Asymptotic Notation: Definitions and Examples

Chuck Cusack

Definitions
Let f be a nonnegative function. Then we define the three most common asymptotic bounds as follows.

Note:

We say that f(n) is Big-O of g(n), written as f(n) = O(g(n)), iff there are positive constants ¢ and ng such
that
0 < f(n) <cg(n) foralln > ng

If f(n) = O(g(n)), we say that g(n) is an upper bound on f(n).

We say that f(n) is Big-Omega of g(n), written as f(n) = (g(n)), iff there are positive constants ¢ and
ng such that
0 <cg(n) < f(n)foralln > ng

If f(n) =Q(g(n)), we say that g(n) is a lower bound on f(n).

We say that f(n) is Big-Theta of g(n), written as f(n) = O(g(n)), iff there are positive constants ¢, c2
and ng such that
0<cr1g(n) < f(n) <cyg(n)forall n > ng

Equivalently, f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)). If f(n) = O(g(n)),
we say that g(n) is a tight bound on f(n).

Sometimes the notation f(n) € O(g(n)) is used instead of f(n) = O(g(n)) (similar for 2 and ©). These

mean essentially the same thing, and the use of either is generally personal preference.

Proving Bounds
There are two common ways of proving bounds. The first is according to the definitions above. The second, and

much

Theorem 1

easier approach, uses the following theorem.
Let f(n) and g(n) be functions such that
lim 7f(n) =
n— g(n)

Then
1.
2.

3.

If A= 0, then f(n) = O(g(n)), and f(n) # ©(g(n)).
If A= oo, then f(n) = Q(g(n)), and f(n) # ©(g(n)).
If A # 0 is finite, then f(n) = ©(g(n)).



Notice that if the above limit does not exist, then the first technique should be used. Luckily, in the analysis of
algorithms the above approach works most of the time.
Now is probably a good time to recall a very useful theorem for computing limits, called I’Hopital’s Rule.

Theorem 2: I’Hopital’s Rule
Let f(x) and g(x) be differentiable functions. Ifxlinolo f(z) = lim g(z) =0 or lim f(x)= lim g(x) = oo,

T—00 r— 00 r—00
then

f@) S

Examples
We present several examples of proving theorems about asymtotic bounds and proving bounds on several different
functions.

1. Prove that if f(z) = O(g(x)), and g(x) = O(f(z)), then f(z) = O(g(x)).
Proof:
If f(z) = O(g(x)), then there are positive constants ¢y and n(, such that

0 < f(n) < cag(n) forall n > ng
Similarly, if g(z) = O(f(z)), then there are positive constants ¢ and n{, such that
0<g(n) <c) f(n)foralln > n.

We can divide this by ¢ to obtain

1
0 < —g(n) < f(n) forall n > ng.

Setting ¢; = 1/¢} and ng = max(ng, ng), we have
0 <cig(n) < f(n) < cag(n) forall n > ny.

Thus, f(x) = O(g(x)).

2. Let f(z) = O(g(z)) and g(x) = O(h(x)). Show that f(x) = O(h(x)).
Proof:
If f(z) = O(g(x)), then there are positive constants ¢; and ng such that

0 < f(n) < ¢y g(n) for all n > ny,
and if g(z) = O(h(z)), then there are positive constants ¢y and n{ such that
0 < g(n) < cyh(n) forall n > ng.
Set ng = max(ny, ng) and ¢ = ¢1 co. Then
0< f(n) <ecr1g(n) <epcah(n) = csh(n) forall n > ng.

Thus f(z) = O(h(x)).




3. Find a tight bound on f(x) = 28 + 727 — 102° — 22* + 322 — 17.

Solution #1
We will prove that f(z) = ©(2®). First, we will prove an upper bound for f(z). It is clear that when x > 0,

22+ 727 —102° — 22* + 322 — 17 < 2% + 727 + 322,

o We can upper bound any function by removing the lower order terms with negative coefficients, as long
asx > 0.

Next, it is not hard to see that when = > 1,
2%+ 727 + 322 < 28+ 728 + 328 = 1148,

o We can upper bound any function by replacing lower order terms with positive coefficients by the
dominating term with the same coefficients. Here, we must make sure that the dominating term is
larger than the given term for all values of x larger than some threshold x(, and we must make note of
the threshold value x.

Thus, we have
flx) = 28 4 72" — 1025 — 22* + 322 — 17 < 1128 forall 2 > 1,

and we have proved that f(z) = O(z%).

Now, we will get a lower bound for f(z). It is not hard to see that when = > 0,
2 + 727 — 1025 — 22% 4+ 322 — 17 > 28 — 102° — 22* — 17.

o We can lower bound any function by removing the lower order terms with positive coefficients, as long
asx > 0.

Next, we can see that when z > 1,
28 —102° — 22 — 17> 2® — 102" — 227 — 172" = 28 — 2927,

o We can lower bound any function by replacing lower order terms with negative coefficients by a sub-
dominating term with the same coefficients. (By sub-dominating, I mean one which dominates all but
the dominating term.) Here, we must make sure that the sub-dominating term is larger than the given
term for all values of x larger than some threshold xq, and we must make note of the threshold value
xg. Making a wise choice for which sub-dominating term to use is crucial in finishing the proof.

Next, we need to find a value ¢ > 0 such that 28 — 2927 > c2®. Doing a little arithmetic, we see that this is
equivalent to (1 — ¢)z® > 2927. When z > 1, we can divide by =7 and obtain (1 — ¢)z > 29. Solving for ¢
we obtain
29
c<1——.
T

If x > 58, then ¢ = 1/2 suffices. We have just shown that if = > 58, then
f(z) =2® + 727 — 102° — 22 + 322 — 17 >

Thus, f(x) = Q(z®). Since we have shown that f(z) = Q(2%) and that f(x) = O(2®), we have shown that
f(x) = O(a®).



Solution #2
We guess (or know, if we read Solution #1) that f(z) = ©(z8). To prove this, notice that

a8 7" — 1025 — 224 + 322 — 17 o2 T 102 22t 322 17
fin 5 = Jm s+ - s - st E 8
T—00 T T—00 x x x x x
R O T TN T
T—00 T .’133 SU4 $6 1178
= lim140-0—-0+0—-0=
r—00

Thus, f(x) = ©(2®) by the Theorem.

4. Find a tight bound on f(z) = 2% — 2323 + 1222 + 152 — 21.

Solution #1
It is clear that when « > 1,

zt — 2323 + 1222 + 152 — 21 < 2% + 1222 + 152 < 2% + 122% + 152 = 2822

Also,
at — 2323 + 1222 + 152 — 21 > 2% — 232% — 21 > 2* — 232 — 2123 = 2 — 4423 > %fl,
whenever 1
53:4 > 4413 < 1 > 88.
Thus

1

53;4 <zt — 2323 + 1222 + 152 — 21 < 282*, for all z > 88.
We have shown that f(z) = z* — 2323 + 1222 + 152 — 21 = O(2?).
Solution #2
From Solution #1 we already know that f(x) = ©(x*). We verify this by noticing that

2t 2323 1222 15z 21

. 4 3 2 _ o X eorm Lozt lox Al
xh_)Iroloaz 23x° + 122 + 1bx — 21 = lenc}ox4 o o 0 0
lim 1 23 n 12 15 21
= 1m _—— R— —_—
=00 x  x2 3 ot
= lim1-0404+0—-0=1
Tr—00
5. Show that logx = O(x).
Proof:
1 N 1
lim 2% — Jim £ = lim = =0
r—0o0 T—00 T—00 I

Therefore, logn = O(n).




6.

10.

. Show that (y/2)'°8" =

Show that n! = O(n")

Proof:

Notice that whenn > 1,0<n!=1-2-3---n<n-n-
andc=1.)

--n = n". Therefore n! = O(n") (Here ng = 1,

. Show that logn! = O(nlogn)

Proof:

In the previous problem, we showed that when n > 1, n! < n™. Notice that n! > 1, so taking logs of both
sides, we obtain 0 < logn! < logn™ = nlogn for all n > 1. Therefore logn! = O(nlogn). (Here,

ng=1,andc=1.)

Find a good upper bound on nlog(n? + 1) + n?log n.
Solution:
Ifn>1,

log(n? 4 1) < log(n? 4+ n?) = log(2n?) = (log2 + logn?) < (logn + 2logn) = 3logn

Thus whenn > 1,

0 < nlog(n® + 1) + n%logn < n3logn + n’logn < 3n?logn + n*logn < 4n?logn.

Thus, nlog(n? + 1) + n?logn = O(n%logn).

O(y/n), where log means log,.

Proof:
It is not too hard to see that

(ﬂ)logn _ nlog\/i _ n10g21/2 _ n%logQ — TL% — \/ﬁ
Thus it is clear that (1/2)1°8" = O(\/n).
Show that 2¥ = O(3%).
Proof #1:

X x

This is easy to see since lim — = lim (> = lim 0
Proof #2:

If z > 1, then clearly (3/2)* > 1, so

3\* 2 x 3\*
2T <27 | = = = 37,
<> (3) - (%) -3



