900 361 3971 6859 524288

Asymptotic Notation 25

More growth rates

n n
2

n
2
− n n

2 + 99 n
3

n
3 + 234

2 4 2 103 8 242

6 36 30 135 216 450

10 100 90 199 1000 1234

14 196 182 295 2744 2978

18 324 306 423 5832 6066

22 484 462 583 10648 10882

26 676 650 775 17576 17810

30 900 870 999 27000 27234

34 1156 1122 1255 39304 39538

38 1444 1406 1543 54872 55106

42 1764 1722 1863 74088 74322

46 2116 2070 2215 97336 97570

50 2500 2450 2599 125000 125234

54 2916 2862 3015 157464 157698

58 3364 3306 3463 195112 195346

62 3844 3782 3943 238328 238562

66 4356 4290 4455 287496 287730

70 4900 4830 4999 343000 343234

74 5476 5402 5575 405224 405458

Asymptotic Notation 26

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40

Polynomial Functions

x
x**2
x**3
x**4

Asymptotic Notation 27

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

Slow Growing Functions

log(x)
x

x*log(x)
x**2

Asymptotic Notation 28

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 2 4 6 8 10

Fast Growing Functions Part 1

x
x**3
x**4
2**x

Asymptotic Notation 29

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 5 10 15 20

Fast Growing Functions Part 2

x
x**3
x**4
2**x

Asymptotic Notation 30

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

0 5 10 15 20 25 30

Why Constants and Non-Leading Terms Don’t Matter

1000000*x
300000*x**2 + 300*x

2**x

Asymptotic Notation 31

Classification Summary

We have seen that when we analyze functions asymptotically:

• Only the leading term is important.

• Constants don’t make a significant difference.

• The following inequalities hold asymptotically:

c < log n < log2n <
√
n < n < n log n

n < n log n < n(1.1) < n2 < n3 < n4 < 2n

• In other words, an algorithm that isΘ(n log(n)) is more efficient
than an algorithm that isΘ(n3).

