Quicksort

Quicksort

Quicksort 1s a divide-and-conquer method for sorting.
It works as follows:

e Selection: A pivot element is selected.

e Partition: Place all of the smaller values to the
left of the pivot, and all of the larger values to the
right of the pivot. The pivot is now in the proper
place.

e Recur: Recursively sort the values to the left and
to the right of the pivot.

Quicksort

Quicksort: Illustration

1. Selection: Pick a pivot a|k

2. Partition: Rearrange the elements so that:
e qlk| is in its final position a/i]
o j<i:>a[j]<a[']
e j >1i=alj] >ali

3. Recur: Recursively sort the subarrays
all,...,i— 1] and ali +

Quicksort

Quicksort Example

Select the pivot.

Put the smalls on the left and bigs on the right.
< pivot

Pivot

|

89

o6

63

12

4]

34

95

Y

> pivot

o6

63

41

34

12

89

95

Continue recursively.

Pivot

l

o6

63

41

A4

34

41

o6

63

Finish.

Quicksort

Quicksort: The Algorithm

vold Quicksort (int A[],int 1, 1int r)
if (r > 1) {
int p = Partition(A,1l,r);
Quicksort (A, 1,p-1);
Quicksort (A, p+l,r);
}

e The function Partition
picks some k, [< k < r;
places x = A[k] in its proper location, p;
assures that A[j] < Alp|if j < p; and
assures that A[j] > A[p|if j > p.

e This 1s not the only way to define quicksort.

e Some versions of Quicksort don’t use a pivot
element, but instead define left and right
subarrays, promising that the values in the left
array are less than those in the right array.

Quicksort

A Closer Look at Partition

e There are various methods that can be used to
pick the pivot element, including:

— Use leftmost element as the pivot.

— Use the “median-of-three” rule to pick the
pivot.

— Use a random element as the pivot.

e After the pivot is picked, how do we put it in place
and insure the partition properties?

— There are several ways of accomplishing this.

— We will look at one way to implement the
“leftmost pivot” strategy.

— The other methods can be implemented by
slightly modifying this method.

Quicksort

The Standard Partition

e Here is one way to implement the leftmost pivot
method.

int Partition(int A[],int L,int R) {
int i=L+1;
int J=R;
while (1) {
while (i<=R && A[1i]<A[L]) 1i++;
while (A[J1>A[L]) J==
1f(1<3) |
Swap (A[1],A[J]);
1++;

J——7

{
Swap (A[L],A[J]);
return 7j;

e We pick the leftmost element as the pivot.

e We travel from the endpoints to the center,
swapping elements that are in the wrong hallf.

Quicksort

Partition Example

15112 13|21 25

e Here, p = 15.

swap

seek

finish

e The pivot has index 6, so Partition returns the
value 6.

Quicksort

Other Choices for Pivot

Random:

— We pick a random element of the sequence as
the pivot.

— The average complexity does not depend on
the distribution of input sequences.

Median-of-Three:

— The partitioning element is chosen to be:

median(all], a[(l + 1) /2], a[r])

— This method is unlikely to generate a
“degenerate” partition.

How can we modify the previous Partition to
implement these?

Is there any better way to implement these?

Is there any better way to choose pivot?

Quicksort

Other Considerations

e Correctness: We need to consider two factors

— Since the algorithm is recursive, does it
terminate?

— When it does terminate, does it return a sorted
list?
e Optimization:

— What happens if we sort small subsequences
with another algorithms?

— What if we ignore small subsequences? That
is, we use Quicksort on subarrays larger than
some threshold. Can we then finish sorting
with another algorithm for increased
efficiency? (Hint: The array 1s now mostly
sorted.)

Quicksort

Analyzing Quicksort

e Partition can be done in time O(n), where n is the
size of the array. Can you prove this?

e The cost of all calls to partition at any depth in the
recursion has time complexity O(n), where n is
the size of the original array. Can you prove this?

e Thus, the complexity of Quicksort is the
complexity of partition times the depth of the
furthest recursive call.

e Example:

12

12

10

Quicksort

11

Quicksort Time Complexity

The operation which 1s performed most often is
the compare. Can you prove this?

Let T'(n) be the number of compares required by
Quicksort.

If the pivot ends up at position ¢, then we have
Tn)=Tmn—19)+T{—1)+n.

Unfortunately, 2 may be different for each
subarray, and at each level of recursion.

We have seen already that T'(n) = O(n x k),
where k is the depth of the deepest recursive call.

What is & in general?

We will look at the best case, worst case, and
average case complexities.

Quicksort

Best and Worst Case Complexity

e Best-case:

— The best case is clearly if the pivot always
ends up at the center of the subarray.

— Intuitively, this would lead to recursive depth
of at most log n.

— We can actually prove this. We have
T(n) <2T(n/2)+n.
We have seen previously that
T(n) =06(nlogn).

e Worst-Case

— in the worst-case the pivot is always the first or
last element of the subarray.

— In this case, we have
Tn) = Tn—1)+n
= n+n—1)+...+1
= n(n+1)/2=0(n?

12

Quicksort

13

Average Case Complexity

We assume that the pivot has the same probability
(1/n) to go into each of the n possible positions.
This gives

T,(n)

The last step comes from the fact that the two
sums are the same, but in reverse order.

We have seen that in the best case,
T'(n) = O(nlogn) and in the worst case,

T(n) = O(n?).

We guess that T, (n) < anlogn + b, for two
positive constants a and b.

We will prove this by induction.

Quicksort 14

Proof that T'(n) < anlogn + b

e We can pick a and b so that the condition holds
for T'(1).

e Assume it holds for all £ < n. Then

Ty (n) n—l—%zn:Ta(k—l)
k=1

n—1
2
n —+ ﬁ Z Ta(k)
k=1
n—1

2
n+ — g (aklog k + b)
n
k=1

20
n—+ —

Quicksort 15

e It can be shown that

n—1 1 1
Z klogk < 5712 logn — —n?.

8
k=1
e Substituting, we get

Ton) = n+ 2m—1)+

n

2b 1 5

n+—m-—1)4+ — —nQIOgn——n)

n n \2

2
n+2b——b—|—anlogn—gn
n 4

anlogn+b+(n—l—b—2—b—gn)
n 4

anlogn +b+ (n+b— %n)

8

< anlogn +b.

e The last step can be obtained by choosing a large
enough.

e Thus, T'(n) = O(nlogn).

