
Basic Sorting Algorithms 1

Sorting Concepts

• Sorting is considered to be one of the classic areas of study in
computer science.

• A few definitions will be helpful:

– A field is a unit of data. (e.g. a name, phone number, ID #, age.)

– A record is a collection of fields.

– A file is a collection of records.

• Sorting is the process of placing the records of a file in some well
defined order.

• We sort a file based on one or more fields, which we callkeys.

• Some order is defined for each key, and the sort is performed onthe
keys in some order.

• We will focus on sorting with respect to a single key.

• Most sorting algorithms arecomparison sorts. These use two basic
operations:compareandswap.



Basic Sorting Algorithms 2

Indirect Sorting

• When records are large, swapping is very expensive.

• We can minimize the cost by using anindirect sort.

• This can be accomplished in several ways.

• One method is to create a new file whose records contain the key
field of the original file, and either a pointer to or index of the original
records.

• We sort the new file, whose records are small, and then access the
original file using the pointers/indices.



Basic Sorting Algorithms 3

Example

We want to sort the following file by the fieldDept.

Index Dept Last First Age ID number

1 123 Smith Jon 23 234-45-4586

2 23 Wilson Pete 54 345-65-0697

3 2 Charles Philip 19 508-45-6859

4 45 Shilst Greg 78 234-45-5784

Index Key

1 123

2 23

3 2

4 45

Sort
−→

Index Key

3 2

2 23

4 45

1 123

• To access the records in sorted order we use the order provided by the
index column. In this case,(3, 2, 4, 1).



Basic Sorting Algorithms 4

Criteria for Evaluating Sorts

Sorting algorithms can be compared based on several factors.

• Run-time: The number of operations performed (usually swap and
compare).

• Memory: The amount of memory needed beyond what is needed to
store the data to be sorted.

– Some algorithms sort “in place” and use no (or a constant amount
of) extra memory.

– Others use a linear amount, and some an exponential amount.

– Clearly less memory is preferred, although space/time trade-offs
can be beneficial.

• Stability: An algorithm is stable if it preserves the relative order of
equal keys.

We usually worry mostly about run-time, since the algorithms we discuss
all use relatively the same amount of memory.



Basic Sorting Algorithms 5

Example of Stable Sort

We want to sort the following file according to the first letter. Below are
the results of a stable and an unstable sort.

Stable Unstable

File sorting sorting

A Mary A Mary A Michel

B Cindy A Michel A Peter

A Michel A Peter A Mary

B Diana B Cindy B Tony

A Peter B Diana B Diana

B Tony B Tony B Cindy

We will see later why stable sorting is important.



Basic Sorting Algorithms 6

Sorting Algorithms

The following are common sorting algorithms

• Selection Sort

• Insertion Sort

• Bubble Sort

• Quicksort

• Mergesort

• Heapsort

• Radix sort

We will discuss the first three in the remainder of these notes.



Basic Sorting Algorithms 7

Selection Sort

• Find the largest/smallest key, put it in place, and then sortthe
remainder of the array.

• Sample C++ code for selection sort:
void selection_sort(int a[],int n) {

for (int i=0;i<n-1;i++) {
int min = i;
for (int j=i+1;j<n;j++) {

if(a[j] < a[min]) min = j;
}

swap(a[min],a[i]);
}

}

• This is almost legal Java code, but there is one problem that needs to
be fixed.



Basic Sorting Algorithms 8

Selection Sort

Example:

21 6

31 2

9

96321

3

6

21693

9



Basic Sorting Algorithms 9

Selection Sort Analysis

void selection_sort(int a[],int n) {
for (int i=0;i<n-1;i++) {

int min = i;
for (int j=i+1;j<n;j++) {

if(a[j] < a[min]) min = j;
}

swap(a[min],a[i]);
}

}

• For eachi, we executen− i− 1 compare operations.

• Sincei runs from 0 ton− 2, we execute

(n− 1) + (n− 2) + . . .+ 1 =

n−1∑

j=1

j =
n(n− 1)

2

compare operations.

• As we have seen before,n(n−1)
2 = O(n2)

• Is this worst-case or average case? How many swaps are executed?



Basic Sorting Algorithms 10

Insertion Sort

• Insert each key into a sorted sub-list of the keys.

• This is the method often used to sort cards.

• Sample C++ code for insertion sort:
void insertion(int a[],int n) {

for (int i=1;i<n;i++) {
int j = i;
int temp = a[i];
while (j > 0 && temp < A[j-1]) {

A[j] = A[j-1]; j--;
}
A[j] = temp;}

}

• Would this one work as-is in Java?



Basic Sorting Algorithms 11

Insertion Sort

Example:

3 6 9

13 9 6 2

1

2

2 3 6 91

3 6 9 2

1

23 9 6 1



Basic Sorting Algorithms 12

Insertion Sort Analysis

void insertion(int a[],int n) {
for (int i=1;i<n;i++) {

int j = i;
int temp = a[i];
while (j > 0 && temp < A[j-1]) {

A[j] = A[j-1]; j--;
}
A[j] = temp;}}

• For eachi, we need to compare the current key with at mosti keys.

• Sincei runs from 1 ton− 1, we must do at most

1 + 2 + . . .+ n− 1 =

n−1∑

i=1

i =
n(n− 1)

2

comparisons.

• This is the same as selection sort,O(n2)

• What is the average case? How many swaps are performed?



Basic Sorting Algorithms 13

Bubblesort

• Go through the list in order, swapping two elements if there keys are
out of order.

• Repeat until no swaps are performed. The list is sorted.

• It is not hard to see thatn passes suffice.

• This is similar to selection sort, except with a lot of added swaps.

• Sample C++ code for bubblesort:
void bubblesort(int a[],int n)
{

for (int i=n-1;i>1;i--)
for (int j=1;j<=i;j++)

if (a[j-1] > a[j])
swap(a,j-1,j);

}



Basic Sorting Algorithms 14

Comparisons

• Selection sort

– Average -n
2

2 comparisons,n swaps

– Worst - the same

• Insertion sort

– Average -n
2

4 comparison,n
2

8 swaps

– Worst - double the average

– linear foralmost sorted files

• Bubble sort

– Average -n
2

2 comparisons,n
2

2 swaps

– Worst - the same



Basic Sorting Algorithms 15

General Sorting Strategy

• Most well-known (good) sorting algorithms are recursive. They
follow the following general strategy:
Given a list of recordsL

– If L has zero or one element, then it is already sorted.

– Otherwise
1. Divide in L into two smaller sequences,L1 andL2.
2. Recursively sortL1 andL2.
3. CombineL1 andL2 to produce sortedL.

• Merge Sort andQuick Sort use this sort of technique.

• For more information on these and other more advanced sorting
techniques, consult some of my other notes.


