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1 Osnovne lastnosti holomorfnih funkcij

Domena v C je enostavno povezana odprta mnoºica.

Naloga 1. Izrazi operator ∆ : C2(D) → C0(D), ∆u = uxx + uyy s pomo£jo operatorjev ∂
∂z in ∂

∂z̄ .

Re²itev 1. Izra£unajmo ∂
∂z

∂
∂z̄ = ∂2

∂z∂z̄ :

∂

∂z

∂

∂z̄
(u) =

∂

∂z

(
∂

∂z̄
u

)
=

1

2

∂

∂z
(ux + iuy) =

1

4
(uxx − iuxy + iuyx+ uyy) =

∆u

4
,

torej je ∆u = 4∂∂. Podobno vidimo, da je tudi ∆u = 4∂∂, torej v posebnem velja

∂∂ = ∂∂.

Dvakrat zvezno odvedljivim funkcijam u na D, ki zado²£ajo ∆u = 0, pravimo harmoni£ne funkcije.

Naloga 2. Naj bo f holomorfna funkcija na D. Dokaºi, da sta njen realni in imaginarni del harmoni£ni funkciji.

Re²itev 2. Pi²imo f = u+ iv. Ker je f holomorfna, je ∂f = 0, torej velja

∆(f) = ∂(∂f) = 0,

po drugi strani pa je ∆(f) = ∆u + i∆v. Ker sta u, v realni funkciji, sta vektorja ∆u(z), i∆v(z) ∈ C linearno
neodvisna za poljuben z ∈ D. Sledi ∆u(z) = ∆v(z) = 0 za poljuben z ∈ D, torej sta u in v harmoni£ni funkciji na
D. Iz ra£una je razvidno tudi, da je ∆f(z) = 0 za vse z. Holomorfne funkcije so torej harmoni£ne.

Naloga 3. Naj bo D ⊂ C povezana domena, tj. povezana in enostavno povezana odprta mnoºica, in u : D → R
gladka harmoni£na funkcija. Dokaºi, da obstaja harmoni£na funkcija v ∈ C∞(D), tako da je f = u+ iv holomorfna
funkcija na D.

Re²itev 3. Recimo, da tak²na funkcija v obstaja. Iz Cauchy-Riemannovega sistema sledi

vx = −uy, vy = ux.

Predpostavimo najprej, da je D konveksna (ali zvezdasta glede na neko to£ko (x0, y0)). �elimo de�nirati v kot

v(x, y) = −
∫ x

x0

uy(t, y)dt+ C(y).

Veljati mora

vy(x, y) = −
∫ x

x0

uyy(t, y)dt+ C ′(y) = ux(x, y), C ′(y) = ux(x, y) +

∫ x

x0

uyy(t, y)dt.

Ker je u harmoni£na, je uyy(t, y) = −uxx(t, y) za vse (t, y) ∈ D. Dobimo

C ′(y) = ux(x, y) +

∫ x

x0

uyy(t, y)dt = ux(x, y)−
∫ x

x0

uxx(t, y)dt = ux(x0, y).
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Z integracijo dobimo C(y) =
∫ y

y0
ux(x0, t)dt. De�nirajmo

v(x, y) =

∫ y

y0

ux(x0, t)dt−
∫ x

x0

uy(t, y)dt

Velja

vx(x, y) = −uy(x, y), vy(x, y) = ux(x0, y)−
∫ x

x0

uyy(x, t)dt = ux(x0, y) +

∫ x

x0

uxx(x, t) = ux(x, y).

Sledi
vxx + vyy = −uxy + uxy = 0,

torej je v harmoni£na funkcija, ki je konjugirana funkciji u. Sledi, da je f = u+ iv holomorfna. �e D ni konveksna,
izberemo neko to£ko (x0, y0) in za poljubno to£ko (x, y) de�niramo v kot integral

v(x, y) =

∫
γ

uxdy − uydx,

kjer je γ stopni£asta pot od (x0, y0) do (x, y). Ker je D lokalno konveksna, saj za vsako to£ko v D obstaja nek
odprt disk v D s centrom v tej to£ki, tak²na pot obstaja. Integral po γ se nato prevede na vsoto integralov zgornje
oblike. Ker je D enostavno povezana, je integral neodvisen od poti, torej enoli£no de�nira funkcijo v na D.

Naloga 4. Naj bo f : D ⊂ C → C∗ := C\{0} holomorfna funkcija na domeni D. Pokaºi, da obstaja holomorfna
funkcija g, ki zado²£a f = eg. Tak²ni funkciji g pravimo logaritem funkcije f in jo ozna£imo z g = log f .

Re²itev 4. Recimo, da tak²na funkcija g obstaja. �e odvajamo ena£bo f = eg dobimo

f ′ = g′eg = g′f,

torej mora veljati g′ = f ′/f . Ker f nima ni£el na D, je funkcija f ′/f holomorfna na D. Za poljubno enostavno
sklenjeno krivuljo γ v D torej po Cauchyjevem izreku velja∮

γ

f ′

f
dz = 0.

Sledi, da je integral

F (z) =

∫ z

z0

f ′(t)

f(t)
dt

neodvisen od poti. V posebnem je F holomorfna, kar lahko preverimo po de�niciji:

F (z + h)− F (z)

h
=

∫ z+h

z0

f ′(t)
f(t) dt−

∫ z

z0

f ′(t)
f(t) dt

h
=

∫ z+h

z
f ′(t)
f(t) dt

h
=
f ′(z̃)

f(z̃)

za nek z̃ ∈ B(z, |h|), saj je funkcija f ′/f zvezna, torej je F kompleksno odvedljiva. De�nirajmo

g(z) = log(f(z0)) +

∫ z

z0

f ′(t)

f(t)
dt.

O£itno je f(z0) = eg(z0). Iz zgornjega izra£una pa vidimo, da je f ′(z) = (eg)′(z), torej je f(z) = eg(z) za vse z ∈ D.

Opomba 1. V resnici velja
f(z0) = eg(z0)+2ikπ, za poljuben k ∈ Z.

Ustreznih funkcij g je torej ²tevno mnogo. Z drugimi besedami, g je dolo£ena do konstante natan£no.

Naloga 5. Pokaºi, da za zvezno odvedljive funkcije f : D → C velja(
∂f

∂z̄

)
=
∂f

∂z
.
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Re²itev 5. Ra£unamo po de�niciji:(
∂f

∂z̄

)
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2
(ux + ivx + iuy − vy) =

1

2
(ux − ivx − iuy − vy) =

1

2

(
∂f

∂x
− i

∂f

∂y

)
=
∂f

∂z

Naloga 6. Izrazi s pomo£jo ∂, ∂:

a) ∂(f ◦ g),

b) ∂(f ◦ g).

Re²itev 6. a) Ra£unamo

2∂(f ◦ g) = ∂(u(q(x, y), w(x, y)) + iv(q(x, y), w(x, y))) =

=
∂

∂x
(f ◦ g)− i

∂

∂y
(f ◦ g) =

= uxqx + uywx + ivxqx + ivywx − iuxqy − iuywy + vxqy + vywy =

= ux(qx − iqy) + ivx(qx − iqy) + uy(wx − iwy) + ivy(wx − iwy) =

=
∂f

∂x
(qx − iqy) +

∂f

∂y
(wx − iwy) =

= fx2∂

(
g + g

2

)
+ fy2∂

(
g − g

2i

)
=

= (fx − ify)∂g + (fx + ify)∂g =

= 2∂f∂g + 2∂f∂g.

b) Na podoben na£in dobimo

2∂(f ◦ g) = ∂(u(q(x, y), w(x, y)) + iv(q(x, y), w(x, y))) =

=
∂

∂x
(f ◦ g) + i

∂

∂y
(f ◦ g) =

= uxqx + uywx + ivxqx + ivywx + iuxqy + iuywy − vxqy − vywy =

= ux(qx + iqy) + uy(wx + iwy) + ivx(qx + iqy) + ivy(wx + iwy) =

= (ux + ivx)(qx + iqy) + (uy + ivy)(wx + iwy) =

=
∂f

∂x
2∂

(
g + g

2

)
+
∂f

∂y
2∂

(
g − g

2i

)
=

= (fx − ify)∂g + (fx + ify)∂g =

= ∂f∂g + ∂f∂g

Naloga 7. a) Izpelji Greenovo identiteto za vektorsko polje F = (f1, f2) : C → C in zvezno odvedljivo funkcijo
g : C → R na omejeni domeni D ⊂ C z gladkim robom, sestavljenim iz kon£ne unije Jordanovih krivulj:∫

D

⟨∇, F ⟩gdxdy =

∫
bD

⟨n⃗, F ⟩gds−
∫
D

⟨F,∇g⟩dxdy,

kjer je n⃗ zunanja enotska normala na bD.

b) Naj bo f : C → C dvakrat zvezno parcialno odvedljiva funkcija na domeni D z enakimi lastnostmi kot zgoraj
in naj bo g ∈ C∞

c (D) gladka funkcija na D s kompaktnim nosilcem v D, kjer je D domena z enakimi lastnostmi
kot zgoraj. Pokaºi, da velja ∫

D

(∆f)gdxdy =

∫
D

f(∆g)dxdy.
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c) Izra£unaj ∆φ, kjer je

φ :=
log |z|
2π

.

d) Pokaºi, da je φ fundamentalna re²itev Laplaceovega operatorja ∆. To pomeni, da za poljubno testno funkcijo
g ∈ C∞

c (C) velja ∫∫
C
f(ζ)∆g(ζ)dζdζ̄ = g(0).

Opomba 2. Fundamentalna re²itev φ nam izrazi re²itev u ena£be ∆u = f kot integral (konvolucijo)

u(z) =

∫
C
f(ζ)φ(z − ζ)dζdζ̄

Re²itev 7. a) Predpostavimo najprej, da je D enostavno povezano obmo£je z robom γ. Parametriziramo γ z
naravnim parametrom s, tako da velja ∥γ̇∥ ≡ 1 in n⃗ = (ẏ,−ẋ), kjer je n⃗ zunanja enotska normala. Ob oznakah
F = (P,Q) sledi:

⟨n⃗, F ⟩ = P ẏ −Qẋ,

torej je ⟨n⃗, F ⟩gds = (gP )dy − (gQ)dx. Po Stokesovem izreku velja∫
bD

⟨n⃗, F ⟩gds =
∫
γ

⟨n⃗, F ⟩gds =
∫ ℓ(γ)

0

(gP )ẏ − (gQ)ẋdt

∫
γ

(gP )dy − (gQ)dx =

∫
D

((gP )x + (gQ)y)dxdy.

Preprost izra£un pokaºe, da je zgornji integrand enak ⟨∇g, F ⟩ + g∇ · F . Enakost za enostavno povezana
obmo£ja sledi.

V splo²nem je rob bD unija paroma disjunktnih regularnih gladkih krivulj γ0, γ1, . . . , γn, ki jih parametriziramo
z naravnim parametrom s0 ∈ [0, Si], tj. za vse i = 0, . . . , n velja

∥γ̇i(si)∥ ≡ 1.

Poleg tega zahtevamo, da je bD koherentno orientiran, tj.

n1i ẏi − n2i ẋi ≡ 1,

kjer je γi = (xi, yi) in je n⃗i = (n1i , n
2
i ) zunanja enotska normala na robno komponento γi. Ker je ∥γ̇i∥ ≡ 1,

lahko vzamemo n⃗i = (ẏi,−ẋi). Natan£neje, naj bo n⃗i(s) enotski vektor za katerega velja ⟨γ̇i(s), n⃗i(s)⟩ = 0 za
vse s in

γi(s)− tn⃗i(s) ∈ D, za vse dovolj majhne t ≥ 0.

Tu predpostavljamo, da je γ0 rob enostavno povezanega obmo£ja D′ ⊂ C, tako da je D ⊂ D′. Enak izra£un
kot zgoraj nato pokaºe enakost za splo²na obmo£ja z gladkim robom:∫
bD

⟨n⃗, F ⟩gds =
n∑

j=0

∫
γj

⟨n⃗, F ⟩gds =
n∑

j=0

∫
γj

(gP )dy−(gQ)dx =

∫
bD

(gP )dy−(gQ)dx =

∫
D

((gP )x+(gQ)y)dxdy.

b) Za poljubno C2-funkcijo f je
∆f = ∇ · (∇f).

Ker je g ∈ C∞
c (D), je g|bD ≡ 0 in ∇g|bD ≡ 0, torej velja po prej²nji to£ki:∫

D

(∆f)gdxdy =

∫
bD

⟨n⃗,∇f⟩gds−
∫
D

⟨∇f,∇g⟩dxdy = −
∫
D

⟨∇f,∇g⟩dxdy =

=

∫
bD

⟨n⃗,∇g⟩fds−
∫
D

⟨∇f,∇g⟩dxdy =

∫
D

∇ · (∇g)fdxdy =

=

∫
D

f∆gdxdy.
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c) Velja

∆φ = 4
∂2φ

∂z∂z̄
=

4

4π

∂2

∂z∂z̄
log(zz̄) =

1

π

∂2

∂z∂z̄
(log z + log z̄) = 0

na C∗ = C\{0}.

d) Preveriti moramo, da za poljubno testno funkcijo g ∈ C∞
c (C) velja∫

C
φ(x, y)∆g(x, y)dxdy =

1

2π

∫
C
∆g(x, y) log |ζ|dxdy = g(0).

Velja |ζ|2 = x2 + y2. Zgornji integral je torej enak

1

4π

∫
C
∆g(x, y) log(x2 + y2)dxdy

Ker ima g kompakten nosilec, velja g ≡ 0 na C\B(0, r) =: Br za dovolj velik r > 0. Zgornji integral razdelimo
na dva dela:

1

2π

∫
C
∆g(x, y) log |ζ|dxdy =

1

2π

∫
Br\Bε

∆g(x, y) log |ζ|dxdy + 1

2π

∫
Bε

∆g(x, y) log |ζ|dxdy = A+B.

Oglejmo si najprej £len B. Uporabimo polarne koordinate in dobimo

1

2π

∫
Bε

∆g(x, y) log |ζ|dxdy =
1

4π

∫
Bε

∆g(x, y) log(x2 + y2)dxdy =
1

2π

∫ ε

0

∫ 2π

0

∆g(x, y) log(r)rdtdr

Ker je g gladka, je |∆g| ≤ M na Bε. Ker je limr→0 r log r = 0, je funkcija r 7→ r log r omejena na [0, ε], torej
je |r log r| ≤ K. Ocenimo∣∣∣∣ ∫ ε

0

∫ 2π

0

∆g(x, y) log(r)rdtdr

∣∣∣∣ ≤ ∫ ε

0

∫ 2π

0

|∆g(x, y) log(r)r|dtdr ≤ KM

∫ ε

0

∫ 2π

0

dtdr = 2KMπε.

Sledi B → 0, ko gre ε → 0. Ozna£imo ²e D = Br\Bε in izra£unajmo £len A =
∫
D
f∆gdxdy. Iz Greenove

identitete sledi ∫
D

f∆gdxdy =

∫
bD

⟨n⃗,∇g⟩fds−
∫
D

⟨∇f,∇g⟩dxdy =

=

∫
bD

⟨n⃗,∇g⟩fds−
∫
bD

⟨n⃗,∇f⟩gds+
∫
D

g∆fdxdy =

= I − J +K

Iz to£ke c) sledi, da je K = 0. Sedaj izra£unajmo I:

I =

∫
bBr

⟨n⃗,∇g⟩fds−
∫
bBε

⟨n⃗,∇g⟩fds = −
∫
bBε

⟨n⃗,∇g⟩fds = − log ε

2π

∫
bBε

⟨n⃗,∇g⟩ds.

Saj je f |bBε
≡ log ε/(2π). Ker je integrand omejen na Bε, za neko konstanto C > 0 velja |I| ≤ Cε log ε → 0,

ko gre ε ↓ 0. Za J izra£unamo

J =

∫
bD

⟨n⃗,∇f⟩gds =
∫
bBr

⟨n⃗,∇f⟩gds−
∫
bBε

⟨n⃗,∇f⟩gds = −
∫
bBε

⟨n⃗,∇f⟩gds = − 1

2πε

∫
bBε

gds.

Ker je g zvezna na Bε, velja J → g(0), ko gre ε ↓ 0. Sledi

1

2π

∫
C
∆g(x, y) log |ζ|dxdy = I − J +K +B

ε↓0−−→ 0 + g(0) + 0 + 0 = g(0).
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Naloga 8 (Riemannov izrek o odpravljivi singularnosti). Naj bo f : D∗ → C holomorfna funkcija, omejena na neki
okolici izhodi²£a. Dokaºi, da se f holomorfno raz²iri na D.

Re²itev 8. De�nirajmo funkcijo h(z) = z2f(z). Ker je f omejena na neki okolici izhodi²£a, recimo |f | ≤M , velja
|h(z)| ≤ |z|2M → 0, ko gre z → 0. Sledi, da se h zvezno raz²iri na D. Izra£unamo odvod h:

lim
z→0

h(z)− h(0)

z
= lim

z→0

z2f(z)

z
= lim

z→0
zf(z) → 0

z enakim argumentom kot prej, tj. f je omejena na okolici izhodi²£a. Sledi, da je h kompleksno odvedljiva v
izhodi²£u, torej je holomorfna. Razvijemo h v Taylorjevo vrsto:

h(z) = h(0) + h′(0)z + h′′(0)z2 + o(z2) = h′′(0)z2 + o(z2).

Naj bo f̃ = h(z)/z2. O£itno je f̃ = f na D∗, blizu izhodi²£a pa velja

f̃(z) =
h′′(0)z2 + o(z2)

z2
= h′′(0) +

o(z2)

z2
z→0−−−→ h′′(0).

Sledi, da je f̃ : D → C zvezna funkcija, holomorfna na D∗. Ker je f̃ vsota konvergentne poten£ne vrste v spre-
menljivki z, je holomorfna.

Opomba 3. Konvergen£ni radij Taylorjeve vrste holomorfne funkcije f : D → C v to£ki z ∈ D je enak radiju
najve£jega diska s sredi²£em v z, ki leºi v D. Natan£neje:

R = sup{r > 0 : B(z, r) ⊂ D}.

Naloga 9 (Cauchyjeve ocene). Naj bo f : Ω → C holomorfna funkcija in naj bo D ⋐ Ω disk s sredi²£em v a ∈ Ω,
tako da je D ⊂ Ω. Pokaºi, da veljajo Cauchyjeve ocene:

|f (k)(a)| ≤ k!M

rk
,

kjer je r radij diska D in je M = maxζ∈bD |f(ζ)|.

Re²itev 9. Po Cauchyjevi formuli velja

f(a) =
1

2πi

∫
bD

f(ζ)

ζ − a
dζ.

Ker vrsta
1

ζ − a
= 1 + (ζ − a) + (ζ − a)2 + · · ·

konvergira enakomerno na bD ∋ ζ, lahko k-krat odvajamo pod integralom in dobimo

f (k)(a) =
k!

2πi

∫
bD

f(ζ)

(ζ − a)k+1
dζ.

Na bD velja |f(ζ)| ≤M ter |ζ − a| ≡ r, od koder dobimo oceno

|f (k)(a)| ≤ k!

2π

∫
bD

M

rk+1
|dζ| = k!M

2π

∫ 1

0

2πr

rk+1
|e2πit|dt = k!M

rk
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Naloga 10 (Princip identi£nosti). Naj bo Ω ⊂ C povezana domena in f, g : Ω → C holomorfni funkciji na Ω. �e
velja f |A ≡ g|A, kjer je A ⊂ Ω neka mnoºica s stekali²£em v Ω, tedaj je f ≡ g na Ω.

Opomba 4. To£ka q ∈ Ω je stekali²£e mnoºice A, £e je za poljubno okolico U to£ke q mnoºica (U\{q}∩A) neprazna,
tj. poljubna okolica q vsebuje neko to£ko iz A, ki je razli£na od q.

Re²itev 10. Dovolj je pokazati, da je holomorfna funkcija f : Ω → C konstantno enaka 0, £im ima njena mnoºica
ni£el neko stekali²£e v Ω. Naj bo torej Zf = {z ∈ Ω : f(z) = 0} in naj bo A mnoºica stekali²£ mnoºice Zf .
Pokaºimo, da je A hkrati odprta in zaprta.

Pokaºimo najprej, da je A zaprta. Naj bo q neko stekali²£e mnoºice A. Tedaj poljubna odprta okolica U to£ke
q vsebuje nek w ∈ A\{q}. Ker je U odprta, je okolica za to£ko w, torej vsebuje neko to£ko z ∈ Zf . Ker je bila U
poljubna, je q stekali²£e mnoºice Zf , torej je q ∈ A.

Naj bo sedaj q ∈ A. Ker je f holomorfna v q, je na neki okolici U ⊂ Ω to£ke q enaka vsoti svoje Taylorjeve
vrste: f(z) =

∑∞
j=0 cj(z − q)j . Ker je q ni£la f , velja c0 = 0. Recimo, da f ni konstantno enaka 0 na U . Tedaj

obstaja najmanj²i tak j0 ∈ N, j0 ≥ 1, da velja cj0 ̸= 0, torej je f(z) = cj0(z − q)j0 + o((z − q)j0). Funkcija
g(z) = f(z)/(z − q)j0 je torej omejena na neki okolici V ⊂ U to£ke q in je holomorfna na V \{q}, torej ima po
Riemannovem izreku odpravljivo singularnost v q in velja g(q) = cj0 ̸= 0. Ker je g holomorfna, je zvezna, torej
obstaja okolica V ′ ⊂ V to£ke q, tako da je g(z) ̸= 0 za vse z ∈ V ′. Ker je f(z) = (z− q)j0g(z), velja f(z) ̸= 0 za vse
z ∈ V ′\{q}, torej je q izolirana ni£la funkcije f , kar je v nasprotju s predpostavko o tem, da je q stekali²£e mnoºice
Zf . Sledi f |U ≡ 0, torej je A odprta.

Ker je Ω povezana, sta edini njeni podmnoºici, ki sta hkrati odprti in zaprti ravno prazna mnoºica in Ω. Ker je
A po predpostavki neprazna, sledi A = Ω.

Naloga 11. Naj bo Ω ⊂ C odprta mnoºica. Ozna£imo Ω+ = {z ∈ Ω : ℑz > 0} in Ω− = {z ∈ Ω : ℑz < 0}. Naj bo
²e I = Ω ∩ R in naj bosta funkciji f : Ω+ ∪ I → C, g : Ω− ∪ I → C zvezni ter holomorfni na Ω+ oz. Ω−. Naj velja
f |I ≡ g|I . Dokaºi, da je tedaj

F (z) :=

{
f(z); z ∈ Ω+ ∪ I
g(z); z ∈ Ω− ∪ I

holomorfna funkcija na Ω.

Namig 1. Uporabi Morerov izrek: £e je f : D → C zvezna funkcija, za katero je
∫
b∆
fdz = 0 za vsak trikotnik ∆,

za katerega velja ∆ ⊂ D, potem je f holomorfna. Namesto trikotnikov lahko v pogoju vzamemo tudi enostavne
sklenjene krivulje, ki omejujejo neko obmo£je v Ω, tj. kontraktibilne zanke.

Re²itev 11. Ker velja f |I ≡ g|I , je funkcija F dobro de�nirana. Za poljuben trikotnik ∆, ki leºi bodisi v Ω+ bodisi
v Ω− je Morerov pogoj za F izpolnjen. �e katera od stranic trikotnika leºi na I, je pogoj prav tako izpolnjen, saj je
f zvezna na Ω+ ∪ I. Recimo sedaj, da trikotnik ∆ seka tako Ω+ kot tudi Ω−. Razdelimo trikotnik na dve obmo£ji
∆± = ∆ ∩ Ω± ⊂ Ω

±
. Obmo£ji skladno orientiramo, tedaj pa velja∫

b∆

Fdz =

∫
b∆+

fdz +

∫
b∆−

gdz = 0.

Sledi, da je Morerov pogoj izpolnjen za poljuben trikotnik ∆ ⊂ Ω, torej je F holomorfna na Ω.

Naloga 12 (Schwarzov princip zrcaljenja). Naj bo f : D := Ω+ ∪ I → C holomorfna funkcija na mnoºici D ⊂ {z ∈
C : ℑz ≥ 0}, ki ima realne vrednosti na D ∩ R = I ⊂ R. Dokaºi, da se f raz²iri na D ∪D∗, kjer je

D∗ = {z̄ : z ∈ D}.

Re²itev 12. De�nirajmo f∗ : D∗ → C s predpisom f∗(z) = f(z̄). Z odvajanjem se prepri£amo, da je f∗ holomorfna
funkcija na D∗. Ker za z ∈ D ∩ R velja f(z) = f(z̄) = f(z̄) = f∗(z), saj ima f realne vrednosti na D ∩ R, velja po
principu identi£nosti f(z) = f∗(z) za vse z ∈ D ∩ D∗, saj je D odprta mnoºica, torej je presek D ∩ R mnoºica s
stekali²£em. De�nirajmo

F (z) =

{
f(z); z ∈ D

f∗(z) z ∈ D∗

Iz zgornje razprave je razvidno, da je F dobro de�nirana. Po prej²nji nalogi sledi, da je tudi holomorfna.
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Naloga 13. Naj bo f zvezna na Ω+ ∪ I in holomorfna na Ω+. Predpostavimo, da je f |I ≡ 0. Pokaºi, da je tedaj
f ≡ 0.

Re²itev 13. Po principu zrcaljenja se f raz²iri na holomorfno funkcijo f̃ na Ω. Ker je f̃ |I ≡ 0 in je I mnoºica s
stekali²£em, je f̃ ≡ 0. Sledi f ≡ 0.

Naloga 14. Naj bodo Ω, Ω+, Ω−, I, f kot zgoraj in dodatno predpostavimo, da je Ω povezana, f injektivna na
Ω+, da ima realne vrednosti na I in da velja ℑf(z) ̸= 0 na Ω+. Dokaºi, da se tedaj f raz²iri do injektivne funkcije
na Ω.

Re²itev 14. Naj bo f̃ : Ω → C holomorfna raz²iritev f , ki jo da princip zrcaljenja. Dokaºimo, da je f̃ injektivna.
Po predpostavki je f̃ injektivna na Ω+. Ker je f̃(z̄) = f(z) za poljuben z̄ ∈ Ω−, je tudi f̃ |Ω− injektivna. Naj bosta
sedaj z, z′ ∈ Ω+. Ker je funkcija z 7→ ℑf(z) zvezna, je bodisi ℑf(z) > 0 bodisi ℑf(z) < 0 za vse z ∈ Ω+, torej je

f̃(z̄′) = f(z′) ̸= f(z) = f̃(z).

Brez ²kode za splo²nost predpostavimo ℑf(z) > 0 na Ω+. Ker ima f̃ realne vrednosti na I, je za injektivnost dovolj
pokazati f(x) ̸= f(y) za poljubna x, y ∈ I, x ̸= y. Predpostavimo nasprotno. Ker je f injektivna na Ω+ ∪ Ω−,
je nekonstantna na Ω, torej je odprta po izreku o odprti preslikavi. Sledi, da slika diska D(x, r) vsebuje nek disk
D(f(x), r′). �e izberemo r, r′ dovolj majhna, tudi slika diska D(y, r) vsebuje disk D(f(y), r) = D(f(x), r). Nadalje
lahko predpostavimo, da sta diska D(x, r) in D(y, r) disjunktna, tako da po potrebi zmanj²amo r in r′. Tedaj za
poljuben z ∈ D(x, r)+ dovolj blizu x obstaja nek z′ ∈ D(y, r), tako da je f(z) = f(z′). Ker je f injektivna na
Ω+ ∪ Ω−, sledi z′ ∈ D(y, r) ∩ I, vendar tedaj velja ℑf(z′) = 0, ker je f realna na I, in hkrati 0 < ℑf(z) = ℑf(z′)
po predpostavki. To je protislovje. Sledi, da je f injektivna tudi na I, torej je f̃ injektivna na Ω.

Naloga 15 (Schwarzova lema). Naj bo f : D → D holomorfna funkcija in naj bo f(0) = 0. Dokaºi, da velja

a) |f(z)| ≤ |z| za vse z ∈ D,

b) |f ′(0)| ≤ 1.

Nato pokaºi, da enakost v kateremu koli od zgornjih pogojev implicira f(z) = eiθz.

Re²itev 15. a) Ker je f holomorfna na D in je f(0) = 0, sledi, da je Taylorjev razvoj f na D oblike

f(z) = c1z + c2z
2 + · · · ,

torej je g(z) := f(z)/z holomorfna funkcija na D po izreku o odpravljivi singularnosti. �e je |z| = r, velja

|g(z)| = |f(z)|
|z|

≤ 1

r

r→1−−−→ 1,

torej je |g(z)| ≤ 1 po principu maksimuma, saj je g(z) holomorfna na D, od koder sledi

|f(z)| = |z| · |g(z)| ≤ |z|.

b) Velja

|f ′(0)| = lim
z→0

∣∣∣∣f(z)z
∣∣∣∣ ≤ 1.

�e velja enakost v pogoju a) za neko to£ko z ∈ D, potem je z maksimum funkcije |g(z)| in po principu maksimuma
je g konstantna. Enakost sledi. Recimo, da velja enakost v pogoju b). Po principu maksimuma je tedaj |f ′(z)| ≡ 1,
saj je f ′ holomorfna na D, torej velja |f ′(z)| ≤ 1. Po krepkem principu maksimuma je f ′ konstantna, torej je
f ′(z) = eiθ. Sledi f(z) = eiθz.

Naloga 16. Dokaºi slede£o posplo²itev Schwarzove leme. Naj bo f kot zgoraj, pri £emer dodatno zahtevamo, da
je izhodi²£e ni£la n-te stopnje. Dokaºi, da tedaj velja |f(z)| ≤ |z|n. �e za nek z velja enakost, je f(z) = eiθzn.

Re²itev 16. Ker je f holomorfna na D, njena Taylorjeva vrsta konvergira na D. Ker je izhodi²£e ni£la n-te stopnje,
sledi

f(z) = cnz
n + cn+1z

n+1 + · · · ,
torej je g(z) = f(z)/zn holomorfna funkcija na D. Kot prej vidimo, da je |g(z)| ≤ 1, torej je |f(z)| ≤ zn. �e velja
enakost, ima |g| maksimum v z, torej je g konstantna po principu maksimuma. Sledi, da je f(z) = eiθzn.
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Naloga 17. Ali obstaja tak²na holomorfna funkcija f : D → D, da velja

a) {f(1/n)}n∈N = {1, 0, 1/2, 1/3, 0, 1/4, 1/5, 1/6, 0, . . .},

b) {f(1/n)}n∈N = {1,−1/2, 1/3,−1/4, . . .},

c) {f(1/n)}n∈N = {1/2, 1/2, 1/4, 1/4, 1/6, 1/6, . . .},

d) f(z) = 1/z za vse z ∈ bD. (Tu predpostavljamo, da je f ∈ A(D)).

Re²itev 17. a) Recimo, da tak²na funkcija obstaja. Ker ima f ni£le poljubno blizu izhodi²£a, je f(0) = 0 in
velja f ≡ 0 na D po principu identi£nosti, kar je v nasprotju s predpostavko.

b) Recimo, da tak²na funkcija obstaja. Zaradi zveznosti je f(0) = 0. Naj bo g(z) = −z. Tedaj je g(1/2k) =
−1/2k = f(1/2k) za vse k ∈ N. Ker ima mnoºica {1/2k}k∈N stekali²£e v D, velja f = g po principu
identi£nosti, kar je v nasprotju s f(1/3) = 1/3.

c) Recimo, da tak²na funkcija obstaja. Zaradi zveznosti je f(0) = 0. Naj bo g(z) = z. Tedaj je g(1/2k) = 1/2k =
f(1/2k) za vse k ∈ N. Ker ima mnoºica {1/2k}k∈N stekali²£e v D, velja f = g po principu identi£nosti, kar je
v nasprotju s f(1/3) = 1/4.

d) Recimo, da se f raz²iri na D. Po Cauchyjevem izreku je tedaj 0 = 1/(2πi)
∫
bD f(z)dz = 1/(2πi)

∫
bD dz/z = 1.

Protislovje.

Naloga 18. Naj bo Ω ⊂ C obmo£je in f : Ω → C holomorfna funkcija. Naj bo ²e z0 ∈ Ω. Pokaºi, da Taylorjeva
vrsta za f v to£ki z0 konvergira na disku D ⊂ Ω s sredi²£em v z0 radija R, kjer je

R = sup{r > 0 : D(z, r) ⊂ Ω}.

Re²itev 18. Naj bo r < R. Tedaj je D(z0, r) ⊂ Ω in velja po Cauchyjevi formuli za poljuben z ∈ D(z0, r):

f(z) =
1

2πi

∫
|ζ|=r

f(ζ)

ζ − z
dζ.

Naj bo z ∈ D(z0, r). Ker je |ζ − z0| > |z − z0|, velja

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0
ζ−z0

=
1

ζ − z0

(
1 +

z − z0
ζ − z0

+

(
z − z0
ζ − z0

)2

+ · · ·

)
.

Ozna£imo q = (z − z0)/(ζ − z0). Vrsta 1 + q + q2 + · · · konvergira za vse q < 1, torej konvergira absolutno in
enakomerno za vse z ∈ D(z0, r′), kjer je r′ < r. Sledi, da lahko za z ∈ D(z0, r′) £lenoma integriramo in dobimo

f(z) =
1

2πi

∞∑
n=0

(z − z0)
n

∫
|ζ|=r

f(ζ)

(ζ − z0)n
dζ =

∞∑
n=0

cn(z − z0)
n.

Ker sta bila r′ < r < R poljubna, sledi, da vrsta konvergira na poljubnem disku s sredi²£em v z0, ki je vsebovan v
Ω.

Naloga 19 (Liouvilleov izrek). Dokaºi, da je vsaka omejena cela funkcija konstantna.

Re²itev 19. Naj bo f : C → C omejena, torej |f(z)| ≤ M za nek M in vse z ∈ C. Ker je f holomorfna na C, je
njena Taylorjeva vrsta s sredi²£em v izhodi²£u povsod konvergentna in velja

f(z) =

∞∑
n=0

cnz
n, cn =

f (n)(0)

n!
=

1

2πi

∫
|z|=r

f(ζ)

ζn+1
dζ

za poljuben r > 0 po Cauchyjevi formuli. Iz Cauchyjeve ocene tedaj sledi |cn| ≤ M/(2πrn). Ko po²ljemo r → ∞,
dobimo cn = 0 za vse n ≥ 1, torej je f(z) ≡ f(0).
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Naloga 20. Naj bo f : C → C cela funkcija, ki zado²£a

|f(z)| ≤M(1 + |z|)p za vse z ∈ C,

za nek p > 0 in M > 0. Dokaºi, da je tedaj f polinom stopnje najve£ p.

Re²itev 20. Naj bo n = ⌈p⌉. Za |z| > 1 torej velja |f(z)| ≤ (1 + |z|)p ≤ (1 + |z|)n. Ker je f cela funkcija, njena
Taylorjeva vrsta okoli izhodi²£a konvergira na C in velja

f(z) =

∞∑
j=0

cjz
j , za vse; z ∈ C.

Ozna£imo z fn Taylorjev polinom funkcije f stopnje n− 1. Tedaj je

|f(z)−fn(z)| ≤ |f(z)|+ |fn(z)| ≤M(1+ |z|)n+(|c0|+ |c1| · |z|+ · · ·+ |cn−1| · |z|n−1) = |z|n
(
C0 +

C1

|z|
+ · · ·+ Cn

|z|n

)
.

Izraz na levi pa je enak

|f(z)− fn(z)| =
∣∣∣∣ ∞∑
j=n

cjz
j

∣∣∣∣ ≤∑
j=n

|cj | · |z|j = |z|n
∑
j=n

|cj | · |z|j−n.

Naj bo ²e h(z) = (f(z)−fn(z))/zn. Ker ima razlika f(z)−fn(z) ni£lo stopnje n v izhodi²£u, ima h tam odpravljivo
singularnost, torej je h cela funkcija. Iz zgornje neenakosti sledi

|h(z)| ≤ C0 +
C1

|z|
+ · · ·+ Cn

|z|n
|z|→∞−−−−→ 0,

torej je h omejena. Po Liouvilleovem izreku je h konstantna, torej je cj = 0 za vse j ≥ n+1. Sledi, da je f polinom
stopnje najve£ n ≤ p+ 1. Recimo, da je p < ⌈p⌉ in je f polinom stopnje n = ⌈p⌉. Tedaj je

|f(z)| = |c0 + c1z + · · ·+ cnz
n| ≥ |cn| · |z|n

(
1− cn−1

|z|
+ · · ·+ |c0|

|z|n

)
≥ N |z|n

za nek N > 0, £e je le |z| dovolj velik, saj gredo £leni z negativnim predznakom proti 0, ko gre |z| → ∞. Iz
predpostavke sledi

N |z|n ≤M(1 + |z|)p, N |z|n

(1 + |z|)p
≤M,

kar je protislovje, saj je stopnja £lena v ²tevcu strogo ve£ja od stopnje imenovalca.
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2 Funkcijski prostori in konvergenca

Naj bosta X,Y topolo²ka prostora in naj bo C(X,Y ) prostor zveznih preslikav f : X → Y . Kompaktno-odprta
topologija na C(X,Y ) je podana s podbaznimi odprtimi mnoºicami oblike

V (K,U) = {f ∈ C(X,Y ) : f(K) ⊂ U} ,

kjer je K ⊂ X kompaktna mnoºica in U ⊂ Y odprta mnoºica. Kompaktno-odprto topologijo imenujemo tudi
topologija enakomerne konvergence.

Naloga 21. Dokaºi, da je S = {V (K,U) : K ⊂ X kompaktna, U ⊂ Y odprta} podbaza za topologijo na C(X,Y ).

Re²itev 21. Pokazati moramo zgolj, da je unija vseh mnoºic iz S enaka C(X,Y ). Naj bo f : X → Y zvezna
preslikava in naj bo K ⊂ X kompaktna mnoºica. Tedaj je tudi f(K) kompaktna in vsebovana v odprti mnoºici
U = Y , torej je f ∈ V (K,Y ). Ker je bila f poljubna, velja C(X,Y ) ⊂ V (K,Y ) ∈ S, torej je ∪S = C(X,Y ).

Naloga 22. Dokaºi, da metrika

dK : F × F → R, d(f, g) = sup
z∈K

|f(z)− g(z)|

inducira kompaktno-odprto topologijo na prostorih F ∈ {C(K),A(K)}, kjer je K ⊂ C kompaktna mnoºica. Pokaºi,
da je F poln metri£ni prostor in dokaºi, da je dK translacijsko invariantna metrika. Nato pokaºi, da je F lokalno
konveksen vektorski prostor. Takim prostorom pravimo Fréchetovi prostori.

Re²itev 22. Najprej pokaºimo, da je d res metrika. O£itno je d nenegativna in velja d(f, g) = 0 natanko tedaj, ko
je f = g. Prav tako je o£itno d(f, g) = d(g, f) za poljubni funkciji f in g v F . Pokaºimo ²e trikotni²ko neenakost.
Naj bodo f, g, h ∈ C(F). Velja za poljuben z ∈ K:

|f(z)− h(z)| = |f(z)− g(z) + g(z)− h(z)| ≤ |f(z)− g(z)|+ |g(z)− h(z)|.

Trikotni²ka neenakost sledi, ko na obe strani neenakosti apliciramo supremum po z ∈ K.
Sedaj pokaºimo, da je F poln metri£ni prostor. Naj bo najprej {fn}n∈N Cauchyjevo zaporedje zveznih funkcij

na K. Ker je tedaj za poljuben z ∈ K tudi zaporedje {fn(z)} Cauchyjevo, obstaja limitna funkcija f . Ker je
konvergenca enakomerna, je f ∈ C(K), torej je (C(K), dK) poln metri£ni prostor.

Naj bo sedaj {fn}n∈N zaporedje zveznih funkcij na K, ki so holomorfne na notranjosti mnoºice K. Iz prej²nje
to£ke vemo, da limita zaporedja f obstaja in je zvezna. Naj bo ∆ trikotnik v K, tako da je ∆ ⊂ K. Tedaj je∫

b∆

f(ζ)dζ =

∫
b∆

lim
n→∞

fn(ζ)dζ = lim
n→∞

∫
b∆

fn(ζ)dζ = 0,

saj zaradi enakomerne konvergence zaporedja lahko zamenjamo integral in limito. Po Morerovem izreku sledi, da
je f holomorfna na notranjosti K, torej je tudi A(K) poln metri£ni prostor z metriko dK .

Translacijska invarianca je o£itna, saj za vse z velja |(f+h)(z)−(g+h)(z)| = |f(z)−g(z)|, torej je d(f+h, g+h) =
d(f, g). Pokaºimo, da je krogla Bε = {f ∈ C(X) : d(f, 0) < ε} konveksna. Za poljubni funkciji g, h ∈ B je

d(tg + (1− t)h, 0) ≤ d(tg, 0) + d((1− t)h, 0) = td(g, 0) + (1− t)d(h, 0) < tε+ (1− t)ε = ε,

torej je tg + (1 − t)h ∈ Bε. Ker to velja za poljuben ε, je {Bε}ε>0 sistem konveksnih okolic za ni£elno funkcijo
0 ∈ C(X), torej je C(X) lokalno konveksen vektorski prostor.

Pokazati moramo ²e, da dK inducira kompaktno odprto topologijo. Naj bo L ⊂ K kompaktna mnoºica in si
oglejmo podbazno mnoºico V (L,U) ⊂ F . Naj bo f ∈ V (L,U). Ker je mnoºica f(L) ⊂ U kompaktna, obstaja ε > 0,
tako da je mnoºica f(L)ε = {x ∈ R : dist(x, f(K)) < ε} ⊂ U vsebovana v U . Tedaj pa je tudi dK-krogla B(f, ε)
vsebovana v V (L,U). Sledi, da je V (L,U) odprta v metri£ni topologiji. Vzemimo sedaj neko kroglo B(f, ε) in
pokaºimo, da je odprta v kompaktno-odprti topologiji. Naj bo za vsak z ∈ K mnoºica Uz ⊂ f−1(B(f(z), ε/2)) neka
relativno kompaktna odprta okolica to£ke z v K in naj bo Vz := V (Uz, B(f(z), ε/2)) podbazna okolica funkcije
f v kompaktno odprti topologiji. Ker je K kompaktna, obstaja kon£no mnogo z1, . . . , zn ∈ K, tako da velja
∪n
j=1(Uzj ) ⊃ K. Naj bo

V =

n⋂
j=1

Vz.
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Naj bo g ∈ V in z ∈ K. Tedaj je z ∈ Uzj za nek j = 1, . . . , n in velja

|f(z)− g(z)| ≤ |f(z)− f(zj)|+ |f(zj)− g(z)| < ε

2
+
ε

2
= ε,

saj g preslika Uzj v kroglo B(f(zj), ε/2). Sledi, da je V odprta okolica funkcije f , ki je vsebovana v B(f, ε), torej
je B(f, ε) odprta v kompaktno-odprti topologiji.

Druºina zveznih funkcij F ⊂ C0(K), kjer je K ⊂ M kompaktna mnoºica v metri£nem prostoru (M,d), je
enakozvezna, £e za poljuben ε > 0 obstaja δ > 0, tako da za vse f ∈ F in x, y ∈ K velja

|f(x)− f(y)| < ε, £im je d(x, y) < δ.

Druºina je enakomerno omejena, £e obstaja tak²en M > 0, da za vse x ∈ K ter vse f ∈ F velja

|f(x)| ≤M.

Omejimo se na primerM = C. Naj bo D domena in F ⊂ C0(D) neka druºina funkcij. Pravimo, da je F enakozvezna
na kompaktih, £e je za poljuben kompakt K ⊂ D druºina

F|K = {f |K : f ∈ F}

enakozvezna. Podobno je druºina F enakomerno omejena na kompaktih, £e je za poljuben kompakt K druºina
F|K enakomerno omejena. Druºina je normalna, £e je F kompaktna mnoºica v C0(D) s ²ibko topologijo. Z
drugimi besedami, vsako zaporedje funkcij v normalni druºini dopu²£a podzaporedje, ki konvergira enakomerno na
kompaktih k neki zvezni funkciji na D.

Naloga 23. Dokaºi, da je druºina funkcij fn(x) = xn enakomerno omejena na intervalu [0, 1], ni pa enakozvezna.

Re²itev 23. O£itno za vse n ∈ N in vse x ∈ [0, 1] velja |xn| ≤ 1. Naj bo sedaj ε > 0 in pokaºimo, da za poljuben
δ > 0 obstajata x, y ∈ [0, 1], |x− y| < δ ter n ∈ N, tako da je

|f(x)− f(y)| > ε.

Naj bo y = 1 in 1− δ < x < 1. Tedaj velja |x|n → 0, ko gre n→ ∞, torej za dovolj velike n velja xn < 1− ε. Sledi

|f(x)− f(y)| = 1− xn > ε.

Naloga 24. Ali je druºina fn(x) = xn normalna kot druºina funkcij na intervalu (−1, 1)?

Re²itev 24. Enako kot prej vidimo, da je druºina enakomerno omejena na (−1, 1), torej je enakomerno omejena na
kompaktih. Naj bo K ⊂ (−1, 1) kompaktna mnoºica in naj bo M = maxx∈K |x|. Tedaj je M < 1 in K ⊂ [−M,M ].
Prvi na£in: Pokaºimo, da je druºina enakozvezna na kompaktih. Velja

|xn+1 − yn+1| = |x− y| · |xn + xn−1y + · · ·+ xyn−1 + yn| ≤ (n+ 1)Mn|x− y|.

Ker je M < 1, gre (n + 1)Mn → 0, ko gre n → ∞, torej obstaja M ′ > 0, tako da je (n + 1)Mn < M ′ < ∞ za
vse n ∈ N. �e je |x − y| < ε/M ′, je |fn(x) − fn(y)| < ε. Ker je druºina enakozvezna in enakomerno omejena na
kompaktih, je normalna po izreku Arzelà-Ascoli.

Drug na£in: O£itno je |fn(x)| ≤ Mn za vse x ∈ K, n ∈ N, torej gre fn → 0 enakomerno na K, ko gre n → ∞.
Sledi, da je F kompaktna v C0(−1, 1).

Naloga 25. Pokaºi, da je druºina funkcij fn(x) = sin(nx) enakomerno omejena, vendar ni relativno kompaktna v
prostoru C0((0, 1)) s topologijo enakomerne konvergence na kompaktih. Z drugimi besedami, pokaºi, da zaporedje
nima konvergentnega podzaporedja na nobenem kompaktnem podintervalu [a, b] ⊂ (0, 1) z neprazno notranjostjo.

Re²itev 25. O£itno je |fn(x)| ≤ 1 za vse x ∈ (0, 1), n ∈ N torej je druºina enakomerno omejena. Recimo, da neko
podzaporedje fk konvergira enakomerno na [a, b] k zvezni funkciji f . �e je n = n(k) dovolj velik, je n(k)|b− a| > π,
torej obstaja xk0 ∈ [a, b], tako da je n(k)xk0 = lπ za nek l ∈ N. Sledi fk(xk0) = fn(k)(x

k
0) = 0. Ker to velja za vse

dovolj velike k, dobimo zaporedje {xk0}k≥k0
. Ker je [a, b] kompakten, ima zaporedje stekali²£e x0 v [a, b]. Velja za

dovolj velike k:
|f(x0)− fk(x

k
0)| ≤ |f(x0)− f(xk0)|+ |f(xk0)− fk(x

k
0)| ≤ ε

za poljuben ε > 0, torej je f(x0) = 0. Ker je bil [a, b] poljuben, sledi, da ima f ni£lo v vsakem podintervalu
I ⊂ (0, 1), torej je njena mnoºica ni£el gosta. Sledi f ≡ 0. Na enak na£in kot zgoraj v poljubnem podintervalu [a, b]
najdemo to£ko x1, tako da je f(x1) = 1, kar je protislovje. Sledi, da druºina nima konvergentnega podzaporedja.
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Izrek 1 (Montel). Naj bo druºina holomorfnih funkcij F ⊂ O(Ω) na domeni Ω ⊂ C enakomerno omejena na
kompaktih v Ω. Tedaj ima vsako zaporedje v F neko podzaporedje, ki konvergira enakomerno na kompaktih v Ω k
holomorfni funkciji na Ω. Z drugimi besedami, pod temi predpostavkami je F normalna druºina.

Opomba 5. Drºi tudi obrat: vsaka normalna druºina holomorfnih funkcij je enakomerno omejena. Za poljubno
kompaktno mnoºico K ⊂ Ω je polnorma ρK : O(Ω) → R, ki jo podaja predpis ρK(f) = supz∈K |f(z)|, zvezna
funkcija (to vidimo iz de�nicije kompaktno-odprte topologije). �e je F normalna druºina, je njeno zaprtje kom-
paktna mnoºica v O(Ω), torej je slika ρK(Ω) omejena mnoºica v R, kar pomeni, da je F enakomerno omejena na
kompaktih.

Naloga 26. Naj bo f : T := {z ∈ C : |ℑz| < 1} → C omejena holomorfna funkcija na traku T , tako da je
limx→+∞ f(x) = 0 za x ∈ R. Pokaºi, da je

lim
x→+∞

f(x+ iy) = 0, za vse y ∈ (−1, 1).

Namig: oglej si druºino fn(z) = f(z + n).

Re²itev 26. Ker je f omejena funkcija, recimo |f(z)| ≤M na T , je druºina fn enakomerno omejena na T , torej je
normalna po Montelovem izreku. Naj bo (nk)k∈N neko zaporedje naravnih ²tevil in g : T → C holomorfna funkcija,
tako da zaporedje funkcij fnk

konvergira enakomerno na kompaktih v T k funkciji g. Za poljuben x ∈ R velja

lim
k→∞

fnk
(x) = lim

k→∞
f(x+ nk) = 0,

torej velja g(x) = 0 za vse x ∈ R. Ker je g holomorfna, je g ≡ 0 po principu identi£nosti. Ker enak sklep velja za
poljubno zaporedje v N, je g ≡ 0 edino stekali²£e mnoºice F ⊂ O(T ), torej je g = limn→∞ fn. Sledi

lim
n→∞

f(x+ n+ iy) = 0, za vse x+ iy ∈ T.

Vemo tudi, da fn konvergira enakomerno na kompaktih v T k ni£elni funkciji. Naj bo y ∈ (−1, 1). Naj bo |y| < r < 1
in naj bo K = [−1, 1]× [−r, r]. Ker je K kompaktna, za poljuben ε > 0 za dovolj velike n velja |fn(z)| < ε. Torej
za vse x ∈ [−1, 1] velja |f(x + n + iy)| < ε za vse dovolj velike n, torej velja |f(x + iy)| < ε za vse x > n. Sledi
f(x+ iy) → 0, ko gre x→ ∞.

Naloga 27. Konstruiraj normalno druºino na D in na C.

Re²itev 27. Druºina Aut(D) avtomor�zmov diska je enakomerno omejena na D, torej tudi na kompaktih v D.
Splo²neje je mnoºica holomorfnih funkcij {f : D → D} enakomerno omejena na D. Druºina

{z 7→ zn : n ∈ N}

je enakomerno omejena na D. Druºina Schlicht funkcij

S = {f : D → C : f(0) = 0, f ′(0) = 1, f injektivna}

je kompaktna v O(D). Druºina celih funkcij fn : z 7→ z/n je enakomerno omejena na kompaktih, torej je normalna.

Naloga 28. Ali je druºina holomorfnih funkcij F = {f : D → C : f(0) = 0, f ′(0) = 1} normalna?

Re²itev 28. Za a ∈ C de�niramo
fa(z) = z + az2.

O£itno je fa ∈ F za poljuben a ∈ C, vendar zaporedje funkcij fn(z) = z+nz2 nima stekali²£a, torej F ni normalna.

Naloga 29. Naj bo Ω ⊂ C domena. Dokaºi, da je druºina F ⊂ O(Ω) normalna natanko tedaj, ko je za vsak disk
D ⊂ Ω normalna druºina F|D.

Re²itev 29. Recimo, da je F normalna in naj bo D ⊂ Ω disk. Poljubna kompaktna mnoºica K ⊂ D je kompaktna
v Ω, torej poljubno zaporedje (fn|D), ki konvergira enakomerno na kompaktih v Ω, konvergira enakomerno na K.
Ker je bila K poljubna, zaporedje konvergira enakomerno na kompaktih v D. Sledi, da je druºina F|D normalna
za poljuben disk D v Ω.
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Sedaj predpostavimo, da je F|D normalna za vsak disk D v Ω. Naj bo K ⊂ Ω kompaktna mnoºica in (fn)n∈N
zaporedje holomorfnih funkcij fn : Ω → C. Ker je Ω odprta, za poljuben z ∈ K obstaja nek odprt disk D′

z ⊂ Ω
s sredi²£em v z. Ker je K kompaktna, kon£no mnogo relativno kompaktnih odprtih diskov Dz ⋐ D′

z pokrije
K. Ozna£imo jih z D1, . . . , Dm. Zaporedje (fn|D′

1
) je normalna druºina, torej po Montelovem izreku dopu²£a

podzaporedje (fn,1|D′
1
), ki konvergira enakomerno na D1 k neki holomorfni funkciji f1 ∈ O(D′

1). Ker je f1 zvezna
na D1, je omejena, torej je zaporedje (fn,1|D1

) enakomerno omejeno na D1. Nadaljujemo induktivno in na vsakem
koraku dokaºemo obstoj zaporedja {fn,j+1}n∈N ⊂ {fn,j}n∈N ⊂ · · · ⊂ {fn}n∈N, ki konvergira enakomerno na Dj+1,
torej je enakomerno omejeno na uniji D1 ∪ · · · ∪ Dj+1. Po m-korakih dobimo podzaporedje {fn,m} ⊂ {fn},
enakomerno omejeno na K ⊂ ∪m

j=1Dj ⊂ ∪m
j=1Dj . Po Montelovem izreku je {fn,m} normalna druºina, torej neko

podzaporedje konvergira enakomerno na K.
Naj bo K1 ⊂ K2 ⊂ · · · neko normalno iz£rpanje za Ω. �e je (fn)n∈N zaporedje v F , lahko z zgornjim postopkom

najdemo podzaporedje (fn,1)n∈N, ki konvergira enakomerno na K1. Nadaljujemo z indukcijo. Predpostavimo, da
zaporedje (fn,m)n∈N konvergira enakomerno naKm. Z zgornjim postopkom lahko najdemo podzaporedje (fn,m+1) ⊂
(fn,m), ki konvergira enakomerno na Km+1. Dobimo padajo£e zaporedje zaporedij

(fn,1) ⊃ (fn,2) ⊃ · · · ⊃ (fn,m) ⊃ · · ·

ki konvergirajo enakomerno na mnoºicah Km iz iz£rpanja. Sledi, da zaporedje (fn,n) konvergira enakomerno na
poljubni mnoºici Km, torej konvergira enakomerno na kompaktih v Ω. Sledi, da je F normalna druºina.

Bolj²i na£in: Ker je F|D normalna, je enakomerno omejena na kompaktih v D. Za vsak i = 1, . . . ,m torej
obstaja Mi, tak da je ∥f∥Di

≤ Mi za vse f ∈ F , torej je ∥f∥K ≤ maxi ∥f∥Di
≤ maxiMi. Sledi, da je F

enakomerno omejena na K. Ker je bil K poljuben, je F enakomerno omejena na kompaktih v Ω, torerj je normalna
po Montelovem izreku.

Naloga 30. Naj bo Ω ⊂ C odprta mnoºica in F normalna druºina holomorfnih funkcij na Ω. Dokaºi, da je tedaj
tudi druºina odvodov F ′ = {f ′ : f ∈ F} normalna.

Re²itev 30. Po prej²nji nalogi je dovolj pokazati, da je F ′|D normalna za poljuben disk D ⊂ Ω. Naj bo K ⊂ D
kompaktna mnoºica. Tedaj obstaja r > 0, tako da je zaprt disk D(z, r) vsebovan v D za poljuben z ∈ K. Ker je⋃

z∈K

D(z, r) = Kr := {z ∈ D : dist(z,K) ≤ r}

kompaktna mnoºica v D in je F enakomerno omejena na Kr, obstaja tak M ≥ 0, da je ∥f∥Kr
≤M za vse f ∈ F .

Za poljuben z ∈ K velja po Cauchyjevi oceni:

|f ′(z)| ≤ M

r
,

torej je F ′ enakomerno omejena na K. Ker je bil K ⊂ D poljuben, je F ′ enakomerno omejena na kompaktih v D,
torej je F ′|D normalna druºina po Montelovem izreku. Ker to velja za vse diske D ⊂ Ω, je F ′ normalna po prej²nji
nalogi.

Drug na£in: Naj bo K ′ ⊂ Ω kompakt v Ω in naj bo K = {x ∈ Ω : dist(x,K) ≤ ε′} ⊊ Ω kompaktna okolica za
K ′ z neprazno notranjostjo. Tedaj poljubno zaporedje v F vsebuje neko podzaporedje {fn}n∈N, tako da konvergira
fn → f enakomerno na K, torej za poljuben M > 0 in za dovolj velike n velja |f(z) − fn(z)| ≤ M za vse z ∈ K.
Ker je K ′ vsebovana v notranjosti K, za poljuben z ∈ K ′ obstaja nek disk Dz radija ε, 0 < ε < ε′ sredi²£em v z,
tako da je Dz ⊂ IntK. Po Cauchyjevi oceni za f ′ − f ′n tedaj velja

|f ′(z)− f ′n(z)| ≤
1

2π

∫
bDz

∣∣∣∣f(ζ)− fn(ζ)

(ζ − z)2

∣∣∣∣dζ ≤ M

ε2
.

Sledi, da zaporedje {f ′n} konvergira enakomerno na K ′ k funkciji f ′. Ker je bila K ′ poljubna kompaktna mnoºica,
sledi, da je F ′ normalna druºina.

Naloga 31. Naj bo F druºina holomorfnih funkcij na domeni Ω ⊂ C, tako da je F ′ normalna in je mnoºica
{f(a) : f ∈ F} omejena za nek a ∈ Ω. Pokaºi, da je tedaj tudi F normalna.
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Re²itev 31. Po eni od prej²njih nalog je dovolj pokazati, da je F|D normalna za poljuben disk D v Ω. Naj bo
torej D ⊂ Ω disk s sredi²£em v z ∈ Ω. Ker je f holomorfna, je

∫
γ
f ′(ζ)dζ = 0 za poljubno sklenjeno krivuljo γ v Ω

(f ′ndz je eksaktna forma), torej je

f(z) = f(a) +

∫
η

f ′(ζ)dζ,

kjer je η poljubna krivulja v Ω, ki zado²£a η(0) = a, η(1) = z. Sedaj �ksirajmo krivuljo η. Ker je F ′ normalna,
poljubno zaporedje funkcij v F dopu²£a podzaporedje (fn)n∈N, tako da zaporedje odvodov (f ′n)n∈N konvergira
enakomerno na kompaktih v Ω k neki holomorfni funkciji g ∈ O(Ω) in je zaporedje ²tevil fn(a) konvergentno. V
posebnem je vsaka sklenjena krivulja γ v Ω kompaktna, torej je∣∣∣∣ ∫

γ

g(ζ)dζ

∣∣∣∣ ≤ ∫
γ

|g(ζ)− fn(ζ)| · |dζ|
n→∞−−−−→ 0.

Sledi, da je s predpisom

f(z) = lim
n→∞

fn(a) +

∫ z

a

g(ζ)dζ

dobro de�nirana holomorfna funkcija f na Ω, pri £emer je integral na desni neodvisen od poti, ki povezuje to£ki a
in z. V posebnem velja za z′ ∈ D′ ⋐ D:

f(z′) = lim
n→∞

fn(a) +

∫
η

g(ζ)dζ +

∫ z′

z

g(ζ)dζ.

Pri tem v zadnjem £lenu vsote integriramo po daljici v D′ s kraji²£ema z in z′. Ocenimo

|f(z′)− fm(z′)| ≤
∣∣∣∣ lim
n→∞

fn(a)− fm(a)

∣∣∣∣+ ∫
η

|g(ζ)− f ′m(ζ)| · |dζ|+
∫ z′

z

|g(ζ)− f ′m(ζ)| · |dζ| n→∞−−−−→ 0,

saj zaporedje f ′n konvergira h g enakomerno na D′ ∪ η([0, 1]) za poljuben disk D′ ⋐ D s sredi²£em v z. Ker je
poljuben kompakt K ⊂ D vsebovan v nekem takem disku D′, je zgornja konvergenca enakomerna na kompaktih v
D, torej je F|D normalna druºina.

Naloga 32. Naj bo Ω = {|z + 1/2| < 1/2}, ω = e2πiα in

F =

{
1

z/n+ ωn + 1
; n ∈ N

}
.

Ugotovi, za katere parametre α ∈ R je druºina F normalna v O(Ω). Namig: £e je α ∈ R\Q, je mnoºica {e2πinα}n∈N
gosta v S1.

Re²itev 32. Opazimo, da druºina {n/z : n ∈ N} ni normalna, saj je vsako podzaporedje poljubnega zaporedja
neomejeno na kompaktih v Ω, torej ne obstaja niti limita po to£kah. �e je 1 + ωn = 0 za neskon£no mnogo n, F
ni normalna. To velja, £e je e2πiα nek k-ti koren ²tevila −1, torej je

e2πikα = −1, 2πikα = iπ + 2imπ, α =
2m+ 1

2k
.

Za poljuben tak²en α, kjer sta m, k ∈ Z, torej F ni normalna. Ozna£imo mnoºico vseh tak²nih α s P = {p/q ∈ Q :
q = 2k, k ∈ N ∪ {0}} = ∪k∈NZ/(2k). Naj bo Q = {p/q ∈ Q : q = 2k + 1, k ∈ N} mnoºica okraj²anih ulomkov z
lihim imenovalcem in naj bo α = p/(2k + 1) ∈ Q. Tedaj za poljuben n ∈ N velja:

αn =
np

2k + 1
=
l(2k + 1) + r

2k + 1
= l +

r

2k + 1

za nek l ∈ Z ter r ∈ N, ki ustreza r < 2k + 1. Sledi

exp(2πinα) = exp

(
2πir

2k + 1

)
.
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Naj bo

λ = min
0≤r<2k+1

∣∣∣∣1 + exp

(
2πir

2k + 1

) ∣∣∣∣.
O£itno je λ > 0. Sledi |1 + ωn| ≥ λ > 0 za vse n ∈ N. Po drugi strani je za vse dovolj velike n in vse z ∈ Ω tudi
|z|/n < r < λ, torej je

|1 + ωn + z/n| ≥ |1 + ωn| − |z|
n

≥ λ− |z|
n
> λ− r =:M > 0,

za vse z ∈ Ω, torej je za dovolj velike n:
1

z/n+ ωn + 1
<

1

M
.

Sledi, da je druºina F enakomerno omejena, torej je normalna po Montelovem izreku. Opazimo, da je P ∪Q = Q,
torej moramo preveriti le ²e α ∈ R\Q. Ker je za poljuben tak²en α mnoºica {e2πinα}n∈N gosta v S1, obstaja
zaporedje naravnih ²tevil (nk)k∈N, tako da velja

exp(2πinkα)
k→∞−−−−→ −1.

Dokaºimo, da zaporedje fnk
nima konvergentnega podzaporedja. Izberimo zaporedje εk → 0, tako da je |1 +

exp(2πinkα)| < εk. Naj bo |z + 1/2| < 1/2. Tedaj je

|fnk
(z)| = 1

|z/n+ 1 + ωnk |
≥ 1

|z|/nk + εk
→ ∞,

ko gre k → ∞. Poljubno podzaporedje zaporedja {fnk
} torej divergira v to£ki z. Sledi, da druºina F ni normalna

tudi za α ∈ R\Q.

Naloga 33. Naj bo F razred preslikav f : D → {ℜz > 0}, ki zado²£ajo f(0) = 1. Pokaºi, da je F normalna
druºina. Ali lahko pogoj f(0) = 1 izpustimo? Ali ga lahko zamenjamo s pogojem |f(0)| ≤ 1?

Re²itev 33. Naj bo ϕ : {ℜz > 0} → D biholomorfna preslikava, podana s predpisom

ϕ(z) =
iz − i

iz + i
=
z − 1

z + 1
.

Druºina ϕ ◦ F je torej vsebovana v mnoºici preslikav {f : D → D, f(0) = 0}, ki je normalna druºina, torej je
normalna tudi F . V odsotnosti pogoja F vsebuje zaporedje funkcij fn, za katere velja fn(0) = n. O£itno zaporedje
divergira, torej F ni normalna druºina.

Opazimo: zgornje zaporedje konvergira enakomerno k funkciji f ≡ ∞. Posplo²itev: druºina je normalna*,
£e vsako zaporedje dopu²£a podzaporedje, ki konvergira enakomerno k holomorfni funkciji ali k ∞. S to de�nicijo
je druºina {f : D → {ℜz > 0}} normalna*.

Preslikava ϕ preslika obmo£je H ∩D na njegovo zrcalno sliko £ez y-os. Na enak na£in kot zgoraj ugotovimo, da
je ϕ ◦ F normalna druºina.

Naloga 34 (Posplo²itev Montelovega izreka). Naj bo Ω ⊂ C domena in F ⊂ O(Ω) druºina holomorfnih funkcij.
Recimo, da obstaja odprta mnoºica U ⊂ C, ki jo zgre²ijo vse f ∈ F , tj. f(Ω) ∩ U = ∅ za vse f ∈ F . Dokaºi, da je
druºina F normalna*.

Re²itev 34. Naj bo u ∈ U in de�nirajmo preslikavo ϕ(z) = 1/(z−u). O£itno je ϕ ◦F enakomerno omejena, saj je
vsebovana v komplementu slike ϕ(U), ki predstavlja okolico za ∞ ∈ C∪ {∞}. Sledi, da je ϕ ◦ F normalna druºina.
Po Hurwitzovem izreku vsako konvergentno zaporedje v F konvergira bodisi k funkciji, ki je konstantno enaka 0,
bodisi k funkciji brez ni£el, saj ϕ ◦ f nima ni£el za noben f ∈ F . Ker je 0 = ϕ(∞), velja v primeru, da zaporedje
konvergira enakomerno k ∞. V drugem primeru pa konvergira k ϕ ◦ f , kjer je f limitna funkcija zaporedja v F , saj
je ϕ : C\{u} → C\{0} biholomorfna.
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3 Konformne preslikave in Riemannove ploskve

Naloga 35. Poi²£i biholomorfne preslikave med naslednjimi obmo£ji, kjer H ozna£uje polravnino H = {ℑz > 0}:

a) H in {ex+iy ∈ C : 0 < y < π/4},

b) H in {x+ iy ∈ C : 0 < y < π},

c) H ∩ D in {x+ iy ∈ C : x < 0, 0 < y < π}.

Re²itev 35. Skica.

Naloga 36. Ali obstaja holomorfna surjekcija D → C?

Re²itev 36. Naj bo ϕ : D → H biholomorfna preslikava diska na zgornjo polravnino. Nato uporabimo predpis
H ∋ z 7→ (z − i)2.

Naloga 37. Naj bo Ω ⊂ C domena, 0 ∈ Ω. Naj bo f : Ω → D injektivna holomorfna preslikava, f(0) = 0.
Predpostavi, da Ω′ = f(Ω) ̸= D. Poi²£i injektivno holomorfno preslikavo F : Ω → D, ki zado²£a F (0) = 0 in
|F ′(0)| > |f ′(0)|.

Re²itev 37. O£itno je dovolj preveriti lastnosti F na povezani komponenti 0 ∈ Ω0 ⊂ Ω, torej lahko predpostavimo,
da je Ω povezana. Po Riemannovem izreku je tedaj D ∼= Ω. Naj bo ψ : D

∼=−→ Ω biholomorfna preslikava, ψ(0) = 0.
Po Schwarzovi lemi je tedaj

|(f ◦ ψ)′(0)| = |f ′(0)| · |ψ′(0)| ≤ 1

pri £emer velja |f ′(0)| = 1/|ψ′(0)| natanko tedaj, ko je f ◦ ψ rotacija okoli izhodi²£a. Ker f ni surjektivna, velja
|f ′(0)| < 1/|ψ′(0)|, torej preslikava F = ψ−1 ustreza ºelenim lastnostim.

Poi²£imo eksplicitno formulo za F : Naj bo α ∈ D\Ω′ in naj bo ψα = (α − z)/(1 − ᾱz) avtomor�zem diska, ki
zamenja to£ki 0 in α. Tedaj na Ω′′ := ψα(Ω

′) obstaja holomorfen kvadratni koren g : Ω′′ → C, saj je Ω′′ enostavno
povezana in ne vsebuje ni£le (dvig enostavno povezane domene v krov). Naj bo F = ψg(α) ◦ g ◦ ψα ◦ f . Tedaj je

F ′(0) = ψ′
g(α)(

√
α)g′(α)ψ′

α(0)f
′(0) = − 1− |α|

(1− |α|)2
1

2
√
α

(
|α|2 − 1

)
f ′(0) =

1 + |α|
2
√
α
f ′(0).

Sledi |F ′(0)| = δ(|α|)|f ′(0)|, kjer je δ(x) = (1 + x)/(2
√
x). Zanima nas vrednost δ(x) za 0 < x < 1. Odvajamo in

dobimo

δ′(x) =
2
√
x− 1+x√

x

4x
=

2x− (1 + x)

4x3/2
=
x− 1

4x3/2
.

Funkcija δ je torej padajo£a na (0, 1). Ker je δ(1) = limx↑1 δ(x) = 1, sledi, da je δ(x) > 1 za vse 0 < x < 1, torej je
|F ′(0)| > |f ′(0)|. Ker je g : Ω′′ → C injektivna funkcija, je F injektivna.

Naloga 38. Naj bosta ω1 in ω2 kompleksni ²tevili, ki sta linearno neodvisni kot vektorja v R2. Naj bo Γ =
Zω1 + Zω2. Na C de�niramo ekvivalen£no relacijo s predpisom

z1 ∼ z2 natanko tedaj, ko velja z1 − z2 ∈ Γ.

Mnoºico ekvivalen£nih razredov ozna£imo z C/Γ in jo opremimo s kvocientno topologijo, tako da je projekcija
π : C → C/Γ zvezna.

a) Pokaºi, da je C/Γ kompakten prostor.

b) Pokaºi, da je kvocientna projekcija π odprta.

c) Naj bo V ⊂ C odprta mnoºica, ki seka vsak ekvivale£ni razred najve£ v eni to£ki. Pokaºi, da je π(V ) odprta
in je π|V : V → π(V ) =: U homeomor�zem. Inverz φ = (π|V )−1 je kompleksna karta na C/Γ.

d) Pokaºi, da je mnoºica U vseh tak²nih kart (U,φ) kompleksen atlas na C/Γ.

Re²itev 38. a) Opazimo, da je π(C) = π(K), kjer je K paralelogram K = {t1ω1 + t2ω2 : t1, t2 ∈ [0, 1]}, torej
je C/Γ = π(C) = π(K) kompaktna.
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b) Naj bo W ⊂ C odprta mnoºica. Njena slika π(W ) je po de�niciji kvocientne topologije odprta natanko tedaj,
ko je odprto njeno nasi£enje π−1(π(W )). Mnoºica

π−1(π(W )) =
⋃

w∈W

(w + Γ) =
⋃
g∈Γ

(g +W ),

je odprta, torej je π(W ) odprta v C/Γ. Sledi, da je π odprta preslikava.

c) Iz pogoja na V sledi, da je π|V injektivna, torej je homeomor�zem na mnoºico π(V ).

d) Naj bosta (U1, φ1) in (U2, φ2) dve karti na C/Γ. Preveriti moramo, da je preslikava φ12 = φ2 ◦ φ−1
1 biholo-

morfna kot preslikava φ1(U1 ∩ U2) → φ2(U1 ∩ U2). O£itno je injektivna, saj je kompozicija homeomor�zmov,
torej zado²£a preveriti, da je holomorfna. Iz konstrukcije sledi, da obstajata odprti mnoºici V1, V2 v C, tako
da je φi = (π|Vi

)−1 za i = 1, 2, torej je
φ12 = (π|V2

)−1 ◦ π|V1
.

Za poljuben z je torej φ12(z)− z ∈ Γ. Funkcija z 7→ φ12(z)− z je o£itno zvezna, ker ima vrednosti v diskretni
mnoºici je lokalno konstantna, torej je v posebnem konstantna na vsaki komponenti za povezanost mnoºice
φ12(U1 ∩ U2). Sledi, da je φ12 holomorfna, kar smo ºeleli dokazati.
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4 Meromorfne funkcije in Riemannova sfera

Naj bo Ω ⊂ C domena v C. Pravimo, da je funkcija f : Ω → C ∪ {∞} meromorfna na Ω, £e obstaja diskretna
mnoºica to£k {aj} =: A ⊂ Ω, tako da je zoºitev f |Ω\A : Ω\A→ C holomorfna in za vse a ∈ A velja limz→a f(z) = ∞.
To£ke a so poli funkcije f .

Mnoºico C∪{∞} =: CP1 opremimo s topologijo kot kompakti�kacijo z eno to£ko kompleksne ravnine C. Mnoºica
U ⊂ CP1 je odprta, £e velja bodisi U ⊂ C in je U odprta v C bodisi je ∞ ∈ U ter je mnoºica C\U kompaktna. Na
CP1 uvedemo pokritje {U1, U2}, kjer je U1 = C in U2 = C∗ ∪∞ ter preslikavi φ1 : U1 → C, z 7→ z in φ2 : U2 → C,
z 7→ 1/z. Preslikavo φ = φ1 ◦ φ−1

2 : z 7→ 1/z imenujemo prehodna preslikava. Tako de�niranemu pokritju
in preslikavam pravimo atlas na CP1, ki mnoºico CP1 opremi s strukturo Riemannove ploskve, tj. enorazseºne
kompleksne mnogoterosti. Preslikava f : CP1 → C je holomorfna, £e sta holomorfni preslikavi f ◦ φ−1

1,2. Preslikava
f : C ⊃ Ω → CP1 je holomorfna v to£ki a ∈ Ω, £e je f(a) ∈ U1,2 in je preslikava φ1,2 ◦ f dobro de�nirana ter
holomorfna na neki okolici to£ke a. Preslikava f : Ω → CP1 je holomorfna, £e je holomorfna v vsaki to£ki a ∈ Ω.

Naloga 39. Dokaºi, da je CP1 s topologijo, de�nirano kot zgoraj, kompaktna.

Re²itev 39. Naj bo U = {Uj}j∈Λ odprto pokritje prostora CP1. Tedaj obstaja nek j = j0, tako da U0 = Uj0

vsebuje ∞. Ker je U0 odprta, je K = CP1\U0 kompaktna po de�niciji topologije na CP1, torej obstaja kon£no
mnogo Uj ∈ U\{U0} ki pokrijejo K. Ozna£imo jih z U1, . . . , Un. Tedaj pa je {U0, U1, . . . , Un} iskano kon£no
podpokritje.

Naloga 40. Naj bo Ω ⊂ C domena in naj bo f meromorfna funkcija na Ω. �e je p pol funkcije f , de�niramo
f(p) := ∞. Pokaºi, da je f : Ω → CP1 holomorfna funkcija.

Re²itev 40. Recimo, da a ni pol funkcije f . Tedaj je φ1 ◦ f : U → C holomorfna na okolici a. �e je a pol funkcije
f , velja limz→a |f(z)| = ∞, torej je funkcija φ2◦f(z) = 1/f(z) omejena na neki punktirani okolici U∗ to£ke a. Sledi,
da ima φ2 ◦ f odpravljivo singularnost v a, tj. kompozitum se holomorfno raz²iri na U , torej je φ2 ◦ f holomorfna
v to£ki a. Ker je bila a poljubna to£ka, je f holomorfna na Ω.

Naloga 41. Dokaºi obrat zgornje trditve: £e je f : Ω → CP1 holomorfna na povezani domeni Ω ⊂ C, je bodisi
f ≡ ∞ bodisi je f meromorfna funkcija na Ω.

Re²itev 41. Recimo, da obstaja a ∈ Ω, |f(a)| < ∞. Opazimo, da je mnoºica polov A funkcije f ravno mnoºica
ni£el holomorfne funkcije φ2 ◦ f , torej je A diskretna mnoºica po principu identi£nosti. Tedaj pa iz de�nicij sledi,
da je (φ1 ◦ f)|Ω\A = f |Ω\A holomorfna funkcija. Sledi, da je f meromorfna.

Naloga 42. Naj bo f : C → C prava holomorfna preslikava. Pokaºi, da je f polinom. Sklepaj, da grupa
avtomor�zmov kompleksne ravnine Aut(C) sestoji iz linearnih funkcij.

Re²itev 42. Taylorjeva vrsta funkcije f ∈ Aut(C) konvergira na C, zato lahko zapi²emo

f(z) = a0 + a1z + a2z
2 + · · ·

in de�niramo funkcijo g : C∗ → C s predpisom

g(z) = f

(
1

z

)
= a0 +

a1
z

+
a2
z2

+ · · · .

Naj bo a ∈ C. Ker je f prava, je mnoºica f−1(a) kompaktna in diskretna po principu identi£nosti, torej je f−1(a)
kon£na mnoºica to£k za vse a ∈ C. Recimo, da je ak = 0 za neskon£no mnogo k ∈ N. Tedaj ima g bistveno
singularnost v izhodi²£u, torej po prej²nji nalogi obstaja nek a0 ∈ C, tako da je C\{a0} ⊂ g(U∗) za poljubno okolico
izhodi²£a U , kar je v nasprotju z opaºanjem, da ima f kon£na vlakna za poljuben a ∈ C. Sledi, da je f polinom.

�e je f avtomor�zem, je prava preslikava, torej je polinom. Ker je injektiven, ima eno samo ni£lo, torej je
linearna funkcija. O£itno so vse nekonstantne linearne funkcije avtomor�zmi, torej velja

Aut(C) = {az + b : a ∈ C∗, b ∈ C}.

Naloga 43. Pokaºi, da ne obstaja prava holomorfna preslikava f : D → C. Namig: predpostavi, da obstaja prava
holomorfna preslikava g : H → C, pokaºi, da velja g(z) → ∞, ko gre z → R. Nato uporabi Schwarzov princip
zrcaljenja na ustrezni funkciji G, ki jo konstruiraj s pomo£jo g.
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Re²itev 43. Ker je g prava, velja g(z) → ∞, ko gre z → R = bH, ter je njena mnoºica ni£el g−1(0) kon£na mnoºica
v H. Sledi, da obstaja x ∈ R ter disk D s sredi²£em v x, tako da g nima ni£el na D ∩ H. Naj bo sedaj funkcija
G : D ∩ H → C podana s predpisom G(z) = 1/g(z). Ker g nima ni£el na D, je G dobro de�nirana. Ker gre
g(z) → ∞, ko gre z → R, gre G(z) → 0, ko gre z → R. Sledi, da se G zvezno raz²iri na D ∩ (H ∪ R). Ker ima G
realne vrednosti vzdolº R, se po Schwarzovem principu zrcaljenja holomorfno raz²iri na D. Ker je D ∩R mnoºica s
stekali²£em, je G ≡ 0 po principu identi£nosti, kar je v nasprotju z de�nicijo G = 1/g, saj ima g kon£ne vrednosti na
D∩H. Sledi, da g ni prava. Ker je H biholomorfno ekvivalentna disku D, nobena holomorfna preslikava f : D → C
ni prava.

Naloga 44. Avtomor�zmi kompleksne ravnine so preslikave z 7→ az + b, a ∈ C∗, b ∈ C.

a) Kateri avtomor�zmi C nimajo negibnih to£k?

b) Naj bodo ω1, ω2, ω3 ∈ C kompleksna ²tevila, ki so Z-linearno neodvisna. Z drugimi besedami, £e velja
aω1 + bω2 + cω3 = 0 za neka cela ²tevila a, b, c ∈ Z, potem velja a = b = c = 0. Pokaºi, da ima mnoºica
Z-linearnih kombinacij ²tevil ωi stekali²£e v C. Namig: uporabi Dirichletov aproksimacijski izrek: za vsak
nabor ²tevil x1, . . . , xk ∈ R ter poljuben n ∈ N obstajajo racionalna ²tevila p1/q, . . . , pk/q ∈ R, q ≤ nk, tako
da velja |qxj − pj | < 1/n za vse k ∈ {1, . . . , k}.

c) Pokaºi, da je vsaka podgrupaG ≤ Aut(C) grupe avtomor�zmov C, ki deluje na C diskretno (orbite so diskretne
mnoºice) in brez negibnih to£k, oblike G = {Id}, G = ⟨z 7→ z + ω1⟩ ali G = ⟨z 7→ z + ω1, z 7→ z + ω2⟩ za neki
kompleksni ²tevili ω1,2. Namig: dokaºi, da je orbita G · 0 to£ke 0 zaprta diskretna mnoºica v C!

Re²itev 44. a) Re²imo ena£bo az+ b = z in dobimo z = b/(1− a). Sledi, da avtomor�zem nima negibnih to£k
natanko tedaj, ko je a = 1 in b ̸= 0.

b) Naj bo Γ = Zω1 ⊕ Zω2 ⊕ Zω3. Vektorji ωi so R-linearno odvisni v C, torej za neka a, b ∈ R velja

ω3 = aω1 + bω2.

Po Dirichletovem izreku obstajata zaporedji an/qn → a, bn/qn → b, ki zado²£ata

|qna− an| <
1

n
, |qnb− bn| <

1

n
, za vsak n ∈ N.

Sledi
anω1 + bnω2 − qnω3 = (an − qna)ω1 + (bn − qnb)ω2 <

1

n
(ω1 + ω2)

n→∞−−−−→ 0,

torej je 0 stekali²£e mnoºice Γ.

c) Ker G deluje na C brez negibnih to£k, je vsak g ∈ G oblike z 7→ z + b za nek b ∈ C po to£ki a). Naj
bo Γ ≤ Aut(C) podgrupa vseh tak²nih avtomor�zmov in de�niramo preslikavo Φ : Γ → C, Φ(γ) = γ(0).
O£itno je Φ homomor�zem grup. Naj bo G ⊂ Γ neka diskretna podgrupa. Tedaj je Φ|G bijektivna, torej je
Φ : G 7→ Φ(G) izomor�zem grup. Sledi, da lahko G identi�ciramo z neko diskretno podgrupo v (C,+).

Pokaºimo, da je G zaprta. Naj bo U okolica to£ke 0 ∈ G v V , tako da velja U ∩ G = {0}. Naj bo U ′ ⊂ U
neka manj²a okolica to£ke 0 v V , tako da velja x− y ∈ U za poljubna x, y ∈ U ′. Tak²na okolica obstaja, ker
so grupne operacije zvezne. Naj bo sedaj x ∈ G in naj bo (xn)n∈N zaporedje v G, ki konvergira k x. Tedaj je
za vse dovolj velike n element x vsebovan v mnoºici xn + U ′, torej je x− xn ∈ U ′ za vse dovolj velike n. �e
je ²e m dovolj velik je torej xn − xm = (x− xm)− (x− xn) ∈ U ′ −U ′ ⊂ U . Ker je poleg tega xn − xm ∈ G in
velja G ∩ U = {0}, sledi xn = xm za vse dovolj velike m,n, torej je x = xn ∈ G.

Ker je G diskretna zaprta mnoºica v C, nima stekali²£, torej ima po prej²nji nalogi najve£ dva Z-linearno
neodvisna generatorja. Recimo, da je G = ⟨ω1, ω2⟩ in velja ω2 = λω1 za nek λ ∈ R\{0}. Po Dirichletovem
izreku lahko λ aproksimiramo z zaporedjem racionalnih ²tevil pn/qn, tako da velja |qnλ − pn| < 1/n, torej
velja

pnω1 − qnω2 = pnω1 − qnλω1 = (pn − λqn)ω1
n→∞−−−−→ 0.

Ker je G zaprta diskretna mnoºica v C, sledi (pn − λqn)ω1 = 0 za vse dovolj velike n, torej je λ = p/q ∈ Q.
Sledi G = ⟨(1/q)ω1⟩.
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Naloga 45. Pokaºi, da je vsaka holomorfna funkcija f : CP1 → C konstantna.

Re²itev 45. Ker je CP1 kompaktna, je f(CP1) ⊂ C kompaktna mnoºica v kompleksni ravnini. Tedaj pa je
f ◦ φ1 : C → C omejena holomorfna funkcija, torej je konstantna po Liouvilleovem izreku. Naj bo f |U1

≡ c. Ker je
f zvezna, je tudi f(∞) = c, torej je f ≡ c.

Naloga 46. Naj bo n ≥ 1 in c1, . . . , cn ∈ C. Pokaºi, da je polinom zn + c1z
n−1 + . . . cn−1z + cn meromorfna

funkcija na CP1. Opomba: funkcija f : CP1 → C je meromorfna, £e je holomorfna na komplementu neke diskretne
mnoºice, kjer ima pole.

Re²itev 46. Naj p(z) ozna£uje zgornji polinom. O£itno je p|U1
= p|C holomorfna funkcija. Na U2 pa imamo

(p ◦ φ−1
2 )(z) = p

(
1

z

)
= cn +

cn−1

z
+ · · ·+ c1

zn−1
+

1

zn
,

torej ima p pol n-te stopnje v φ−1
2 (0) = ∞.

Naloga 47. Naj bo a ∈ Ω singularnost holomorfne funkcije f : Ω∗ → C in recimo, da obstajata odprta mnoºica
U ⊂ C in odprta okolica V ⊂ Ω to£ke a, tako da velja f(V ) ⊂ C\U . Pokaºi, da je tedaj a bodisi odpravljiva
singularnost bodisi pol funkcije f .

Re²itev 47. De�nirajmo funkcijo g(z) = 1/(f(z) − b), kjer je b ∈ U poljubna to£ka. Tedaj je g omejena na
okolici to£ke a, torej ima po Riemannovem izreku odpravljivo singularnost v a ter se holomorfno raz²iri na V . �e
je g(a) ̸= 0, je a odpravljiva singularnost funkcije f . �e pa je g(a) = 0, potem velja g(z) = (z − a)kh(z), kjer je h
holomorfna funkcija brez ni£el, na neki okolici to£ke a, saj g ni identi£no enaka ni£. Sledi

f(z) = b+
1

g(z)
= b+

h̃(z)

(z − a)k
,

torej je a pol funkcije f .
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5 Izreki Koebeja, Landaua in Picarda

Izrek 2 (Koebe). Naj bo f : D → C injektivna holomorfna funkcija. Tedaj je D(f(0), 1/4) ⊂ f(D).

Naloga 48. Naj bo f(z) = (e5z − 1)/5. Pokaºi, da f izpusti vrednost −1/5. Zakaj to ni v nasprotju s Koebejevim
izrekom?

Re²itev 48. Poskusimo re²iti ena£bo f(z) = −1/5. Dobimo e5z = 0, ta ena£ba pa o£itno nima re²itve. To ni v
nasprotju s Koebejevim izrekom, saj f ni injektivna na D.

Naloga 49. Naj boG enostavno povezano obmo£je, a ∈ G ter f : G→ D enoli£no dolo£ena biholomorfna preslikava,
ki ustreza f(a) = 0 in f ′(a) > 0. Pokaºi, da velja

1

4 dist(a, bG)
≤ f ′(a) ≤ 1

dist(a, bG)
.

Re²itev 49. Ozna£imo
R = dist(a, bG) = sup{r > 0 : D(a, r) ⊂ G}.

Dokaºimo najprej neenakost na desni. Preslikava f̃ : z 7→ f(a+Rz) je holomorfna preslikava D → D, torej velja po
Schwarzovi lemi

R|f ′(a)| = |f̃ ′(0)| ≤ 1.

Ker je f ′(a) > 0, neenakost sledi. Pokaºimo ²e drugo neenakost. Ker je f biholomorfna, ima holomorfen inverz
f−1 : D → G, ki ustreza lastnosti

f−1(0) =
1

f ′(0)
> 0.

Naj bo h(z) = f ′(0) · f−1(z) − a. Tedaj je h preslikava D → C razreda S, torej po Koebejevem izreku velja
D(0, 1/4) ⊂ h(D). Sledi D(a, 1/4) ⊂ h(D) + a, D(a, 1/(4f ′(0))) ⊂ f−1(D), torej je 1/(4f ′(0)) ≤ R.

Naloga 50. Naj bo f : D → C funkcija razreda S, za katero so vsi koe�cienti v Taylorjevem razvoju okoli z = 0
realni, tj.

f(z) = z + a2z
2 + · · · , aj ∈ R.

Fiksirajmo 0 < r < 1 in de�nirajmo funkcijo g na [−π, π] s predpisom

g(θ) =
1

2i
(f(reiθ)− f(re−iθ)) sin θ.

a) Pokaºi, da je g soda in da so edine njene ni£le v to£kah −π, 0, π.

b) Pokaºi, da je
∫ π

−π
g(θ)dθ = πr. Sklepaj, da velja g ≥ 0.

c) Naj bo n ≥ 2. Pokaºi, da velja

0 ≤ 2

πr

∫ π

−π

g(θ)(1± cos(nθ))dθ = 2±
(
an+1 −

an−1

r2

)
rn.

d) S pomo£jo c) sklepaj, da velja |an+1 − an−1| ≤ 2 za vse n ≥ 2.

e) Dokaºi, da velja |an| ≤ n za vse n ≥ 1. To je ravno Bieberbachova domneva za funkcije, ki so realne na realni
osi. Trditev je dokazal Dieudonne leta 1931.

Re²itev 50. a) Velja

g(−θ) = (f(re−iθ)− f(reiθ)) sin(−θ) = (f(reiθ)− f(re−iθ)) sin θ = g(θ).

O£itno velja g(θ) = 0 natanko tedaj, ko je bodisi sin θ = 0 bodisi f(reiθ) = f(re−iθ). Ker je f injektivna, je
g(θ) = 0 natanko tedaj, ko je sin(θ) = 0.
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b) Naj bo z = reiθ. Ker ima f realne Taylorjeve koe�ciente, velja f(z̄) = f(z), torej je

g(θ) =
1

2i
(f(z)− f(z̄)) sin θ = ℑf(z) sin θ.

Razvijemo f v Taylorjevo vrsto v okolici izhodi²£a in dobimo

ℑf(z) = ℑ
(
reiθ + a2r

2e2iθ + · · ·
)
= r sin θ + a2r

2 sin(2θ) + · · ·

Sledi ∫ π

−π

g(θ)dθ =

∞∑
k=1

∫ π

−π

akr
k sin(kθ) sin θdθ =

∫ π

−π

r sin2 θdθ = πr.

Sledi, da obstaja θ ∈ [−π, π], tako da je g(θ) ≥ 0. Ker je g soda, obstaja tak θ na intervalu (0, π). Recimo,
da je g(θ′) < 0 za nek θ′ ∈ (0, π). Brez ²kode za splo²nost lahko predpostavimo θ′ < θ. Ker je g zvezna, ima
ni£lo na (θ′, θ). To je protislovje, saj so edine ni£le funkcije g to£ke −π, 0 in π. Sledi g ≥ 0.

c) Na enak na£in kot zgoraj vidimo, da je∫ π

−π

g(θ) cos(nθ)dθ =
∞∑
k=1

∫ π

−π

akr
k sin(kθ) sin(θ) cos(nθ)dθ =

∞∑
k=1

akr
kIk,n.

Iz adicijskih formul

sinx sin y =
1

2
(cos(x− y)− cos(x+ y)), sinx cos y =

1

2
(sin(x+ y) + sin(x− y))

izra£unamo

Ik,n =
1

2

∫ π

−π

(sin(kθ) sin((n+ 1)θ)− sin(kθ) sin((n− 1)θ))dθ

Ozna£imo
Ik,n = I+k,n − I−k,n.

O£itno je I+k,n = π/2, ko je k = n+ 1 in 0 sicer, podobno pa tudi I−k,n = π/2, ko je k = n− 1 in 0 sicer. Sledi

∞∑
k=1

akr
kIk,n =

π

2
(an+1r

n+1 − an−1r
n−1),

torej je
2

πr

∫ π

−π

g(θ)(1± cos(nθ))dθ = 2± (an+1r
n − an−1r

n−2) = 2±
(
an+1 −

an−1

r2

)
rn.

Ker sta funkciji 1 ± cos(nθ) sodi in nenegativni ter je g tudi sama soda in nenegativna, je integrand povsod
ve£ji od 0, torej je tudi integral nenegativen, kar dokazuje ºeleno.

d) Vemo, da za poljuben 0 < r < 1 velja

0 ≤ 2±
(
an+1 −

an−1

r2

)
rn.

Ko po²ljemo r → 1 dobimo v limiti 2− (an+1 − an−1) ≥ 0, torej je an+1 − an−1 ≤ 2 za vse n ≥ 2. Podobno
dobimo 2 + (an+1 − an−1) ≥ 2, kar skupaj s prej²njim rezultatom da

|an+1 − an−1| ≤ 2.

e) Dokazujemo z indukcijo. Ker je f ∈ S, velja |f ′(0)| = 1 ≤ 1. Recimo, da je |an| = |f (n)(0)|/n! ≤ n za vse
n ≤ m. Tedaj je

|am+1| ≤ |am−1|+ |am+1 − am−1| ≤ m− 1 + 2 = m+ 1

po to£ki d), kar dokazuje indukcijski korak.
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Naloga 51. Naj bo ε > 0. Pokaºi, da za vse c ∈ C∗ obstaja neskon£no mnogo z ∈ C, tako da velja

e1/z = c in 0 < |z| < ε.

Re²itev 51. Zapi²imo c v polarnih koordinatah kot c = (r, φ) in naj bo z = x+ iy. Veljati mora

exp

(
1

z

)
= exp

(
x− iy

x2 + y2

)
= exp

(
x

x2 + y2

)
exp

(
−i y

x2 + y2

)
= (r, φ+ 2ikπ), k ∈ Z.

Sledi
x

x2 + y2
= log r =: r̃ in

−y
x2 + y2

= φ+ 2ikπ =: φ̃.

Iz obeh ena£b izrazimo x2 + y2 in dobimo

x2 + y2 =
x

r̃
=

−y
φ̃
,

x

y
= − r̃

φ̃
,

torej je

x2 + y2 = y2
(
1 +

x2

y2

)
= y2

(
1 +

r̃2

φ̃2

)
= − y

φ̃
.

Mnoºimo z φ̃2 in dobimo
y2(r̃2 + φ̃2) + yφ̃ = 0.

V primeru, ko je c ∈ R, je y = 0 re²itev zgornje ena£be, sicer pa lahko delimo z y ̸= 0 in dobimo

y = − φ̃

r̃2 + φ̃2
ter x =

r̃

r̃2 + φ̃2
.

Spomnimo se, da je φ̃ = φ + 2ikπ, torej gresta oba zgornja izraza proti 0, ko po²ljemo k → ±∞. Z drugimi
besedami, za poljubna �ksna r, φ obstaja re²itev ena£be e1/z = c = (r, φ) poljubno blizu izhodi²£a.

Naloga 52. Naj bo f : D(0, 2)∗ → C holomorfna preslikava, ki ne zavzame vrednosti 0 in 1. Dokaºi, da ima bodisi
f bodisi 1/f odpravljivo singularnost v 0. Namig: oglej si druºino f(z/2n) in uporabi dejstvo, da je druºina
O(Ω,C\{0, 1}) normalna, kjer je Ω = A(0; 1/2, 2).

Re²itev 52. Naj bo fn(z) = f(z/2n) za z ∈ A = A(0; 1/2, 2). Ker je F = {fn}n∈N ⊂ O(A,C\{0, 1}), je F normalna
druºina, torej neko podzaporedje {fnk

} ⊂ {fn} konvergira enakomerno na kompaktih v A = A(0; 1/2, 2) bodisi k
∞ bodisi k holomorfni funkciji f ∈ O(A(0; 1/2, 2)). V prvem primeru velja 1/fnk

→ 0 enakomerno na A. Za dovolj
velike k je torej |f | < ε na kolobarju A(0; 1/2nk+1, 1/2nk−1), v posebnem je 1/|f | < ε na kroºnici {|z| = 1/2nk}.
Ker je f holomorfna na neki okolici kolobarja A(0; 1/2nk+1 , 1/2nk) in po predpostavki f nima ni£el na D(0, 2)∗,
je na tem kolobarju holomorfna tudi 1/f . Po principu maksimuma je torej 1/|f | < ε na A(0; 1/2nk+1 , 1/2nk).
Sledi, da konvergira 1/f(z) → 0, ko gre z → 0, torej je f omejena na okolici izhodi²£a in ima po Riemannovem
izreku odpravljivo singularnost v izhodi²£u. V drugem primeru pa je druºina F ′ = {fnk

} enakomerno omejena na
kompaktih v A(0; 1/2, 2), torej je enakomerno omejena na bD = {|z| = 1} ⊂ A(0; 1/2, 2). Naj boM tak²en, da velja
|fnk

|bD| ≤M . Tedaj velja za poljuben k ∈ N:

|f(z)| ≤M, za vse z ∈ bD(0, 1/2nk+1) ∪ bD(0, 1/2nk) = bA(0; 1/2nk+1 , 1/2nk).

Po principu maksimuma je |f(z)| ≤ M za vse z ∈ A(0; 1/2nk+1 , 1/2nk). Ker je bil k poljuben, sledi ∥f∥ ≤ M na
D(0, 2)∗, torej ima f po Riemannovem izreku odpravljivo singularnost v 0.

Naloga 53 (Veliki Picardov izrek). Pokaºi, da holomorfna funkcija v poljubni okolici bistvene singularnost zavzame
vse kompleksne vrednosti z izjemo najve£ ene, ki je neodvisna od okolice.

Re²itev 53. Naj bo f : U∗ → C holomorfna na neki punktirani okolici U to£ke a. Recimo, da obstajata a, b ∈ C,
a ̸= b, tako da je f(U∗) ⊂ C\{a, b}. Z zamenjavo koordinat lahko predpostavimo U = D(0, 2), a = 0, b = 1. Po
prej²nji nalogi ima tedaj bodisi f bodisi 1/f odpravljivo singularnost. �e velja prvi primer, je izrek dokazan, v
drugem primeru pa se 1/f holomorfno raz²iri na D(0, 2). Iz prej²nje naloge je razvidno, da v tem primeru velja
|f(z)| → ∞, ko gre z → 0, torej je f meromorfna funkcija.
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Izrek 3 (Landau). Naj bo f : D → C holomorfna funkcija, ki zado²£a f ′(0) = 1 in (1 − |z|)|f ′(z)| → 0, ko gre
|z| → 1. Tedaj slika f(D) vsebuje disk D(b, 1/16) za nek b ∈ C.

Opomba 6. Najve£je ²tevilo λ ≥ 1/16, za katero slika f(D), kjer je f kot v izreku, vsebuje disk radija λ, se imenuje
konstanta Landaua.

Naloga 54. Naj bo

f(z) =
1

2
log

1 + z

1− z
.

S pomo£jo funkcije f pokaºi, da je konstanta Landaua omejena s π/4.

Re²itev 54. Najprej preverimo, ali funkcija f ustreza predpostavkam izreka. Velja

f ′(z) =
1

2

(
1

1 + z
+

1

1− z

)
=

1

1− z2
,

torej je f ′(0) = 1. Velja

(1− |z|)|f ′(z)| = 1− |z|
|1− z2|

≤ 1− |z|
1− |z|2

=
1

1 + |z|
→ 1

2
,

ko gre |z| → 1, torej izreka ne moremo direktno uporabiti na funkciji f . Ideja: f predkomponiramo s skr£itvijo
diska za faktor 1/r, r > 1, uporabimo izrek in nato po²ljemo r ↓ 1. Pi²imo

fr(z) =
r

2
log

1 + z/r

1− z/r
.

Ker je fr holomorfna na disku Dr ⊃ D in velja f ′r(0) = 1, ustreza predpostavkam izreka Landaua. Funkcija

z 7→ 1 + z

1− z

preslika enotski disk biholomorfno na polravnino H = {ℜz > 0}, torej je slika funkcije

z 7→ 1 + z/r

1− z/r

prava podmnoºica v H. Sledi, da je logaritem zgornje vrednosti vsebovan v pasu {−π/2 < ℑw < π/2}, torej je

fr(D) ⊂
{
−πr

4
< ℑw <

πr

4

}
.

Za poljuben r > 1 torej obstaja funkcija f : D → C, ki ustreza predpostavkam izreka Landaua, najve£ji radij diska,
ki ga vsebuje njena slika, pa ne presega πr/4. Rezultat sledi, ko po²ljemo r → 1.

Naloga 55. Naj bodo f, g, h : C → C cele funkcije, ki zado²£ajo h(z) = ef(z) + eg(z).

a) S pomo£jo malega Picardovega izreka dokaºi, da ima ena£ba h(z) = 0 bodisi neskon£no mnogo re²itev bodisi
re²itev nima.

b) S pomo£jo to£ke a) pokaºi, da ima ena£ba ez − p(z) = 0, kjer je p nekonstanten polinom, vsaj eno re²itev.

c) S pomo£jo velikega Picardovega izreka pokaºi, da ima ena£ba ez − p(z) = 0, kjer je p neni£eln polinom,
neskon£no mnogo re²itev.

Re²itev 55. a) Ker je eg holomorfna funkcija brez ni£el, lahko ena£bo h = 0 delimo z eg in dobimo ena£bo

1 + ef(z)−g(z) = 0, ef(z)−g(z) = −1.

Lo£imo dve moºnosti: £e je f−g ≡ C konstantna funkcija, je bodisi C ∈ {iπ+2ikπ}k∈Z in je ena£bi zado²£eno
za vse z ∈ C. Sicer pa ena£ba nima re²itev. Recimo, da je H(z) := f(z) − g(z) nekonstantna cela funkcija.
Ker je ez = −1 za vse z ∈ {iπ + 2ikπ}k∈Z ter funkcija H po malem Picardovem izreku izpusti najve£ dve
vrednosti, je H(z) = iπ + 2ikπ za neskon£no mnogo k, torej ima ena£ba neskon£no mnogo re²itev.
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b) Recimo, da ena£ba nima re²itev. Tedaj je H(z) = ez − p(z) povsod neni£elna holomorfna funkcija, torej
dopu²£a logaritem, ki ga ozna£imo z g, tj.

ez − p(z) = eg(z).

Tedaj je p(z) = ez − eg(z) torej p bodisi nima ni£el bodisi jih ima neskon£no mnogo po to£ki a). Ker je p
nekonstanten, velja druga moºnost. To je protislovje, saj ima vsak polinom kon£no mnogo ni£el.

c) Ena£ba je ekvivalentna ena£bi

F (z) :=
ez

p(z)
= 1.

Ker ima polinom p kon£no mnogo ni£el, je F holomorfna na komplementu nekega dovolj velikega diska.
Opazimo, da ima F "bistveno singularnost v ∞", tj. funkcija

G(z) = F

(
1

z

)
=

e1/z

p(1/z)

je de�nirana na neki punktirani okolici Ω∗ izhodi²£a in ima v izhodi²£u bistveno singularnost. Res, funkcija
z 7→ 1/p(1/z) je meromorfna in velja p(1/z) → ∞, ko gre z → 0, torej je v okolici izhodi²£a holomorfna, e1/z

pa ima v izhodi²£u bistveno singularnost, torej ima bistveno singularnost tudi G. O£itno je tudi G povsod
neni£elna blizu 0, torej po velikem Picardovem izreku v poljubni okolici izhodi²£a zavzame vse vrednosti v C
z izjemo ene, ki pa je ravno 0. V posebnem ima ena£ba G(z) = 1 neskon£no mnogo re²itev na neki okolici
izhodi²£a, torej ima tudi ena£ba ez − p(z) = 0 nesko£no mnogo re²itev.
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6 Holomorfna aproksimacija

Izrek 4 (Runge). Naj bo K ⊂ C kompaktna mnoºica brez lukenj in naj bo f : U → C holomorfna funkcija na odprti
mnoºici U , ki vsebuje K. Tedaj obstaja zaporedje holomorfnih polinomov pn : C → C, ki konvergirajo enakomerno
na K k funkciji f .

Naj bo K ⊂ Ω ⊂ C. Njena holomorfno konveksna ogrinja£a je mnoºica

K̂O(Ω) =

{
z ∈ Ω : |f(z)| ≤ sup

x∈K
|f(x)|, za vse f ∈ O(Ω)

}
Naloga 56. Dokaºi naslednje trditve:

a) K ⊂ K̂O(Ω) in
̂̂KO(Ω) = K̂O(Ω).

b) �e je K1 ⊂ K, je K̂1 ⊂ K̂.

c) K̂O(Ω) je zaprta v Ω. �e je K omejena, je tudi omejena.

Re²itev 56. a) Prvi del je o£iten.

b) O£itno za vse f ∈ O(Ω) velja
sup
x∈K1

|f(x)| ≤ sup
x∈K

|f(x)|,

saj je K1 ⊂ K. V posebnem torej iz z ∈ K̂1 sledi z ∈ K̂, torej je K̂1 ⊂ K̂.

c) Naj bo (zn)n∈N zaporedje v K̂ z limito z ∈ Ω. Ker so holomorfne funkcije zvezne, velja za vsako funkcijo
f ∈ O(Ω):

|f(z)| = lim
n→∞

|f(zn)| ≤ sup
x∈K

|f(x)|,

torej je z ∈ K̂. Sledi, da je K̂ zaprta. �e je K omejena, je vsebovana v nekem zaprtem disku D = D(0, r) ⊂ C.
Za poljuben z ∈ Ω\D konstruiramo celo funkcijo f , za katero velja |f |K < |f(z)|: meromorfno funkcijo

f(ζ) =
1

ζ − z

razvijemo v Taylorjevo vrsto v okolici izhodi²£a in dobimo

f(ζ) = −1

z
(1 +

ζ

z
+
ζ2

z2
+ · · · ).

�e je ζ ∈ K, je v posebnem |ζ| ≤ r. Ker je |z| > r, je z oznako q = |ζ|/|z| < 1 o£itno

|fn(ζ)| =
∣∣∣∣− 1

z

(
1 +

ζ

z
+
ζ2

z2
+ · · ·+ ζn

zn

) ∣∣∣∣ ≤ 1

|z|
1

1− q
≤ |fn(z)| =

1

|z|
(1 + 1 + · · ·+ 1) =

n+ 1

|z|
,

torej z /∈ K̂O(Ω). Ker je bil z ∈ Ω\D poljuben, je K̂O(Ω) ⊂ D, torej je omejena.

V posebnem vidimo tudi, da velja K̂ ⊂ D(0, r) za vsak r, ki zado²£a K ⊂ D(0, r).

Opomba 7. Lahko se zgodi, da je Ω\D prazna mnoºica. Tedaj je seveda Ω omejena, torej je K̂O(Ω) ⊂ Ω
omejena po de�niciji.

Naloga 57. Naj bo K ⊂ Ω1 ⊂ Ω2. Pokaºi, da velja

K̂O(Ω1) ⊂ K̂O(Ω2).

Re²itev 57. Naj bo z ⊂ K̂O(Ω1). Tedaj za poljubno holomorfno funkcijo f ∈ O(Ω2) velja

|f(z)| ≤ sup
x∈K

|f |Ω1(x)| = sup
x∈K

|f(x)|,

saj je f |Ω1
holomorfna na Ω1. Trditev sledi.
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Naloga 58. Naj bo K = {z ∈ C : 1 ≤ |z| ≤ 2}. Dolo£i

a) K̂O(C),

b) K̂O(C∗).

Re²itev 58. a) Naj bo f ∈ O(C). Tedaj za vse z ∈ D(0, 2) velja po principu maksimuma:

|f(z)| ≤ max
x∈bD(0,2)

|f(x)|.

Sledi, da je K̂O(C) ⊃ D(0, 2). Recimo sedaj da je z ∈ C\D(0, 2). Mnoºica K ′ = D(0, 2) ∪ {z} je kompaktna
in brez lukenj. Naj bo U = U1 ∪ U2 odprta mnoºica, ki vsebuje D, tako da velja D ⊂ U1, {z} ⊂ U2 in
U1 ∩ U2 = ∅. Funkcija

g(ζ) :=

{
0; ζ ∈ U1

1; ζ ∈ U2

je holomorfna na U , torej po Rungejevem izreku obstaja zaporedje holomorfnih polinomov pn, ki konvergirajo
enakomerno na K ′ k funkciji g. Za dovolj velike n torej velja

|pn(ζ)| ≤ ε < 1− ε ≤ |pn(z)|

za vse ζ ∈ D, torej z /∈ K̂O(C). Ker je bil z poljuben, je K̂O(C) = D.

b) Naj bo sedaj f ∈ O(C∗). Bodisi se f holomorfno raz²iri na C bodisi ima singularnost v izhodi²£u. Recimo
najprej, da se raz²iri na C. Na enak na£in kot prej vidimo, da je K̂O(C∗) ⊂ D(0, 2)∗. �e je z ∈ D, pa velja za
funkcijo f(ζ) = 1/ζ, ki je holomorfna na C∗:

|f(z)| = 1

|z|
≥ 1

|ζ|
= |f(ζ)|

za vse ζ ∈ K, torej z /∈ K̂O(C). Ker je K ⊂ K̂, sledi K̂O(C) = K, torej je K holomorfno konveksna domena v
C∗.

Naloga 59. Naj bosta Ω in K kot v prej²nji nalogi ter naj bo p ∈ Ω\K̂. Pokaºi, da za poljubna M, ε > 0 obstaja
holomorfna funkcija f ∈ O(Ω), ki zado²£a |f |K < ε in |f(p)| > M .

Re²itev 59. Po predpostavki obstaja funkcija g ∈ O(Ω), ki zado²£a |g(p)| > |g|K . Naj bo r ∈ R tak, da velja
|g|K < r < |g(p)|. Za poljuben n ∈ N de�nirajmo funkcijo

fn(z) =
g(z)n

rn
.

O£itno gre fn → 0 na K in |fn(p)| → ∞, torej fn ustreza pogojem za vse dovolj velike n.

Naloga 60. Dokaºi, da obstaja zaporedje polinomov (pk)k∈N, tako da velja (po to£kah)

lim
k→∞

pk(z) =


1, ℜz > 0

0, ℜz = 0

−1 ℜz < 0

.

Namig: oglej si mnoºice Kn = ([−n,−1/n]× [−n, n]) ∪ ({0} × [−n, n]) ∪ ([1/n, n]× [−n, n]).

Re²itev 60. Za poljubno mnoºico A ⊂ C ozna£imo

Aε := {z ∈ C : dist(z,A) < ε}.

Naj bo εn = 1/(4n). Tedaj je mnoºica Kn,εn odprta okolica mnoºice Kn in velja

Kn,εn = U1
n ∪ U2

n ∪ U3
n, U i

n ∩ U j
n = ∅,
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kjer so mnoºice U i
n odprte okolice komponent mnoºice Kn. Funkcija fn : Kn,εn → C, podana s predpisom

fn(z) =


1, z ∈ U1

n

0, z ∈ U2
n

−1 z ∈ U3
n

,

je torej holomorfna funkcija na okolici Kn,εn mnoºice Kn. Ker Kn nima lukenj, lahko funkcijo fn po Rungejevem
izreku aproksimiramo s holomorfnim polinomom pn, tako da velja supz∈Kn

|fn(z)− pn(z)| < εn. Rezultat sledi.

Naloga 61. Dokaºi, da za poljubno odprto mnoºico Ω ⊂ C obstaja normalno iz£rpanje (Kj)j∈N mnoºice Ω, tako
da velja K̂j = Kj za vse j. Namig: velja dist(K, bΩ) = dist(K̂, bΩ).

Re²itev 61. Naj bo (K ′
j)j∈N neko normalno iz£rpanje mnoºice Ω. Lahko de�niramo na primer

K ′
j = D(0, j) ∩Dj , Dj := {z ∈ Ω : dist(z, bΩ) ≥ 1/j}.

O£itno tako de�nirano zaporedje mnoºic K ′
j ustreza de�niciji normalnega iz£rpanja. Ker je K ′

j kompaktna, je
omejena, torej je K̂ ′

j tudi omejena po eni od prej²njih nalog. Ker je zaprta, je tudi kompaktna. Normalno iz£rpanje
s holomorfno konveksnimi mnoºicami sedaj konstruiramo induktivno. Naj bo K1 = K̂ ′

1. Ker je (K ′
j) normalno

iz£rpanje, obstaja tak j2, da je K1 = K̂ ′
1 ⊂ IntK ′

j2
. Postavimo K2 := K̂ ′

j2
. Recimo, da smo ºe konstruirali

K1, . . . ,Kn. Z enakim argumentom kot pri K2 vidimo, da je Kn ⊂ IntK ′
jn+1

, torej je Kn ⊂ Int K̂ ′
jn+1

in postavimo

Kn+1 := K̂ ′
jn+1

.

Naloga 62. Naj bo Kj normalno iz£rpanje domene D z O(D)-konveksnimi mnoºicami. Pokaºi, da za poljubno
zaporedje {pn}n∈N, ki zado²£a pn ∈ Kn+1\Kn, obstaja holomorfna funkcija f : D → C, ki zado²£a

lim
n→∞

|f(pn)| = ∞.

Re²itev 62. Funkcijo f bomo konstruirali kot vrsto f =
∑

n fn, kjer so fn ∈ O(D) funkcije, ki zado²£ajo

|fn|Kn
<

1

2n
in |fn(pn)| > n+ 1 +

n−1∑
j=1

|fj(pn)|.

Prvi pogoj nam jam£i, da vrsta
∑

n fn konvergira absolutno in enakomerno na kompaktih v D, torej je limita f
holomorfna funkcija na D. Drugi pogoj nam da z uporabo trikotni²ke neenakosti:

|f(pn)| ≥ |fn(pn)| −
∑
j ̸=n

|fj(pn)|

> n+ 1 +

n−1∑
j=1

|fj(pn)| −
n−1∑
j=1

|fj(pn)| −
∞∑

j=n+1

|fj(pn)|

> n+ 1−
∞∑

j=n+1

1

2j

> n,

saj iz prvega pogoja sledi |fj(pn)| < 1/2j za vse j > n. Funkcije fn konstruiramo takole: ker je za poljuben n
mnoºica Kn holomorfno konveksna v D, po eni od prej²njih nalog za poljubna 0 < εn < Mn in poljubno to£ko
zn ∈ D\Kn obstaja holomorfna funkcija gn : D → C, ki zado²£a |gn| < ε na Kn in |gn(zn)| > Mn. Izberemo
zn = pn, εn = 1/2n in (induktivno) Mn = n+ 1 +

∑n−1
j=1 |fj(pn)|, kar kon£uje dokaz.
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7 Mittag-Le�erjev razvoj

Izrek 5 (Mittag-Le�er). Naj bo {an}n∈N diskretna mnoºica v obmo£ju Ω ⊂ C in naj bo za vsak n podan polinom

gn(z) = cn,1z + · · ·+ cn,kn
zkn

brez konstantnega £lena. Tedaj obstaja meromorfna funkcija f : Ω → C, za katero velja, da je funkcija

f(z)− gn

(
1

z − an

)
holomorfna na neki okolici to£ke an, ter f nima drugih polov (razen v to£kah an).

Kako poi²£emo f : Recimo, da i²£emo meromorfno funkcijo f : C → C. Izberimo normalno iz£rpanje C
s holomorfno konveksnimi mnoºicami, recimo Kn = D(0, n). Ker je mnoºica polov diskretna, so vsi glavni deli
gn(1/(z − an)) razen kon£no mnogo njih holomorfni na okolici diska Km (za nek �ksen m), torej lahko na Km

zapi²emo f kot vsoto

f(z) = meromorfni del+
∞∑

n=n0

(gn(1/(z − an))− Pn(z)),

kjer je Pn Taylorjev polinom v razvoju funkcije gn(1/(z−an)) v vrsto okoli izhodi²£a dovolj visoke stopnje, tako da
zgornja vrsta konvergira na Km. �e to velja za poljuben m, rep vrste za f konvergira enakomerno na kompaktih v
C.

Opomba 8. 1. V praksi iz£rpanje izberemo v odvisnosti od mnoºice polov. �e imamo npr. pole v n ∈ N ⊂ C,
je smiselno vzeti Kn = D(0, n/2), saj je tedaj glavni del gn holomorfen na okolici Kn.

2. Dovolj je videti, da konvergira rep vrste
∑

(gn − Pn) enakomerno na kompaktih, tj. za dani kompakt lahko f
zapi²emo kot

f(z) = vsota kon£no mnogo glavnih delov+
∞∑

n=N

(gn − Pn),

kar je uporabno, £e imamo npr. oceno za razliko ∥gn − Pn∥ na mnoºicah Km, m ≤ n.

Naloga 63. Konstruiraj meromorfne funkcije na C s predpisanimi glavnimi deli:

a) gn(z) = n/(z − n), n ∈ N, tj. iskana funkcija ima enostavne pole v to£kah n ∈ N in ostanke Res(f, n) = n.

b) gn(z) = 1/(z − n)

Re²itev 63. a) Glavni del iskane funkcije f v to£ki z = n je torej

−gn(z) =
n

n− z
=

1

1− z/n
.

Izberimo normalno iz£rpanje ravnine C z diski Kn = D(0, n/2). Tedaj je za vse n glavni del gn holomorfna
funkcija na okolici Kn in velja

gn(z) = − 1

1− z/n
= −

(
1 +

z

n
+
z2

n2
+ · · ·

)
.

�e od zgornje funkcije od²tejemo njen linearni Taylorjev polinom Pn dobimo

gn − Pn = − z2

n2

(
1 +

z

n
+
z2

n2
+ · · ·

)
=
z2

n2
n

z − n
.

Naj bo n0 ∈ N poljuben. Za n ≥ n0 velja za vse |z| ≤ n0/2:∣∣∣∣ ∞∑
n=n0

gn(z)− Pn(z)

∣∣∣∣ ≤ ∞∑
n=n0

n20
4n2

∣∣∣∣ n

z − n

∣∣∣∣ ≤ n20
2

∞∑
n=n0

1

n2
<∞,
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torej vrsta konvergira enakomerno na Kn0 . Ker je bil n0 poljuben, vrsta konvergira enakomerno na kompaktih
v C. Sledi, da je s predpisom

f(z) =

∞∑
n=1

(gn(z)− Pn(z)) =

∞∑
n=1

z2

n(z − n)

podana meromorfna funkcija z ustreznimi glavnimi deli.

Drug na£in: Poi²£emo polinome Pn, n ∈ N, tako da bo za nek ε > 0 veljalo

∥Pn − gn∥ <
1

2n
, za vse |z| ≤ n

2
.

Tedaj za poljuben k ∈ N, |z| ≤ k/2 velja

f(z) = meromorfni del +
∞∑

n=k

(
n

n− z
− Pn(z)

)
,

torej je

∥f −meromorfni del∥{|z|≤k/2} ≤
∑
n=k

∣∣∣∣ n

n− z
− Pn(z)

∣∣∣∣ < 1

2k
.

torej je f meromorfna funkcija. V posebnem je vsak kompakt K ⊂ C vsebovan v nekem disku D(0, k/2), kjer
velja zgornja neenakost. Polinome lahko poi²£emo bodisi z uporabo Rungejevega izreka, saj je za vsak n ∈ N
funkcija z 7→ n/(n − z) holomorfna na okolici diska D(0, n/2), bodisi direktno, tako da za vsak n izberemo
ustrezen Taylorjev polinom funkcije gn pri razvoju okoli izhodi²£a. Za �ksen n velja na {|z| ≤ n/2}:

−gn(z) =
1

1− z/n
= 1 +

z

n
+
z2

n2
+ · · · = pn,k(z) +

zk+1

nk+1

(
1 +

z

n
+
z2

n2
+ · · ·

)
.

Desni £len lahko omejimo z
1

2k+1

(
1 +

1

2
+

1

22
+ · · ·

)
=

1

2k
.

Lahko izberemo kar k = n, torej je

Pn(z) = pn,n(z) = 1 +
z

n
+ · · · z

n

nn

in velja

−gn(z) + Pn(z) =
zn+1

nn+1

(
1 +

z

n
+
z2

n2
+ · · ·

)
=
zn+1

nn+1

n

n− z
.

Iskana funkcija je torej podana z vrsto

f(z) =

∞∑
n=1

( z
n

)n+1 n

z − n
.

Iz konstrukcije sledi, da vrsta konvergira enakomerno na kompaktih v C\N.

b) Naj bo z oznakami iz prej²nje to£ke:

hn(z) =
gn(z)

n
=

1

n− z
.

Taylorjev razvoj funkcije hn okoli izhodi²£a je

hn(z) =
pn,k(z)

n
+
zk+1

nk+1

1

n− z
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Naj bo n0 ∈ N. Tedaj za vse n ≥ n0 in |z| ≤ n0/2 velja∣∣∣∣ zk+1

nk+1

1

n− z

∣∣∣∣ = 1

2k+1

nk+1
0

nk+1

2

2n− n0
.

Naj bo k = 0. Zgornji izraz ima tedaj vrednost

1

2

n0
n

2

2n− n0
=

n0
n(2n− n0)

≤ n0
n2

Izberimo kar k = 0, torej Pn(z) = 1/n+ z/n2. Tedaj je

hn(z)− Pn(z) =
z

n

1

n− z

De�nirajmo

f(z) = z

∞∑
n=1

1

n(z − n)
.

Iz zgornjih ocen sledi, da vrsta
∑∞

n=n0
1/(n(z − n)) konvergira enakomerno na {|z| ≤ n0/2} za poljuben n0,

torej za |z| ≤ n0/2 velja

f(z) = z

n0−1∑
n=1

1

n(z − n)
+ z

∞∑
n=n0

1

n(z − n)
=M(z) +R(z).

Ker je M meromorfna in R(z) konvergira enakomerno, je f dobro de�nirana meromorfna funkcija na C s
predpisanimi glavnimi deli v n ∈ N.
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8 Weierstrassova ℘-funkcija

Naloga 64. Pokaºi, da je vsaka dvojno periodi£na holomorfna funkcija f : C → C konstantna. Pokaºi ²e, da je
vsaka nekonstantna dvojno periodi£na holomorfna funkcija f : C → CP1 surjektivna.

Re²itev 64. Naj bo f dvojno periodi£na cela funkcija. Sledi, da je f(C) = f(K), kjer je

K = [0, 1]× [0, 1] = {a+ ib ∈ C : 0 ≤ a, b ≤ 1}.

Ker je K kompaktna, je f(C) omejena, torej je konstantna po Liouvilleovem izreku.
Naj bo sedaj f : C → CP1 nekonstantna dvojno periodi£na holomorfna funkcija. Iz prej²njega dela naloge sledi,

da obstaja z ∈ C, tako da velja f(z) = ∞, sicer bi veljalo f(C) ⊂ C in smo v situaciji iz prej²njega dela, ki pove,
da je f konstantna. Recimo sedaj, da obstaja nek ζ ∈ C, tako da je f(C) ⊂ CP1\{ζ}. Naj bo g : CP1 → CP1

avtomorifzem projektivne premice, podan s predpisom g(z) = 1/(z−ζ). Tedaj je g◦f : C → CP1 dvojno periodi£na
holomorfna funkcija, ki izpusti ∞, torej je g ◦ f konstantna po prej²njem delu naloge, torej je tudi f konstantna,
kar je v nasprotju s predpostavko. Sledi, da je f surjektivna.

Naloga 65. Naj bo

f(z) =
1

z2
+ c1z + c2z

2 + · · ·

dvojno periodi£na meromorfna funkcija s poli v Z + iZ. Dokaºi, da je f − ℘ konstantna. S pomo£jo Taylorjevega
razvoja funkcije ℘ okoli izhodi²£a pokaºi, da je f ≡ ℘.

Re²itev 65. Ker je f dvojno periodi£na, je tudi g = f−℘ dvojno periodi£na funkcija. Ker je tudi ℘ blizu izhodi²£a
oblike ℘(z) = 1/z2+h(z), kjer je h holomorfna funkcija na okolici izhodi²£a, je g holomorfna blizu izhodi²£a. Ker g
nima polov, razen mogo£e v mnoºici Z+ iZ\{0}, je holomorfna na okolici kvadrata [−1/2, 1/2]× [−1/2, 1/2] ⊂ C.
Ker je dvojno periodi£na, je cela, torej je konstantna po eni od prej²njih nalog. Za Weierstrassovo ℘-funkcijo velja
na okolici izhodi²£a:

℘(z) =
1

z2
+
∑
ω ̸=0

(
1

(z − ω)2
− 1

ω2

)
=

1

z2
+ h(z),

kjer je h holomorfna vsota zgornje vrste. O£itno je h(0) = 0, saj so vsi £leni v vrsti ni£elni pri z = 0. Ker je tudi
h̃(z) = f(z)− 1/z2 holomorfna na okolici izhodi²£a in je h̃(0) = 0, kar sledi iz Taylorjevega razvoja funkcije f , je

f(z)− ℘(z) = h(z)− h̃(z) ≡ C = 0,

saj je h(0)− h̃(0) = 0. Sledi f ≡ ℘.
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9 Weierstrassov izrek

Izrek 6 (Weierstrass). Naj bo {an}n∈N diskretna mnoºica v obmo£ju Ω ⊂ C in naj bo k : N → N funkcija. Obstaja
holomorfna funkcija f : Ω → C, ki ima za vse n ∈ N v to£ki an ni£lo stopnje k(n) in nima drugih ni£el.

Kako poiskati funkcijo f : Recimo, da i²£emo celo funkcijo f : C → C s predpisanimi ni£lami in njihovimi
stopnjami. Mnoºico {an}\{0} razvrstimo v zaporedje (zm)m∈N, pri £emer za vsak �ksen n velja an = zm za k(n)-
mnogo m, tj. £len an se v zaporedju pojavi natanko tolikokrat, kolikor je ºelena stopnja ni£le v tej to£ki. Nato
izberemo zaporedje (lm)m∈N, tako da velja

∞∑
m=1

|z|lm+1

|zm|lm+1
<∞ za vse z ∈ C.

Iskano funkcijo zapi²emo kot neskon£en produkt

f(z) = zk
∞∏

m=1

(
1− z

zm

)
Elm

(
z

zm

)
,

kjer je za dano naravno ²tevilo n:

En(z) = exp

(
z +

z2

2
+ · · ·+ zn

n

)
,

in je k ∈ N ∪ {0} stopnja ni£le, ki jo ima iskana funkcija v izhodi²£u.

Naloga 66. Zapi²i funkcijo sinπz kot neskon£en produkt.

Re²itev 66. Velja sinπz = 0 natanko tedaj, ko je z = k, k ∈ Z. Iz analize 1 vemo, da za poljuben k velja

lim
z→k

sinπz

πz
= 1,

torej so vse ni£le zk = k funkcije sinπz enostavne. I²£emo torej funkcijo g oblike

g(z) = z
∏

k∈Z\{0}

(
1− z

k

)
Emk

( z
k

)
= z

∞∏
k=1

(
1− z

k

)
Emk

(
1 +

z

k

)
E−k,m−k

= z

∞∏
k=1

(
1− z2

k2

)
Ẽk,mk

,

kjer je Emk
kot zgoraj. Natan£neje, produkt bo konvergiral, £e za vse z ∈ C konvergira vrsta

∑
k∈Z\{0}

|z|mk+1

|k|mk+1
.

Opazimo, da velja ∑
k∈Z\{0}

|z|2

|k|2
<∞,

torej lahko izberemo mk = 1 za vse k ∈ Z\{0}.
Drug na£in: S predavanj vemo, da neskon£en produkt

∞∏
k=1

(1 + ck)

konvergira, £e konvergira vrsta
∑∞

k=1 |ck|. Zdruºimo faktorja pri −k in k. Za poljuben M > 0 in |z| ≤ M velja
|z2/k2| ≤M2/k2, torej produkt

∞∏
k=1

(
1− z2

k2

)
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konvergira enakomerno na kompaktih v C. S predpisom

g(z) = z

∞∏
k=1

(
1− z2

k2

)
je torej podana cela funkcija, ki ima enake ni£le kot sinπz. Sledi, da je njun kvocient cela funkcija brez ni£el, tj.

sinπz = eh(z)z

∞∏
k=1

(
1− z2

k2

)
= g(z)eh(z) = G(z),

kjer je h neka cela funkcija. Naj bo z0 ∈ C\Z. Na dovolj majhni enostavno povezani okolici to£ke z0 je G holomorfna
funkcija brez ni£el, torej dopu²£a logaritem in velja

logG(z) = h(z) + log z +

∞∑
k=1

log

(
1− z2

k2

)
.

Zgornja vrsta konvergira enakomerno na nekem (manj²em) disku, torej jo lahko £lenoma odvajamo in dobimo

G′(z) = h′(z) +
1

z
+

∞∑
k=1

2z/k2

1− z2/k2
= h′(z) +

1

z
−

∞∑
k=1

2z

k2 − z2
= h′(z) +

1

z
+

∞∑
k=1

(
1

z + k
+

1

z − k

)
.

�e v £lene zgornje vsote vrinemo +1/k− 1/k in vse skupaj pomnoºimo s π, dobimo ravno Mittag-Le�erjev razvoj
funkcije π cotπz:

π cotπz =
1

z
+

∑
k∈Z\{0}

(
1

z − k
− 1

k

)
= π

cosπz

sinπz
= π

G′(z)

G(z)
= π

d

dz
logG(z).

Sledi, da je h′ ≡ 0 na neki okolici to£ke z0, torej je h′ ≡ 0 na C po principu identi£nosti. Sledi, da je h konstantna
funkcija. Ker je

lim
z→0

sinπz

πz
= 1,

velja

1 = lim
z→0

eh(z)

π
, eh(z) ≡ π,

torej je

sinπz = πz

∞∏
k=1

(
1− z2

k2

)
.

Naloga 67. S pomo£jo prej²nje naloge zapi²i naslednje funkcije kot neskon£en produkt:

a) sinhπz,

b) cosπz,

c) ez − 1.

Re²itev 67. a) Velja sinhπz = −i sin(iπz), torej je

sinhπz = −i(iπz)
∞∏
k=1

(
1− (iz)2

k2

)
= πz

∞∏
k=1

(
1 +

z2

k2

)
.

b) Velja cosπz = sinπ(z + 1/2), torej je

cosπz = π

(
z +

1

2

) ∞∏
k=1

(
1− (z + 1/2)2

k2

)
.
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Zgornji produkt zapi²emo kot

∞∏
k=1

(
1− (z + 1/2)2

k2

)
=

∞∏
k=1

(
1− z + 1/2

k

)(
1 +

z + 1/2

k

)
Levi faktor v zgornjem produktu je enak

1− z + 1/2

k
= 1− z

k
− 1

2k
=

1

2k
(2k − 2z − 1) =

2k − 1

2k

(
1− z

k − 1/2

)
,

desni pa

1 +
z + 1/2

k
= 1 +

z

k
+

1

2k
=

1

2k
(2k + 2z + 1) =

2k + 1

2k

(
1 +

z

k + 1/2

)
.

Sledi
∞∏
k=1

(
1− (z + 1/2)2

k2

)
=

∞∏
k=1

(2k − 1)(2k + 1)

4k2

(
1− z

k − 1/2

)(
1 +

z

k + 1/2

)
.

Vstavimo v zgornjo enakost za cosπz in dobimo

cosπz = π

(
z +

1

2

) ∞∏
k=1

(2k − 1)(2k + 1)

4k2

(
1− z

k − 1/2

)(
1 +

z

k + 1/2

)
=

= π

( ∞∏
k=1

4k2 − 1

4k2

)(
z +

1

2

) ∞∏
k=1

(
1− z

k − 1/2

)(
1 +

z

k + 1/2

)
.

Zapi²emo(
z +

1

2

) ∞∏
k=1

(
1− z

k − 1/2

)(
1 +

z

k + 1/2

)
=

=

(
z +

1

2

)(
1− z

1− 1/2

) ∞∏
k=2

(
1− z

k − 1/2

) ∞∏
k=1

(
1 +

z

k + 1/2

)
=

=
1

2
(1 + 2z)(1− 2z)

∞∏
k=1

(
1− z

k + 1/2

) ∞∏
k=1

(
1 +

z

k + 1/2

)
=

=
1

2

∞∏
k=0

(
1− z

k + 1/2

)(
1 +

z

k + 1/2

)
=

1

2

∞∏
k=0

(
1− z2

(k + 1/2)2

)
,

torej je

cosπz =
π

2

∞∏
k=1

4k2 − 1

4k2

∞∏
k=0

(
1− z2

(k + 1/2)2

)
=
π

2

∞∏
k=1

(
1− 1

4k2

) ∞∏
k=0

(
1− z2

(k + 1/2)2

)
.

Izra£unajmo ²e konstantni £len. Ker je

sinπz = z

∞∏
k=1

(
1− z2

k2

)
,

je konstantni £len v izrazu za cosπz ravno

∞∏
k=1

(
1− 1

4k2

)
=

sinπ(1/2)

π/2
=

2

π
,

torej je

cosπz =

∞∏
k=0

(
1− z2

(k + 1/2)2

)
.
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c) Opazimo, da velja
ez − 1 = ez/2(ez/2 − e−z/2) = 2ez/2 sinh(z/2).

Iz to£ke a) vemo, da velja

sinhπz = πz

∞∏
k=1

(
1 +

z2

k2

)
,

torej je

ez − 1 = 2ez/2 sinh(z/2) = 2ez/2 sinhπ(z/2π) = ez/2
∞∏
k=1

(
1 +

z2

4π2k2

)
.
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