Kompleksna analiza: zapiski va]

February 23, 2022

1 Osnovne lastnosti holomorfnih funkcij

Domena v C je enostavno povezana odprta mnozica.

Naloga 1. Izrazi operator A : C%(D) — C%(D), Au = uyy + uy, s pomodjo operatorjev % in a%'

v PR 90 _ & .
Resitev 1. Izracunajmo 3 5: = 5.55:

90wy = L (Zu) = L e i) = e — g + g 1) = 5
920z T 9z \02") T 209, e T M) T g e T Wlay THIMGE T tyy) = T4

torej je Au = 400. Podobno vidimo, da je tudi Au = 400, torej v posebnem velja
00 = 90.
Dvakrat zvezno odvedljivim funkcijam u na D, ki zado§¢ajo Au = 0, pravimo harmonicéne funkcije.
Naloga 2. Naj bo f holomorfna funkcija na D. DokaZi, da sta njen realni in imaginarni del harmonié¢ni funkeiji.

Resitev 2. Pisimo f = u + iv. Ker je f holomorfna, je df = 0, torej velja
A(f)=0(9f) =0,

po drugi strani pa je A(f) = Au+ iAv. Ker sta u, v realni funkciji, sta vektorja Au(z),iAv(z) € C linearno
neodvisna za poljuben z € D. Sledi Au(z) = Av(z) = 0 za poljuben z € D, torej sta v in v harmoni¢ni funkciji na
D. Iz racuna je razvidno tudi, da je Af(z) = 0 za vse z. Holomorfne funkcije so torej harmoni¢ne.

Naloga 3. Naj bo D C C povezana domena, tj. povezana in enostavno povezana odprta mnozica, in v : D — R
gladka harmoni¢na funkcija. DokaZi, da obstaja harmoni¢na funkcija v € C°°(D), tako da je f = u+ iv holomorfna
funkcija na D.

Resitev 3. Recimo, da taksna funkcija v obstaja. Iz Cauchy-Riemannovega sistema sledi
Up = —Uy, Uy = Uy.

Predpostavimo najprej, da je D konveksna (ali zvezdasta glede na neko tocko (,0)). Zelimo definirati v kot

Mmm=—/w%mwa+cw»

0

Veljati mora

x

vy(2,y) = —/r Uyy (t,y)dt + C'(y) = ug(z,y), C'(y) = us(z,y) +/ Uy, (t,y)dt.

0 Zo
Ker je u harmoni¢na, je wy,(t,y) = —ug(t,y) za vse (¢,y) € D. Dobimo

xT

C/(y) = um(x7y) + /gC uyy(tu y)dt = ’L%(LL', y) - / umx(tu y)dt = Um(l'an)'

Zo Zo



Z integracijo dobimo C(y) = fyyo ug (2o, t)dt. Definirajmo

y T
v(m,y)z/ um(xo,t)dt—/ uy (t,y)dt
Yo To
Velja

x x

Uyy (2, t)dt = ugz(xo,y) —|—/ Uge (T, 1) = ug(z,y).

Zo

Ux(xay) = _uy(xay)’ Uy(maw = uw(iﬂan) _/

4]

Sledi

Vgg T Uyy = —Ugy + Uzy = 0,

torej je v harmoni¢na funkcija, ki je konjugirana funkciji u. Sledi, da je f = w+ iv holomorfna. Ce D ni konveksna,
izberemo neko tocko (xg,yo) in za poljubno tocko (z,y) definiramo v kot integral

v(z,y) = /uzdy — uydz,
y

kjer je « stopnicasta pot od (z,y0) do (x,y). Ker je D lokalno konveksna, saj za vsako totko v D obstaja nek
odprt disk v D s centrom v tej tocki, takSna pot obstaja. Integral po ~ se nato prevede na vsoto integralov zgornje
oblike. Ker je D enostavno povezana, je integral neodvisen od poti, torej enoli¢no definira funkcijo v na D.

Naloga 4. Naj bo f: D C C — C* := C\{0} holomorfna funkcija na domeni D. Pokazi, da obstaja holomorfna
funkcija g, ki zado§¢a f = e9. Taksni funkciji g pravimo logaritem funkcije f in jo oznafimo z g = log f.

Resitev 4. Recimo, da taksna funkcija g obstaja. Ce odvajamo ena¢bo f = e dobimo
f'=ge¢=4dgf

torej mora veljati ¢’ = f’/f. Ker f nima nicel na D, je funkcija f’/f holomorfna na D. Za poljubno enostavno
sklenjeno krivuljo v v D torej po Cauchyjevem izreku velja

!
jl( f—dz =0.
5 f
Sledi, da je integral
@)
F(z) = dt
=]

neodvisen od poti. V posebnem je F' holomorfna, kar lahko preverimo po definiciji:

A0y 0] Hh (1) .
Fe+h)-F(z) Lo ol mwd L7 mwmd 1o

h h h - f3)

za nek zZ € B(z, |h|), saj je funkcija f'/f zvezna, torej je F' kompleksno odvedljiva. Definirajmo

20
L T

Ocitno je f(zo) = e9(20), Iz zgornjega izracuna pa vidimo, da je f’(z) = (e9)'(2), torej je f(z) = €9*) za vse z € D.

g(z) = log(f(20)) +

Opomba 1. V resnici velja _
f(z0) = e9(20)+2kT 4 poljuben k € Z.

Ustreznih funkcij g je torej Stevno mnogo. Z drugimi besedami, g je dolo¢ena do konstante natan¢no.

Naloga 5. Pokazi, da za zvezno odvedljive funkcije f : D — C velja

of\ _ of
@1



Resitev 5. Ra¢unamo po definiciji:

OfFN _L(of  ,0F\ _1 o = L v, —iu, — ) = L (O 00N _9F
<8z>_2<8ﬂc+l€)y>_2(uw+wx+wy 113,)—2(113,C 1y — duy Uy)_2(8:v 18y>_6z

Naloga 6. Izrazi s pomoéjo 0, O:
a) d(fog),
b) O(f o g).

Resitev 6. a) Rafunamo

20(f o g) = (u(q(z,y), w(z,y)) +iv(q(z,y), w(z,y))) =
= a%(fog) —ia%(fog) =

= Ugp(y + UyWy + 1V Gy + 1VyWy — 1Uz Gy — LUyWy + VgpQy + VyWy =
= Uy (g — 1qy) + 102(qx — iqy) + uy(wz — fwy) + ivy(wy — iwy) =

= %(QI - iqz/) + %(wx - w}y) =

o g+yg g—g\ _

n(127) g (557
= (fx —ify)09 + (fz +ify)0g =
— 20f0g + 29107

b) Na podoben na¢in dobimo
20(f o 9) = O(ulq(x,y), w(z,y)) +iv(g(z,y), w(z,y))) =
0 .0

= %(fog)Jrlafy(fog) =

= Ugp(y + UyWy + 10z Qs + 10yWs + UGy + 1UYWy — VypQy — VylWy =
= Uy (gy +1qy) + Uy (Wy + twy) + 105 (gs + iqy) + tvy(wy + twy) =
= (uz +102) (e +iqy) + (uy + ivy) (wy + iwy) =

_%a(g+9>+6f28<9—9> _

- Oz 2 dy 2i
= (fac - ny)gg + (f:v + 'qu)gg =
= 0fdg + 0f0g

Naloga 7.  a) Izpelji Greenovo identiteto za vektorsko polje F' = (f1, f2) : C — C in zvezno odvedljivo funkcijo
g : C — R na omejeni domeni D C C z gladkim robom, sestavljenim iz kon¢ne unije Jordanovih krivulj:

[ v pygdsty = [ (it rygas— [ (m Vg
D bD D

kjer je 7 zunanja enotska normala na bD.

b) Naj bo f: C — C dvakrat zvezno parcialno odvedljiva funkcija na domeni D z enakimi lastnostmi kot zgoraj
in naj bo g € C2°(D) gladka funkcija na D s kompaktnim nosilcem v D, kjer je D domena z enakimi lastnostmi
kot zgoraj. Pokazi, da velja

/ (Af)gdxdy = / f(Ag)dzdy.
D D



c) Izratunaj Ay, kjer je
_ log ||
oo

d) Pokazi, da je ¢ fundamentalna resitev Laplaceovega operatorja A. To pomeni, da za poljubno testno funkcijo
g € C(C) velja

/ [ 108901 = 9(0).

Opomba 2. Fundamentalna re§itev ¢ nam izrazi reSitev u ena¢be Au = f kot integral (konvolucijo)

/ F(Qe(z — Q)dcd

Resitev 7.  a) Predpostavimo najprej, da je D enostavno povezano obmodje z robom ~. Parametriziramo v z
naravnim parametrom s, tako da velja ||§|| = 1 in 7@ = (y, —&), kjer je 7i zunanja enotska normala. Ob oznakah
= (P, Q) sledi:
(i, F) = Pj - Qi,

torej je (i1, F)gds = (¢P)dy — (¢9Q)dzx. Po Stokesovem izreku velja

£()
/b (. F)gds = / (7, F)gds = / (9P)j — (9Q)ids / (4P)dy — (9Q)dz = /D (9P)s + (9Q)y)drdy.

Preprost izracun pokaze, da je zgornji integrand enak (Vg, F) + gV - F. Enakost za enostavno povezana
obmodja sledi.

V splosnem je rob bD unija paroma disjunktnih regularnih gladkih krivulj 7o, 71, - . ., 7n, ki jih parametriziramo
z naravnim parametrom sq € [0, S;], tj. za vse i = 0,...,n velja
[I9i(si)ll = 1.

Poleg tega zahtevamo, da je bD koherentno orientiran, tj.

ny; —nid; =1,
kjer je v; = (z;,¥:) in je ©; = (n},n?) zunanja enotska normala na robno komponento v;. Ker je [|4;]| = 1,
lahko vzamemo 7i; = (9;, —&;). Natancneje, naj bo 7;(s) enotski vektor za katerega velja (¥;(s),7;(s)) =0 za
vse s in

vi(s) — ti;(s) € D, za vse dovolj majhne ¢t > 0.

Tu predpostavljamo, da je 7o rob enostavno povezanega obmodja D’ C C, tako da je D C D’. Enak izrac¢un
kot zgoraj nato pokaze enakost za splo§na obmodja z gladkim robom:

/bD<ﬁ,F>gds:;0 / 7 ngs—z / (oP)ty—(9Q)dr = [ (aP)ly—~(s@)t = [ ((9P).+(9Q), o

b) Za poljubno C?-funkcijo f je
Af =V (V]).
Ker je g € C2*(D), je glpp =0 in Vg|pp = 0, torej velja po prejsnji tocki:
[ (@ngasdy= [ (@5 1)9ds ~ [ (97, g)dody =~ [ (97, g)dudy =
D bD D D
— [ @V sis— [ (V£.Vgdsdy = [ V(o) fdndy -
bD D D

= / fAgdxdy.
D



c) Velja
2o 4 12
AP =4 = T 9.05 %) = 1585

(logz+1logz) =0
na C* = C\{0}.

d) Preveriti moramo, da za poljubno testno funkcijo g € C3°(C) velja

/Cso(x,y)Ag(w,y)dxdy = %/{CAg(w,y) log |¢|dzdy = g(0).

Velja |¢|* = 22 + y%. Zgornji integral je torej enak

1
— / Ag(z,y)log(z* + y*)dxdy
47T C

Ker ima g kompakten nosilec, velja g = 0 na C\B(0,r) =: B, za dovolj velik r > 0. Zgornji integral razdelimo
na dva dela:

1 1 1
o [ Aot loslcldzdy = 5 [ Agay)loglldedy+ 5 [ Mgl log cldrdy = A+ B.
277' C 27'[' B,,.\BE 27T B.

Oglejmo si najprej ¢len B. Uporabimo polarne koordinate in dobimo

1

1 1 e 2w
or [ Botetogldldody = - [ Aglo.plosta® + y?dody = o [ [ Ag(ay)togryratar
s B. 4m B. 2T 0 0

Ker je g gladka, je |[Ag| < M na B.. Ker je lim,_,orlogr = 0, je funkcija r — rlogr omejena na [0, ], torej
je |rlogr| < K. Ocenimo

e 2w e 2w e 2w
’ / Ag(z,y)log(r)rdtdr| < / / |Ag(x,y)log(r)r|dtdr < KM/ / dtdr = 2K Me.
o Jo o Jo o Jo

Sledi B — 0, ko gre ¢ — 0. Oznafimo 8¢ D = B, \B; in izracunajmo ¢len A = fD fAgdxdy. Iz Greenove
identitete sledi

/ngdardy:/ <ﬁ,Vg>fds—/(Vf,Vg>dgcdy:

D bD D
:/bD<ﬁavg>fd5—/bD<ﬁan>gd8+/DgAfdxdy:
=I-J+K

Iz tocke c) sledi, da je K = 0. Sedaj izra¢unajmo I:

Saj je flpp. =loge/(27). Ker je integrand omejen na B, za neko konstanto C' > 0 velja |I| < Celoge — 0,
ko gre € | 0. Za J izra¢unamo

(75, V) fds = — / (7, Vg) fds = — 2BE / (Vs

bB. 27T

e

= _ - _ = _ - __1
J = /bD<n,Vf>gds = /bB (1, Vf)gds /bB (i, Vf)gds /bB (M, Vf)gds 272 o, gds.

Ker je g zvezna na B, velja J — g(0), ko gre € | 0. Sledi

1 .
ﬂ/Ag(x,y)log\dedy:I—J—I—K—i—Bﬁ>O+g(0)+O+O:g(O).
C



Naloga 8 (Riemannov izrek o odpravljivi singularnosti). Naj bo f : D* — C holomorfna funkcija, omejena na neki
okolici izhodis¢a. DokaZi, da se f holomorfno razgiri na .

Resitev 8. Definirajmo funkcijo h(z) = 22f(z). Ker je f omejena na neki okolici izhodis¢a, recimo |f| < M, velja

|h(2)| < |2|>M — 0, ko gre z — 0. Sledi, da se h zvezno razsiri na D. Izra¢unamo odvod h:

lim hiz) = h(0) = lim Z1G) = lim z2f(z) = 0

z—0 z z—0 z z—0

z enakim argumentom kot prej, tj. f je omejena na okolici izhodis¢a. Sledi, da je h kompleksno odvedljiva v
izhodis¢u, torej je holomorfna. Razvijemo h v Taylorjevo vrsto:

h(z) = h(0) + A’ (0)z + h"(0)2? + o(2%) = 1" (0)2* + o(2?).
Naj bo f = h(z)/z2. O¢itno je f = f na D*, blizu izhodisca pa velja

o) = MOZEED gy 4 22D 20, ),

22

Sledi, da je f : D — C zvezna funkcija, holomorfna na D*. Ker je f vsota konvergentne potencne vrste v spre-
menljivki z, je holomorfna.

Opomba 3. Konvergené¢ni radij Taylorjeve vrste holomorfne funkcije f : D — C v toc¢ki z € D je enak radiju
najvecjega diska s srediséem v z, ki lezi v D. Natan¢neje:

R =sup{r >0: B(z,r) C D}.
Naloga 9 (Cauchyjeve ocene). Naj bo f : Q — C holomorfna funkcija in naj bo D €  disk s sredi¢em v a € €,
tako da je D C Q. Pokazi, da veljajo Cauchyjeve ocene:

k\M
‘f(k)(a’)‘ S k0

r

kjer je r radij diska D in je M = maxcepp | f(C)]-

fla) = L/ &dg.

211 bDC*GJ

Resitev 9. Po Cauchyjevi formuli velja

Ker vrsta

1 p— —_ p— 2 .« ..
C_ia*l‘k(ﬁ a)+ (¢ —a)”+

konvergira enakomerno na bD > (, lahko k-krat odvajamo pod integralom in dobimo

k!
P90 = 5z [ e e

Na bD velja |f({)] < M ter |¢ — a| = r, od koder dobimo oceno

KM Y 2mr . kM
(k) e 2mit _
1@< 5 [l =G [ e =g




Naloga 10 (Princip identi¢nosti). Naj bo Q C C povezana domena in f,g :  — C holomorfni funkciji na €. Ce
velja fla = gla, kjer je A C Q neka mnozica s stekalis¢em v ), tedaj je f = g na Q.

Opomba 4. Tocka g €  je stekalisée mnozice A, ¢e je za poljubno okolico U tocke g mnozica (U\{q}NA) neprazna,
tj. poljubna okolica g vsebuje neko toc¢ko iz A, ki je razli¢na od q.

Resitev 10. Dovolj je pokazati, da je holomorfna funkcija f : Q2 — C konstantno enaka 0, ¢im ima njena mnozica
niel neko stekalisée v Q. Naj bo torej Z; = {z € Q : f(z) = 0} in naj bo A mnozica stekali3¢ mnozice Z;.
Pokazimo, da je A hkrati odprta in zaprta.

Pokazimo najprej, da je A zaprta. Naj bo ¢ neko stekaliS§¢e mnozice A. Tedaj poljubna odprta okolica U tocke
g vsebuje nek w € A\{q}. Ker je U odprta, je okolica za tocko w, torej vsebuje neko tocko z € Z;. Ker je bila U
poljubna, je ¢ stekaliS¢e mnozice Zy, torej je ¢ € A.

Naj bo sedaj ¢ € A. Ker je f holomorfna v ¢, je na neki okolici U C 2 tocke ¢ enaka vsoti svoje Taylorjeve
viste: f(2) = 3272, ¢j(z — ). Ker je ¢ nicla f, velja co = 0. Recimo, da f ni konstantno enaka 0 na U. Tedaj
obstaja najmanjsi tak jo € N, jo > 1, da velja ¢j, # 0, torej je f(2) = cj(z — @)’ + o((z — ¢)’°). Funkcija
g(2) = f(2)/(z — @)’ je torej omejena na neki okolici V' C U totke ¢ in je holomorfna na V'\{q}, torej ima po
Riemannovem izreku odpravljivo singularnost v ¢ in velja g(q) = ¢j, # 0. Ker je g holomorfna, je zvezna, torej
obstaja okolica V’ C V tocke ¢, tako da je g(z) # 0 za vse z € V'. Ker je f(z) = (z — q)7°g(z), velja f(z) # 0 za vse
z € V'\{q}, torej je ¢ izolirana nicla funkcije f, kar je v nasprotju s predpostavko o tem, da je ¢ stekalis¢e mnozice
Zy. Sledi f|y =0, torej je A odprta.

Ker je © povezana, sta edini njeni podmnofZici, ki sta hkrati odprti in zaprti ravno prazna mnozica in €. Ker je
A po predpostavki neprazna, sledi A = Q.

Naloga 11. Naj bo Q C C odprta mnozica. Ozna¢imo Q" ={2€Q: 32 >0} in Q™ ={z€ Q: Jz < 0}. Naj bo
Se I = QN R in naj bosta funkciji f: QT UT — C, g: Q= UI — C zvezni ter holomorfni na Q7 oz. 2. Naj velja
flr = gl1- Dokazi, da je tedaj

Flz) = {f(z).; ZEQJZUI
g(z); z€Q UI

holomorfna funkcija na €.

Namig 1. Uporabi Morerov izrek: ¢e je f: D — C zvezna funkcija, za katero je fbA fdz = 0 za vsak trikotnik A,
za katerega velja A C D, potem je f holomorfna. Namesto trikotnikov lahko v pogoju vzamemo tudi enostavne
sklenjene krivulje, ki omejujejo neko obmodcje v €2, tj. kontraktibilne zanke.

Resitev 11. Ker velja f[; = g[1, je funkcija I dobro definirana. Za poljuben trikotnik A, ki lezi bodisi v Q bodisi
v 0~ je Morerov pogoj za F izpolnjen. Ce katera od stranic trikotnika leZi na I, je pogoj prav tako izpolnjen, saj je
f zvezna na Q, U I. Recimo sedaj, da trikotnik A seka tako Q7 kot tudi Q~. Razdelimo trikotnik na dve obmodji

AE=ANQECcO. Obmo¢ji skladno orientiramo, tedaj pa velja

/ Fdz = fdz—i—/ gdz = 0.
bA bA+ bA~

Sledi, da je Morerov pogoj izpolnjen za poljuben trikotnik A C €, torej je F holomorfna na €.

Naloga 12 (Schwarzov princip zrcaljenja). Naj bo f: D := Q; UI — C holomorfna funkcija na mnozici D C {z €
C: Sz > 0}, ki ima realne vrednosti na D NR = I C R. Dokazi, da se f razsiri na D U D*, kjer je

D*={z: z€ D}.

Resitev 12. Definirajmo f* : D* — C s predpisom f*(z) = f(z). Z odvajanjem se prepri¢amo, da je f* holomorfna
funkcija na D*. Ker za z € DNR velja f(z) = f(2) = f(2) = f*(z), saj ima f realne vrednosti na D N R, velja po
principu identi¢nosti f(z) = f*(z) za vse z € D N D*, saj je D odprta mnozica, torej je presek D N R mnozica s

stekalis¢em. Definirajmo
; D
Foy= 1/ 2€
f*(z) ze€D*

Iz zgornje razprave je razvidno, da je F' dobro definirana. Po prejsnji nalogi sledi, da je tudi holomorfna.



Naloga 13. Naj bo f zvezna na Q4 U I in holomorfna na ;. Predpostavimo, da je f|; = 0. Pokazi, da je tedaj
f=0.

Resitev 13. Po principu zrcaljenja se f razgiri na holomorfno funkcijo f na Q. Ker je f|1 = 0 in je I mnoZica s
stekali¢em, je f = 0. Sledi f = 0.

Naloga 14. Naj bodo Q, Q4, Q_, I, f kot zgoraj in dodatno predpostavimo, da je € povezana, f injektivna na
Q4 , da ima realne vrednosti na I in da velja Sf(z) # 0 na Q. DokaZzi, da se tedaj f razsiri do injektivne funkcije
na ).

Resitev 14. Naj bo f: 2 — C holomorfna raz§iritev f, ki jo da princip zrcaljenja. Dokazimo, da je f injektivna.
Po predpostavki je f injektivna na Q. Ker je f(z) = f(z) za poljuben z € Q_, je tudi f|q_ injektivna. Naj bosta
sedaj z, 2’ € Q1. Ker je funkcija z — S f(2) zvezna, je bodisi Sf(z) > 0 bodisi Sf(2) < 0 za vse z € 2, torej je

F&) =) # f(2) = f2).

Brez §kode za splosnost predpostavimo $f(z) > 0 na Q4. Ker ima f realne vrednosti na I, je za injektivnost dovolj
pokazati f(z) # f(y) za poljubna x,y € I, x # y. Predpostavimo nasprotno. Ker je f injektivna na Q4 U Q_,
je nekonstantna na 2, torej je odprta po izreku o odprti preslikavi. Sledi, da slika diska D(z,r) vsebuje nek disk
D(f(x),r"). Ce izberemo r,r’ dovolj majhna, tudi slika diska D(y, r) vsebuje disk D(f(y),r) = D(f(x),r). Nadalje
lahko predpostavimo, da sta diska D(z,r) in D(y,r) disjunktna, tako da po potrebi zmanjsamo r in 7’. Tedaj za
poljuben z € D(z,r); dovolj blizu  obstaja nek 2z’ € D(y,r), tako da je f(z) = f(z'). Ker je f injektivna na
0, UQ_, sledi 2’ € D(y,r) NI, vendar tedaj velja Sf(z') = 0, ker je f realna na I, in hkrati 0 < Sf(z) = 3f(2)
po predpostavki. To je protislovje. Sledi, da je f injektivna tudi na I, torej je f injektivna na ).

Naloga 15 (Schwarzova lema). Naj bo f : D — D holomorfna funkcija in naj bo f(0) = 0. Dokazi, da velja
a) |f(2)| < |z| za vse z € D,
b) 1F/(0)] < 1.
Nato pokazi, da enakost v kateremu koli od zgornjih pogojev implicira f(z) = 2.
Resitev 15.  a) Ker je f holomorfna na D in je f(0) = 0, sledi, da je Taylorjev razvoj f na I oblike
f(z)=crz+c2®+ -+,
torej je g(z) := f(z)/z holomorfna funkcija na D po izreku o odpravljivi singularnosti. Ce je |z| = r, velja

o) = @ Loy

2l
torej je |g(z)] < 1 po principu maksimuma, saj je g(z) holomorfna na D, od koder sledi
[F )= Izl - lg(2)] < [2]-

b) Velja

7/0)] = tim | 1)

<1
z—0

Ce velja enakost v pogoju a) za neko toc¢ko z € D, potem je z maksimum funkcije |g(z)| in po principu maksimuma
je g konstantna. Enakost sledi. Recimo, da velja enakost v pogoju b). Po principu maksimuma je tedaj |f/(z)| = 1,
saj je f’ holomorfna na D, torej velja |f'(z)] < 1. Po krepkem principu maksimuma je f’ konstantna, torej je
f'(z) = €. Sledi f(z) = e?2.

Naloga 16. Dokazi sledeco posplositev Schwarzove leme. Naj bo f kot zgoraj, pri ¢emer dodatno zahtevamo, da
je izhodi§ce nicla n-te stopnje. Dokazi, da tedaj velja |f(z)| < |z|". Ce za nek z velja enakost, je f(z) = e?z".

Resitev 16. Ker je f holomorfna na D, njena Taylorjeva vrsta konvergira na ID. Ker je izhodis¢e ni¢la n-te stopnje,
sledi

f(Z) =cp2" + C7L+1Zn+1 4o

torej je g(z) = f(z)/z™ holomorfna funkcija na D. Kot prej vidimo, da je |g(2)] < 1, torej je |f(2)] < 2™ Ce velja
enakost, ima |g| maksimum v z, torej je g konstantna po principu maksimuma. Sledi, da je f(z) = e?2".



Naloga 17. Ali obstaja taksna holomorfna funkcija f : D — D, da velja
a) {f(1/n)}nen ={1,0,1/2,1/3,0,1/4,1/5,1/6,0,...},
b) {f(1/n)}tnen ={1,-1/2,1/3,-1/4,...},
c) {f(1/n)}neny ={1/2,1/2,1/4,1/4,1/6,1/6,...},
d) f(z) =1/z za vse z € bD. (Tu predpostavljamo, da je f € A(D)).

Resitev 17.  a) Recimo, da taksna funkcija obstaja. Ker ima f nicle poljubno blizu izhodis¢a, je f(0) = 0 in
velja f = 0 na D po principu identi¢nosti, kar je v nasprotju s predpostavko.

b) Recimo, da taksna funkcija obstaja. Zaradi zveznosti je f(0) = 0. Naj bo g(z) = —z. Tedaj je g(1/2k) =
—1/2k = f(1/2k) za vse k € N. Ker ima mnozica {1/2k}ren stekalisée v D, velja f = g po principu
identi¢nosti, kar je v nasprotju s f(1/3) =1/3.

¢) Recimo, da taksna funkcija obstaja. Zaradi zveznostije f(0) = 0. Naj bo g(z) = z. Tedaj je g(1/2k) = 1/2k =
f(1/2k) za vse k € N. Ker ima mnozica {1/2k}ren stekalis¢e v D, velja f = g po principu identi¢nosti, kar je
v nasprotju s f(1/3) = 1/4.

d) Recimo, da se f razsiri na D. Po Cauchyjevem izreku je tedaj 0 = 1/(27i) [, f(2)dz = 1/(2mi) [,pdz/z = 1.
Protislovje.

Naloga 18. Naj bo 2 C C obmo¢je in f : Q — C holomorfna funkcija. Naj bo 8e zy € Q. Pokazi, da Taylorjeva
vrsta za f v tocki zg konvergira na disku D C s sredis¢em v 2 radija R, kjer je

R =sup{r>0: D(z,r) CQ}.

Resitev 18. Naj bo r < R. Tedaj je D(zg,7) C  in velja po Cauchyjevi formuli za poljuben z € D(zo,7):

_ 1 f(©)
f(z) = Gy Clar (= de'

Naj bo z € D(zg,r). Ker je [¢ — 20| > |z — 20}, velja

I 1 1 1 1 1+z—zo+<z—zo>2+
¢—2  ((—20)—(2—20) (—201-%72 (-2 ¢—2o ¢—2o .

Oznacimo ¢ = (z — 209)/(¢ — 20). Vrsta 1+ ¢+ ¢* + --- konvergira za vse ¢ < 1, torej konvergira absolutno in
enakomerno za vse z € D(zg, 1), kjer je ' < r. Sledi, da lahko za z € D(zg,r’) ¢lenoma integriramo in dobimo

f(z) 1 Z(z - zo)"/ &dc = Z cn(z — 20)".

© 2mi o I¢|=r (C — zo)"

n=0

Ker sta bila ' < r < R poljubna, sledi, da vrsta konvergira na poljubnem disku s sredisem v zg, ki je vsebovan v
Q.

Naloga 19 (Liouvilleov izrek). Dokazi, da je vsaka omejena cela funkcija konstantna.

Resitev 19. Naj bo f: C — C omejena, torej |f(z)| < M za nek M in vse z € C. Ker je f holomorfna na C, je
njena Taylorjeva vrsta s sredis¢em v izhodis¢u povsod konvergentna in velja

— f™0) 1 f(©)
f(z):;cnz ; Cnp = oy = % CanC

|z|=r

za poljuben r > 0 po Cauchyjevi formuli. Iz Cauchyjeve ocene tedaj sledi |c,| < M/(27r™). Ko posljemo r — oo,
dobimo ¢, = 0 za vse n > 1, torej je f(z) = f(0).



Naloga 20. Naj bo f: C — C cela funkcija, ki zadosca
[f(2)| < M1+ |2|))? zavsezeC,

za nek p > 0 in M > 0. Dokazi, da je tedaj f polinom stopnje najvec p.

Resitev 20. Naj bo n = [p]. Za |z| > 1 torej velja |f(2)] < (14 2])? < (1 + |2|)". Ker je f cela funkcija, njena
Taylorjeva vrsta okoli izhodisc¢a konvergira na C in velja

oo

flz)= chzj, za vse; 2 € C.

Jj=0

Ozna¢imo z f,, Taylorjev polinom funkcije f stopnje n — 1. Tedaj je

1f(2) = fu()] < () +1fal2)] < MA+]2)" + (lcol + el 2]+ -+ len—a] - [2]"7F) = [2]" <Co s > :

2] 2"

Izraz na levi pa je enak

<D legl L2l = 12" Y feyl - 2

j=n j=n

£ (2) = ful2) =

o0

S e
CJZ

j=n

Naj bo 8e h(z) = (f(2) — fn(2))/2z™. Ker ima razlika f(z)— f,(z) ni¢lo stopnje n v izhodis¢u, ima h tam odpravljivo
singularnost, torej je h cela funkcija. Iz zgornje neenakosti sledi

h(2)§00+a+---+%ﬂ>0’

torej je h omejena. Po Liouvilleovem izreku je h konstantna, torej je ¢; = 0 za vse j > n+1. Sledi, da je f polinom
stopnje najve¢ n < p+ 1. Recimo, da je p < [p] in je f polinom stopnje n = [p]. Tedaj je

Cn—1 ++|CO'I|L> 2N|Z‘n
2] ||

) = Jeo 4 1z 4ot enz™| > [en] - |2]" (1 -

za nek N > 0, ¢e je le |z| dovolj velik, saj gredo ¢leni z negativnim predznakom proti 0, ko gre |z|] — oco. Iz

predpostavke sledi
Nlz|"

A+ =

kar je protislovje, saj je stopnja ¢lena v Stevcu strogo vecja od stopnje imenovalca.

NJz|™ < M(1+ |z])",

)
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2 Funkcijski prostori in konvergenca

Naj bosta X,Y topologka prostora in naj bo C(X,Y’) prostor zveznih preslikav f : X — Y. Kompaktno-odprta
topologija na C(X,Y) je podana s podbaznimi odprtimi mnoZzicami oblike

V(K,U)={f eC(X,Y): f(K)CU},

kjer je K C X kompaktna mnozica in U C Y odprta mnozica. Kompaktno-odprto topologijo imenujemo tudi
topologija enakomerne konvergence.

Naloga 21. Dokazi, da je S = {V(K,U) : K C X kompaktna, U C Y odprta} podbaza za topologijo na C(X,Y).

Resitev 21. Pokazati moramo zgolj, da je unija vseh mnoZic iz S enaka C(X,Y). Naj bo f: X — Y zvezna
preslikava in naj bo K C X kompaktna mnozica. Tedaj je tudi f(K) kompaktna in vsebovana v odprti mnozici
U=Y, torej je f € V(K,Y). Ker je bila f poljubna, velja C(X,Y) C V(K,Y) € S, torej je US =C(X,Y).

Naloga 22. Dokazi, da metrika
dg : Fx F =R, d(f.g) = Suglf(Z) —9(2)|
FAS

inducira kompaktno-odprto topologijo na prostorih F € {C(K), A(K)}, kjer je K C C kompaktna mnoZica. PokaZi,
da je F poln metriéni prostor in dokazi, da je dx translacijsko invariantna metrika. Nato pokazi, da je F lokalno
konveksen vektorski prostor. Takim prostorom pravimo Fréchetovi prostori.

Resitev 22. Najprej pokazimo, da je d res metrika. O¢itno je d nenegativna in velja d(f, g) = 0 natanko tedaj, ko
je f = g. Prav tako je ocitno d(f,g) = d(g, f) za poljubni funkciji f in g v F. PokaZimo Se trikotnisko neenakost.
Naj bodo f,g,h € C(F). Velja za poljuben z € K:

1f(2) = h(2)| = |F(2) = 9(2) + 9(2) = h(2)| < [f(2) — 9(2)| + |g(2) — h(z)]-

Trikotnigka neenakost sledi, ko na obe strani neenakosti apliciramo supremum po z € K.

Sedaj pokazimo, da je F poln metri¢ni prostor. Naj bo najprej {f, }nen Cauchyjevo zaporedje zveznih funkcij
na K. Ker je tedaj za poljuben z € K tudi zaporedje {f,(z)} Cauchyjevo, obstaja limitna funkcija f. Ker je
konvergenca enakomerna, je f € C(K), torej je (C(K),dk) poln metri¢ni prostor.

Naj bo sedaj {f»}nen zaporedje zveznih funkcij na K, ki so holomorfne na notranjosti mnozice K. Iz prej$nje
totke vemo, da limita zaporedja f obstaja in je zvezna. Naj bo A trikotnik v K, tako da je A C K. Tedaj je

[ ©dc= [ i poac= s [ fa@ac=o

saj zaradi enakomerne konvergence zaporedja lahko zamenjamo integral in limito. Po Morerovem izreku sledi, da
je f holomorfna na notranjosti K, torej je tudi A(K) poln metri¢ni prostor z metriko dg .

Translacijska invarianca je o€itna, saj za vse z velja |(f+h)(2)—(9+h)(2)| = | f(2)—g(2)|, torej je d(f+h, g+h) =
d(f,g). Pokazimo, da je krogla B. = {f € C(X) : d(f,0) < £} konveksna. Za poljubni funkciji g,h € B je

d(tg + (1 —t)h,0) < d(tg,0) +d((1 — t)h,0) = td(g,0) + (1 — t)d(h,0) < te + (1 —t)e = ¢,

torej je tg + (1 — t)h € B.. Ker to velja za poljuben ¢, je {B:}.>0 sistem konveksnih okolic za nicelno funkcijo
0 € C(X), torej je C(X) lokalno konveksen vektorski prostor.

Pokazati moramo 8Se, da dx inducira kompaktno odprto topologijo. Naj bo L C K kompaktna mnozica in si
oglejmo podbazno mnozico V(L,U) C F. Najbo f € V(L,U). Ker je mnozica f(L) C U kompaktna, obstaja e > 0,
tako da je mnozica f(L). = {z € R: dist(z, f(K)) < e} C U vsebovana v U. Tedaj pa je tudi dx-krogla B(f,e)
vsebovana v V(L,U). Sledi, da je V(L,U) odprta v metri¢ni topologiji. Vzemimo sedaj neko kroglo B(f,¢) in
pokazimo, da je odprta v kompaktno-odprti topologiji. Naj bo za vsak z € K mnozica U, C f~1(B(f(z),/2)) neka
relativno kompaktna odprta okolica tocke z v K in naj bo V. := V(U., B(f(2),/2)) podbazna okolica funkcije
f v kompaktno odprti topologiji. Ker je K kompaktna, obstaja konéno mnogo z,...,2, € K, tako da velja

U7, (U.,;) D K. Naj bo
V=V

Jj=1



Najboge Vin 2z € K. Tedaj je z € U, zanek j =1,...,n in velja
e €
1£) — 9(2)] < 1) = F)l + 1) — 9()l < 5 + 5 ==,

saj g preslika Uzj v kroglo B(f(z;),e/2). Sledi, da je V odprta okolica funkcije f, ki je vsebovana v B(f,¢), torej
je B(f,e) odprta v kompaktno-odprti topologiji.

Druzina zveznih funkcij F C C°(K), kjer je K C M kompaktna mnozica v metri¢nem prostoru (M,d), je
enakozvezna, Ce za poljuben € > 0 obstaja § > 0, tako da za vse f € F in z,y € K velja

|f(x) = fly)] <e, ¢im jed(z,y) <.
Druzina je enakomerno omejena, e obstaja takSsen M > 0, da za vse x € K ter vse f € F velja
|f(z)] < M.

Omejimo se na primer M = C. Naj bo D domena in F C C°(D) neka druZina funkcij. Pravimo, da je F enakozvezna
na kompaktih, Ce je za poljuben kompakt K C D druZzina

Fle ={flx: f€F}

enakozvezna. Podobno je druzina F enakomerno omejena na kompaktih, ¢e je za poljuben kompakt K druzina
F|x enakomerno omejena. Druzina je normalna, ¢e je F kompaktna mnozica v C°(D) s gibko topologijo. Z
drugimi besedami, vsako zaporedje funkcij v normalni druzini dopusca podzaporedje, ki konvergira enakomerno na
kompaktih k neki zvezni funkciji na D.

Naloga 23. Dokazi, da je druzina funkcij f,(x) = 2™ enakomerno omejena na intervalu [0, 1], ni pa enakozvezna.

Resitev 23. Ocitno za vse n € N in vse x € [0, 1] velja |2™| < 1. Naj bo sedaj € > 0 in pokazimo, da za poljuben
§ > 0 obstajata z,y € [0,1], |z — y| < d ter n € N, tako da je

[f(@) = f(y)] > e

Najboy=1in1—-46 <z < 1. Tedaj velja |z|* — 0, ko gre n — oo, torej za dovolj velike n velja 2™ < 1 —e. Sledi

[f(@) = fly)l =1—a" >e.
Naloga 24. Ali je druzina f,(z) = 2™ normalna kot druZina funkcij na intervalu (—1,1)?

Resitev 24. Enako kot prej vidimo, da je druZzina enakomerno omejena na (—1,1), torej je enakomerno omejena na
kompaktih. Naj bo K C (-1, 1) kompaktna mnoZica in naj bo M = max,ex |z|. Tedajje M < 1in K C [-M, M].
Prvi nacin: Pokazimo, da je druzina enakozvezna na kompaktih. Velja

2" =y T =z — gl 2" " Ty ey Tyt < (R )M eyl

Ker je M < 1, gre (n+1)M™ — 0, ko gre n — oo, torej obstaja M’ > 0, tako da je (n + 1)M"™ < M’ < oo za
vse n € N. Ceje |z —y| < e/M’, je |fn(x) — fa(y)| < e. Ker je druzina enakozvezna in enakomerno omejena na
kompaktih, je normalna po izreku Arzela-Ascoli.

Drug nacin: OCitno je |fn(x)] < M™ za vse x € K, n € N, torej gre f, — 0 enakomerno na K, ko gre n — oc.
Sledi, da je F kompaktna v C%(—1,1).

Naloga 25. Pokazi, da je druZina funkcij f,(x) = sin(nz) enakomerno omejena, vendar ni relativno kompaktna v
prostoru C°((0,1)) s topologijo enakomerne konvergence na kompaktih. Z drugimi besedami, pokazi, da zaporedje
nima konvergentnega podzaporedja na nobenem kompaktnem podintervalu [a,b] C (0,1) z neprazno notranjostjo.

Resitev 25. O¢itno je |fn(z)] < 1zavse z € (0,1), n € N torej je druzina enakomerno omejena. Recimo, da neko
podzaporedje fi konvergira enakomerno na [a, b] k zvezni funkeciji f. Cejen= n(k) dovolj velik, je n(k)|b—a| > m,
torej obstaja xf € [a,b], tako da je n(k)x§ = Im zanek | € N. Sledi fi(2f) = fn(k)(xlg) = 0. Ker to velja za vse
dovolj velike k, dobimo zaporedje {z£},>k,. Ker je [a,b] kompakten, ima zaporedje stekaliste o v [a,b]. Velja za
dovolj velike k:
|f (o) = fr(at)| < |f (o) — flat) + | f(2) — fu(zg)| < e

za poljuben € > 0, torej je f(zg) = 0. Ker je bil [a,b] poljuben, sledi, da ima f ni¢lo v vsakem podintervalu
I c (0,1), torej je njena mnoZica nicel gosta. Sledi f = 0. Na enak nacin kot zgoraj v poljubnem podintervalu [a, b]
najdemo tocko z1, tako da je f(x1) = 1, kar je protislovje. Sledi, da druZina nima konvergentnega podzaporedja.
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Izrek 1 (Montel). Naj bo druzina holomorfnih funkcij F C O(2) na domeni Q@ C C enakomerno omejena na
kompaktih v Q). Tedaj ima vsako zaporedje v F neko podzaporedje, ki konvergira enakomerno na kompaktih v Q0 k
holomorfni funkciji na Q. Z drugimi besedami, pod temi predpostavkami je F normalna druZina.

Opomba 5. Drzi tudi obrat: vsaka normalna druzina holomorfnih funkcij je enakomerno omejena. Za poljubno
kompaktno mnozico K C Q je polnorma pgx : O(Q) — R, ki jo podaja predpis px(f) = sup,cx |f(2)|, zvezna
funkcija (to vidimo iz definicije kompaktno-odprte topologije). Ce je F normalna druZina, je njeno zaprtje kom-
paktna mnozica v O(2), torej je slika px () omejena mnozica v R, kar pomeni, da je F enakomerno omejena na
kompaktih.

Naloga 26. Naj bo f : T := {z € C: |Qz| < 1} — C omejena holomorfna funkcija na traku 7', tako da je
limg 400 f(x) =0 za 2 € R. Pokazi, da je

lim f(z+iy)=0, zavseye€ (—1,1).

r——+00
Namig: oglej si druzino f,(z) = f(z + n).

Resitev 26. Ker je f omejena funkcija, recimo |f(z)| < M na T, je druzina f,, enakomerno omejena na T, torej je
normalna po Montelovem izreku. Naj bo (ng)gen neko zaporedje naravnih stevil in g : T'— C holomorfna funkcija,
tako da zaporedje funkcij f,, konvergira enakomerno na kompaktih v T" k funkciji g. Za poljuben z € R velja

lim f,, (x) = klggo f(x+ng) =0,

k— o0

torej velja g(z) = 0 za vse z € R. Ker je g holomorfna, je g = 0 po principu identi¢nosti. Ker enak sklep velja za
poljubno zaporedje v N, je g = 0 edino stekalis¢e mnozice F C O(T), torej je g = limy, 00 frn- Sledi

lim f(x+n+iy) =0, zavsex+iyeT.

n—roo

Vemo tudi, da f,, konvergira enakomerno na kompaktih v T k ni¢elni funkciji. Najboy € (—1,1). Najbo |y| <r <1
in naj bo K = [-1,1] x [-r,r]. Ker je K kompaktna, za poljuben £ > 0 za dovolj velike n velja |f,(z)| < . Torej
za vse x € [—1,1] velja |f(x + n + iy)| < € za vse dovolj velike n, torej velja |f(z + iy)| < € za vse > n. Sledi
flx +1iy) — 0, ko gre z — co.

Naloga 27. Konstruiraj normalno druzino na D in na C.

Resitev 27. Druzina Aut(D) avtomorfizmov diska je enakomerno omejena na D, torej tudi na kompaktih v D.
Splosneje je mnozica holomorfnih funkcij {f : D — D} enakomerno omejena na D. DruZina

{z—=2": neN}
je enakomerno omejena na D. Druzina Schlicht funkcij
S={f:D—=C: f(0)=0,f'(0) =1, f injektivna}
je kompaktna v O(D). DruZina celih funkcij f,, : z — z/n je enakomerno omejena na kompaktih, torej je normalna.
Naloga 28. Ali je druzina holomorfnih funkcij F = {f :D — C: f(0) =0, f/(0) = 1} normalna?

Resitev 28. Za a € C definiramo
fa(2) = 2 + az®.

Ocitno je f, € F za poljuben a € C, vendar zaporedje funkcij f,,(2) = z + nz? nima stekalis¢a, torej F ni normalna.

Naloga 29. Naj bo Q C C domena. Dokazi, da je druzina F C O(2) normalna natanko tedaj, ko je za vsak disk
D C Q normalna druzina F|p.

Resitev 29. Recimo, da je F normalna in naj bo D C ) disk. Poljubna kompaktna mnozica K C D je kompaktna
v Q, torej poljubno zaporedje (f,|p), ki konvergira enakomerno na kompaktih v €2, konvergira enakomerno na K.
Ker je bila K poljubna, zaporedje konvergira enakomerno na kompaktih v D. Sledi, da je druzina F|p normalna
za poljuben disk D v Q.
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Sedaj predpostavimo, da je F|p normalna za vsak disk D v Q. Naj bo K C Q kompaktna mnozica in (f,)nen
zaporedje holomorfnih funkcij f,, : @ — C. Ker je Q odprta, za poljuben z € K obstaja nek odprt disk D, C Q
s sredis¢em v z. Ker je K kompaktna, kontno mnogo relativno kompaktnih odprtih diskov D, & D. pokrije
K. Oznag¢imo jih z Dq,...,D,,. Zaporedje (f,] D;) je normalna druZina, torej po Montelovem izreku dopusca
podzaporedje (fn,1|p;), ki konvergira enakomerno na D7 k neki holomorfni funkciji f; € O(D}). Ker je fi zvezna
na D1, je omejena, torej je zaporedje (f,.1|p,) enakomerno omejeno na D;. Nadaljujemo induktivno in na vsakem
koraku dokaZzemo obstoj zaporedja {fn j+1}nen C {fn.jtnen C -+ C {fn}nen, ki konvergira enakomerno na D1,
torej je enakomerno omejeno na uniji Dy U --- U Djyq1. Po m-korakih dobimo podzaporedje {fnm} C {fn},
enakomerno omejeno na K C UL, D; C U;”zlbj. Po Montelovem izreku je {fy.} normalna druzina, torej neko
podzaporedje konvergira enakomerno na K.

Naj bo K7 C K5 C -+ - neko normalno izérpanje za €. Ce je (fn)nen zaporedje v F, lahko z zgornjim postopkom
najdemo podzaporedje (fn,1)nen, ki konvergira enakomerno na K;. Nadaljujemo z indukcijo. Predpostavimo, da
zaporedje ( fn,m)nen konvergira enakomerno na K,,. Z zgornjim postopkom lahko najdemo podzaporedje (fy m+1) C
(fn,m), ki konvergira enakomerno na K,,41. Dobimo padajoce zaporedje zaporedij

(o) D (Faz) D -5 () > -

ki konvergirajo enakomerno na mnozicah K, iz iz¢rpanja. Sledi, da zaporedje (f, ) konvergira enakomerno na
poljubni mnozici K,,, torej konvergira enakomerno na kompaktih v €. Sledi, da je F normalna druZina.

Boljsi nacin: Ker je F|p normalna, je enakomerno omejena na kompaktih v D. Za vsak ¢ = 1,...,m torej
obstaja M;, tak da je ||f|lp, < M; za vse f € F, torej je |fllx < max;||f||p, < max; M;. Sledi, da je F
enakomerno omejena na K. Ker je bil K poljuben, je F enakomerno omejena na kompaktih v €2, torerj je normalna
po Montelovem izreku.

Naloga 30. Naj bo 2 C C odprta mnozica in F normalna druzina holomorfnih funkcij na €. Dokazi, da je tedaj
tudi druzina odvodov F' = {f’: f € F} normalna.

Resitev 30. Po prejsnji nalogi je dovolj pokazati, da je F'|p normalna za poljuben disk D C Q. Naj bo K C D
kompaktna mnozica. Tedaj obstaja r > 0, tako da je zaprt disk D(z,r) vsebovan v D za poljuben z € K. Ker je

U D(z,r) =K, :={z€ D: dist(z,K) <r}
z€K

kompaktna mnoZica v D in je F enakomerno omejena na K, obstaja tak M > 0, da je || f||k, < M za vse f € F.
Za poljuben z € K velja po Cauchyjevi oceni:

, M
TOIEES

torej je 7' enakomerno omejena na K. Ker je bil K C D poljuben, je 7' enakomerno omejena na kompaktih v D,
torej je F'|p normalna druzina po Montelovem izreku. Ker to velja za vse diske D C Q, je 7' normalna po prej$nji
nalogi.

Drug nacin: Naj bo K’ C Q kompakt v © in naj bo K = {x € Q: dist(z, K) < &'} C Q kompaktna okolica za
K’ 7 neprazno notranjostjo. Tedaj poljubno zaporedje v F vsebuje neko podzaporedje {f,}nen, tako da konvergira
fn — [ enakomerno na K, torej za poljuben M > 0 in za dovolj velike n velja |f(2) — fn(2)| < M za vse z € K.
Ker je K’ vsebovana v notranjosti K, za poljuben z € K’ obstaja nek disk D, radija e, 0 < € < & sredis¢em v z,
tako da je D, C Int K. Po Cauchyjevi oceni za f' — f! tedaj velja

oo L [ O RQ) M
-l g [ I 5.

Sledi, da zaporedje {f/} konvergira enakomerno na K’ k funkciji f’. Ker je bila K’ poljubna kompaktna mnozica,
sledi, da je 7’ normalna druZina.

Naloga 31. Naj bo F druZina holomorfnih funkcij na domeni Q C C, tako da je 7' normalna in je mnoZica
{f(a): f € F} omejena za nek a € Q. Pokazi, da je tedaj tudi F normalna.
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Resitev 31. Po eni od prejsnjih nalog je dovolj pokazati, da je F|p normalna za poljuben disk D v Q. Naj bo
torej D C  disk s sredis¢em v z € Q. Ker je f holomorfna, je fv 1'(¢)d¢ = 0 za poljubno sklenjeno krivuljo v v Q
(fdz je eksaktna forma), torej je
£ = f@+ [ £,
7

kjer je n poljubna krivulja v €, ki zados¢a n(0) = a, n(1) = z. Sedaj fiksirajmo krivuljo n. Ker je F’ normalna,
poljubno zaporedje funkcij v F dopuita podzaporedje (fn)nen, tako da zaporedje odvodov (f))nen konvergira
enakomerno na kompaktih v € k neki holomorfni funkciji g € O() in je zaporedje stevil f,,(a) konvergentno. V
posebnem je vsaka sklenjena krivulja « v Q kompaktna, torej je

‘/ﬂ(@dé“’ < / 19(0) = Fa(Q)] - dC] == 0.

Sledi, da je s predpisom

z

£:) = Jim fu(0)+ [ g(c)dc

a
dobro definirana holomorfna funkcija f na 2, pri ¢emer je integral na desni neodvisen od poti, ki povezuje tocki a
in z. V posebnem velja za 2z’ € D' € D:

’

f() = lim_ fa(a) + / 9(Q)dC + / e

n—oo

Pri tem v zadnjem ¢lenu vsote integriramo po daljici v D’ s krajisema z in 2z’. Ocenimo

’

If(Z') = fm(Z)] < | lim fr(a) = fim(a) +/\9(€)—f7’n(<§)|-|d€|+/z 19(¢) = Frn(Q)] - ld¢| ===+ 0,

n— oo

saj zaporedje f/ konvergira h g enakomerno na D’ U ([0, 1]) za poljuben disk D’ € D s sredi§éem v z. Ker je
poljuben kompakt K C D vsebovan v nekem takem disku D', je zgornja konvergenca enakomerna na kompaktih v
D, torej je F|p normalna druZina.

Naloga 32. Naj bo Q = {|z + 1/2| < 1/2}, w = €2>™ in

1
}—{z/n—i—w"—i—l’ nGN}.

Ugotovi, za katere parametre o € R je druzina F normalna v O(f2). Namig: ¢e je a € R\Q, je mnozica {e*™"*}, oy
gosta v St

Resitev 32. Opazimo, da druzina {n/z : n € N} ni normalna, saj je vsako podzaporedje poljubnega zaporedja
neomejeno na kompaktih v 2, torej ne obstaja niti limita po tockah. Ce je 1 + w™ = 0 za neskon¢no mnogo n, F
ni normalna. To velja, ¢e je €™ nek k-ti koren §tevila —1, torej je

_2m+1

erike — 1. 2rika = im + 2imm, o= ok

Za poljuben taksen «, kjer sta m, k € Z, torej F ni normalna. Ozna¢imo mnozico vseh taksnih a s P = {p/q € Q:
q =2k, k e NU{0}} = UrenZ/(2k). Najbo Q = {p/q € Q: ¢ =2k+ 1, k € N} mnozica okrajsanih ulomkov z
lihim imenovalcem in naj bo a = p/(2k 4+ 1) € Q. Tedaj za poljuben n € N velja:

np 12k +1)+7 r

Mokl 2%+1 T ok+1

zanek | € Z ter r € N, ki ustreza r < 2k + 1. Sledi

-
exp(2mina) = exp < r > .

2k +1
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Naj bo

A= min
0<r<2k+1

2mir
1+ exp i) |

Ocitno je A > 0. Sledi |1 + w™| > A > 0 za vse n € N. Po drugi strani je za vse dovolj velike n in vse z € Q tudi
|z|/n < r < A, torej je

|2l z|

2)\—‘

1+ w™+2z/n| > |14+ w"| — —>A—r=M>0,
n

n
za vse z € €, torej je za dovolj velike n:
1 1

—_ < —.

z/n+wr+1 M
Sledi, da je druzina F enakomerno omejena, torej je normalna po Montelovem izreku. Opazimo, da je PUQ = Q,
torej moramo preveriti le 8¢ o € R\Q. Ker je za poljuben takSen o mnozica {e?™"*}, cy gosta v S1, obstaja
zaporedje naravnih tevil (ng)kren, tako da velja

exp(2ming«) Limi N

Dokazimo, da zaporedje f,, nima konvergentnega podzaporedja. Izberimo zaporedje ¢, — 0, tako da je |1 +
exp(2minga)| < €. Naj bo |z +1/2| < 1/2. Tedaj je

1 S 1 .
lz/n+ 14w | = |z|/ng + €k

oQ,

ko gre k — oo. Poljubno podzaporedje zaporedja {f,, } torej divergira v tocki z. Sledi, da druzina F ni normalna
tudi za o € R\Q.

Naloga 33. Naj bo F razred preslikav f : D — {Rz > 0}, ki zados¢ajo f(0) = 1. Pokazi, da je F normalna
druzina. Ali lahko pogoj f(0) = 1 izpustimo? Ali ga lahko zamenjamo s pogojem |f(0)| < 17

Resitev 33. Naj bo ¢ : {Rz > 0} — D biholomorfna preslikava, podana s predpisom

1z — 1 z—1
o) =TT

DruZzina ¢ o F je torej vsebovana v mnozici preslikav {f : D — D, f(0) = 0}, ki je normalna druZina, torej je
normalna tudi F. V odsotnosti pogoja F vsebuje zaporedje funkcij f,,, za katere velja f,,(0) = n. O¢itno zaporedje
divergira, torej F ni normalna druzina.

Opazimo: zgornje zaporedje konvergira enakomerno k funkciji f = oco. Posplositev: druzina je normalna*,
¢e vsako zaporedje dopusca podzaporedje, ki konvergira enakomerno k holomorfni funkciji ali k co. S to definicijo
je druzina {f : D — {Rz > 0}} normalna*.

Preslikava ¢ preslika obmoéje H N D na njegovo zrcalno sliko ¢ez y-os. Na enak nacin kot zgoraj ugotovimo, da
je ¢ o F normalna druzina.

Naloga 34 (Posplogitev Montelovega izreka). Naj bo  C C domena in F C O(2) druzina holomorfnih funkcij.
Recimo, da obstaja odprta mnozica U C C, ki jo zgresijo vse f € F, tj. f(Q) NU =0 za vse f € F. Dokazi, da je
druzina F normalna*.

Resitev 34. Naj bo u € U in definirajmo preslikavo ¢(z) = 1/(z —u). O¢itno je ¢ o F enakomerno omejena, saj je
vsebovana v komplementu slike ¢(U), ki predstavlja okolico za oo € CU {oo}. Sledi, da je ¢ o F normalna druZina.
Po Hurwitzovem izreku vsako konvergentno zaporedje v F konvergira bodisi k funkciji, ki je konstantno enaka 0,
bodisi k funkciji brez nicel, saj ¢ o f nima nicel za noben f € F. Ker je 0 = ¢(00), velja v primeru, da zaporedje
konvergira enakomerno k co. V drugem primeru pa konvergira k ¢ o f, kjer je f limitna funkcija zaporedja v F, saj
je ¢ : C\{u} — C\{0} biholomortna.
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3 Konformne preslikave in Riemannove ploskve

Naloga 35. Pois¢i biholomorfne preslikave med naslednjimi obmo¢ji, kjer H oznacuje polravnino H = {Sz > 0}:
a) Hin {e*t% € C: 0 <y < 7/4},
b) Hin {z+iyeC: 0 <y <},
c) HNDin{z+iyecC: 2<0,0<y <7}

Resitev 35. Skica.

Naloga 36. Ali obstaja holomorfna surjekcija D — C?

Resitev 36. Naj bo ¢ : D — H biholomorfna preslikava diska na zgornjo polravnino. Nato uporabimo predpis
H>z— (2—1)2

Naloga 37. Naj bo 2 C C domena, 0 € Q. Naj bo f : Q — D injektivna holomorfna preslikava, f(0) = 0.
Predpostavi, da Q" = f(Q) # D. Pois¢i injektivno holomorfno preslikavo F' : Q@ — D, ki zados¢a F(0) = 0 in
[F7(0)] > [ f(0)].

Resitev 37. Ocitno je dovolj preveriti lastnosti F' na povezani komponenti 0 € Qg C €2, torej lahko predpostavimo,

da je 2 povezana. Po Riemannovem izreku je tedaj D = 2. Naj bo ¢ : D =, Q biholomorfna preslikava, ¥ (0) = 0.
Po Schwarzovi lemi je tedaj
[(f o) (0)] = [f"(0)] - [ (0)] < 1

pri ¢emer velja |f'(0)| = 1/]¢’(0)] natanko tedaj, ko je f o1 rotacija okoli izhodis¢a. Ker f ni surjektivna, velja
|f/(0)] < 1/]4'(0)|, torej preslikava F' = ¢)~! ustreza zelenim lastnostim.

Poiséimo eksplicitno formulo za F: Naj bo o € D\Q' in naj bo ¢, = (o — 2)/(1 — &z) avtomorfizem diska, ki
zamenja toc¢ki 0 in «. Tedaj na Q" := ¢, (') obstaja holomorfen kvadratni koren g : Q" — C, saj je Q" enostavno
povezana in ne vsebuje nicle (dvig enostavno povezane domene v krov). Naj bo F' = 1) 0 g0 o f. Tedaj je

’ ’ ’ ’ 4 1- | 1 ! 1+ | |

F/(0) = Uiy (V) (@4 0(0) = ~ = 25 (= 1) £0) = 52

Sledi |F'(0)| = 6(|a])|f/(0)], kjer je 6(x) = (1 4+ z)/(24/x). Zanima nas vrednost d(z) za 0 < x < 1. Odvajamo in
dobimo

£1(0).

_2\[_%_233—(14—@ z—1

!
() 4z 423/2 T 4g3/27

Funkcija ¢ je torej padajota na (0,1). Ker je 6(1) = limyq4q 6(x) = 1, sledi, da je 6(z) > 1 za vse 0 < x < 1, torej je
|EF'(0)| > |f'(0)]. Ker je g: Q" — C injektivna funkcija, je F' injektivna.

Naloga 38. Naj bosta w; in ws kompleksni Stevili, ki sta linearno neodvisni kot vektorja v R?. Naj bo I' =
Zwy + Zws. Na C definiramo ekvivalen¢no relacijo s predpisom

z1 ~ z2 natanko tedaj, ko velja z; — 2o €T

Mnozico ekvivalen¢nih razredov ozna¢imo z C/T in jo opremimo s kvocientno topologijo, tako da je projekcija
7 :C — C/T zvezna.

a) Pokazi, da je C/T" kompakten prostor.
b) Pokazi, da je kvocientna projekcija m odprta.

c) Naj bo V C C odprta mnozica, ki seka vsak ekvivale¢ni razred najve¢ v eni tocki. Pokazi, da je w(V') odprta
in je |y : V — 7(V) =: U homeomorfizem. Inverz ¢ = (r|y/)~! je kompleksna karta na C/T.

d) Pokazi, da je mnozica U vseh taksnih kart (U, ¢) kompleksen atlas na C/T.

Resitev 38. a) Opazimo, da je n(C) = 7(K), kjer je K paralelogram K = {tjw; + tows : t1,t2 € [0, 1]}, torej
je C/T' = w(C) = w(K) kompaktna.

17



b)

Naj bo W C C odprta mnozica. Njena slika 7(T) je po definiciji kvocientne topologije odprta natanko tedaj,
ko je odprto njeno nasicenje 7= (w(W)). MnoZzica

@) = | w+T) = g+ W),

weW gel’
je odprta, torej je m(W) odprta v C/T. Sledi, da je 7 odprta preslikava.
Iz pogoja na V sledi, da je 7|y injektivna, torej je homeomorfizem na mnozico 7 (V).

Naj bosta (Uy, 1) in (Us, ¢2) dve karti na C/T". Preveriti moramo, da je preslikava p12 = s 0 901’1 biholo-
morfna kot preslikava 1 (U3 NUsz) — @2(U; NUs). OCitno je injektivna, saj je kompozicija homeomorfizmov,
torej zadosc¢a preveriti, da je holomorfna. Iz konstrukcije sledi, da obstajata odprti mnozici V4, V5 v C, tako
daje ¢; = (w|y,) "t za i = 1,2, torej je

P12 = (’/T‘Vz)il ° 7T|V1'

Za poljuben z je torej v12(2) — z € T'. Funkcija z — ¢12(2) — 2 je ofitno zvezna, ker ima vrednosti v diskretni
mnozici je lokalno konstantna, torej je v posebnem konstantna na vsaki komponenti za povezanost mnozice
p12(Up NU3). Sledi, da je ¢12 holomorfna, kar smo Zeleli dokazati.
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4 Meromorfne funkcije in Riemannova sfera

Naj bo Q C C domena v C. Pravimo, da je funkcija f : Q@ — C U {oco} meromorfna na 2, ¢e obstaja diskretna
mnozica tock {a;} =: A C Q, tako da je zozitev f|o\ 4 : Q\A — C holomorfna in za vse a € A velja lim, _,, f(z) = oo.
Tocke a so poli funkcije f.

MnoZzico CU{oo} =: CP! opremimo s topologijo kot kompaktifikacijo z eno toc¢ko kompleksne ravnine C. MnoZica
U C CP! je odprta, ¢e velja bodisi U C C in je U odprta v C bodisi je oo € U ter je mnozica C\U kompaktna. Na
CP! uvedemo pokritje {Uy, Uz}, kjer je Uy = C in Uy = C* U oo ter preslikavi ¢y : Uy — C, z — z in oo : Uy — C,
z + 1/z. Preslikavo ¢ = ¢ o gpe;l : z +— 1/z imenujemo prehodna preslikava. Tako definiranemu pokritju
in preslikavam pravimo atlas na CP', ki mnozico CP! opremi s strukturo Riemannove ploskve, tj. enorazse’ne
kompleksne mnogoterosti. Preslikava f : CP' — C je holomorfna, ¢e sta holomorfni preslikavi f o <p1_§ Preslikava
f:C>Q — CP!je holomorfna v tocki a € , e je f(a) € Uy o in je preslikava ;2 o f dobro definirana ter
holomorfna na neki okolici to¢ke a. Preslikava f : 2 — CP! je holomorfna, ¢e je holomorfna v vsaki tocki a € €.

Naloga 39. Dokazi, da je CP' s topologijo, definirano kot zgoraj, kompaktna.

Resitev 39. Naj bo U = {U,};ea odprto pokritje prostora CP!. Tedaj obstaja nek j = jo, tako da Uy = U;
vsebuje co. Ker je Uy odprta, je K = CP'\U, kompaktna po definiciji topologije na CP!, torej obstaja konéno
mnogo U; € U\{Uy} ki pokrijejo K. Oznadimo jih z Uy,...,U,. Tedaj pa je {Uy,Us,...,U,} iskano konéno
podpokritje.

Naloga 40. Naj bo Q@ C C domena in naj bo f meromorfna funkcija na Q. Ce je p pol funkcije f, definiramo
f(p) := co. Pokazi, da je f : Q2 — CP! holomorfna funkcija.

Resitev 40. Recimo, da a ni pol funkcije f. Tedaj je 1 0 f : U — C holomorfna na okolici a. Ce je a pol funkcije
f,veljalim, ., |f(2)| = oo, torej je funkcija w0 f(2) = 1/ f(2) omejena na neki punktirani okolici U* toc¢ke a. Sledi,
da ima 9 o f odpravljivo singularnost v a, tj. kompozitum se holomorfno razgiri na U, torej je @2 o f holomorfna
v tocki a. Ker je bila a poljubna tocka, je f holomorfna na €.

Naloga 41. DokaZi obrat zgornje trditve: ¢e je f : @ — CP! holomorfna na povezani domeni Q C C, je bodisi
f = oo bodisi je f meromorfna funkcija na €.

Resitev 41. Recimo, da obstaja a € Q, |f(a)| < co. Opazimo, da je mnoZica polov A funkcije f ravno mnoZica
nicel holomorfne funkcije ¢y o f, torej je A diskretna mnozica po principu identi¢nosti. Tedaj pa iz definicij sledi,
da je (10 f)loya = flo\a holomorfna funkcija. Sledi, da je f meromorfna.

Naloga 42. Naj bo f : C — C prava holomorfna preslikava. Pokazi, da je f polinom. Sklepaj, da grupa
avtomorfizmov kompleksne ravnine Aut(C) sestoji iz linearnih funkcij.

Resitev 42. Taylorjeva vrsta funkcije f € Aut(C) konvergira na C, zato lahko zapiSemo
f(z) =ag+ a1z 4 az® +- -

in definiramo funkcijo g : C* — C s predpisom
1 a1 ag
@) =1 (2) mao+ L2
z z oz

Naj bo a € C. Ker je f prava, je mnozica f~!(a) kompaktna in diskretna po principu identi¢nosti, torej je f~!(a)
kon¢éna mnozica tock za vse a € C. Recimo, da je ar = 0 za neskonéno mnogo k € N. Tedaj ima g bistveno
singularnost v izhodis¢u, torej po prejsnji nalogi obstaja nek ag € C, tako da je C\{ag} C g(U*) za poljubno okolico
izhodisca U, kar je v nasprotju z opazanjem, da ima f konc¢na vlakna za poljuben a € C. Sledi, da je f polinom.

Ce je f avtomorfizem, je prava preslikava, torej je polinom. Ker je injektiven, ima eno samo niclo, torej je
linearna funkcija. Oc¢itno so vse nekonstantne linearne funkcije avtomorfizmi, torej velja

Aut(C) ={az+b: a € C*, be C}.

Naloga 43. Pokazi, da ne obstaja prava holomorfna preslikava f : D — C. Namig: predpostavi, da obstaja prava
holomorfna preslikava g : H — C, pokazi, da velja g(z) — oo, ko gre z — R. Nato uporabi Schwarzov princip
zrcaljenja na ustrezni funkciji G, ki jo konstruiraj s pomocjo g.
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Resitev 43. Ker je g prava, velja g(z) — oo, ko gre z — R = bH, ter je njena mnozica ni¢el g~*(0) konéna mnozica

v H.

Sledi, da obstaja = € R ter disk D s sredis¢em v x, tako da g nima ni¢el na D NH. Naj bo sedaj funkcija

G : DNH — C podana s predpisom G(z) = 1/g(z). Ker g nima nicel na D, je G dobro definirana. Ker gre
g(z) = o0, ko gre z — R, gre G(z) — 0, ko gre z — R. Sledi, da se G zvezno razsiri na D N (HUR). Ker ima G
realne vrednosti vzdolz R, se po Schwarzovem principu zrcaljenja holomorfno razsiri na D. Ker je D NR mnozica s
stekalis¢em, je G = 0 po principu identi¢nosti, kar je v nasprotju z definicijo G = 1/g, saj ima g kon¢ne vrednosti na
DN H. Sledi, da g ni prava. Ker je H biholomorfno ekvivalentna disku D, nobena holomorfna preslikava f : D — C
ni prava.

Naloga 44. Avtomorfizmi kompleksne ravnine so preslikave z — az + b, a € C*, b € C.

a)
b)

Kateri avtomorfizmi C nimajo negibnih tock?

Naj bodo wi,ws,w3 € C kompleksna Stevila, ki so Z-linearno neodvisna. Z drugimi besedami, ¢e velja
aw1 + bwy + cws = 0 za neka cela Stevila a,b,c € Z, potem velja a = b = ¢ = 0. Pokazi, da ima mnozica
Z-linearnih kombinacij §tevil w; stekalis¢e v C. Namig: uporabi Dirichletov aproksimacijski izrek: za vsak
nabor 3tevil x1,...,7;, € R ter poljuben n € N obstajajo racionalna Stevila p;/q, ...,pr/q € R, ¢ < n*, tako
da velja |qz; — p;| < 1/n zavse k € {1,...,k}.

Pokazi, da je vsaka podgrupa G < Aut(C) grupe avtomorfizmov C, ki deluje na C diskretno (orbite so diskretne
mnozice) in brez negibnih tock, oblike G = {Id}, G = (z — z 4+ wy) ali G = (z — 2+ w1, 2z — 2z + wo) za neki
kompleksni Stevili w; 2. Namig: dokazi, da je orbita G - 0 tocke 0 zaprta diskretna mnozica v C!

Resitev 44.  a) ReSimo enatbo az+b = z in dobimo z = b/(1 — a). Sledi, da avtomorfizem nima negibnih tock

b)

natanko tedaj, ko je a =11in b # 0.

Naj bo I' = Zwy @ Zws @ Zws. Vektorji w; so R-linearno odvisni v C, torej za neka a,b € R velja
w3 = awi + bwa.

Po Dirichletovem izreku obstajata zaporedji a, /¢, — a, b, /g, — b, ki zadoScata

1 1
lgna — an| < . |gnb — by < ~, za vsak n € N.

Sledi

n— oo

1
anw1 + bpwa — w3 = (an — gna)wi + (bp — gub)wz < E(Wl +wz) —— 0,
torej je 0 stekalis¢e mnozice T.

Ker G deluje na C brez negibnih tock, je vsak g € G oblike z — z + b za nek b € C po tocki a). Naj
bo I' < Aut(C) podgrupa vseh taksnih avtomorfizmov in definiramo preslikavo ® : I' — C, ®(y) = ~(0).
Ocitno je ® homomorfizem grup. Naj bo G C T' neka diskretna podgrupa. Tedaj je ®|g bijektivna, torej je
® : G — ©(G) izomorfizem grup. Sledi, da lahko G identificiramo z neko diskretno podgrupo v (C, +).

Pokazimo, da je G zaprta. Naj bo U okolica tocke 0 € G v V, tako da velja UN G = {0}. Najbo U’ C U
neka manjsa okolica tocke 0 v V, tako da velja « — y € U za poljubna z,y € U’. Taksna okolica obstaja, ker
so grupne operacije zvezne. Naj bo sedaj r € G in naj bo (x,,)nen zaporedje v G, ki konvergira k x. Tedaj je
za vse dovolj velike n element z vsebovan v mnozici z,, + U’, torej je x — z,, € U’ za vse dovolj velike n. Ce
je e m dovolj velik je torej ©, — Xy, = (x — ) — (x —2,,) € U — U’ C U. Ker je poleg tega x,, — x,, € G in
velja GNU = {0}, sledi ,, = x,, za vse dovolj velike m, n, torej je z = z, € G.
Ker je G diskretna zaprta mnozica v C, nima stekalis¢, torej ima po prejsnji nalogi najve¢ dva Z-linearno
neodvisna generatorja. Recimo, da je G = (w1, ws) in velja we = Aw; za nek A € R\{0}. Po Dirichletovem
izreku lahko A aproksimiramo z zaporedjem racionalnih $tevil p,/q,, tako da velja |g, A — p,| < 1/n, torej
velja

Pri — Gnw2 = Ppwi — guAwi = (Pr — Agn)wi ——— 0.
Ker je G zaprta diskretna mnozica v C, sledi (p, — Agn)w1 = 0 za vse dovolj velike n, torej je A = p/q € Q.
Sledi G = ((1/q)w1).
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Naloga 45. Pokazi, da je vsaka holomorfna funkcija f : CP! — C konstantna.

Resitev 45. Ker je CP' kompaktna, je f(CP') C C kompaktna mnozica v kompleksni ravnini. Tedaj pa je
f o1 : C— C omejena holomorfna funkcija, torej je konstantna po Liouvilleovem izreku. Naj bo f|y, = c. Ker je
f zvezna, je tudi f(oo) = ¢, torej je f = c.

Naloga 46. Najbon > 1lin ¢,...,c, € C. Pokazi, da je polinom z" + ¢12" ! + ...cp_12 + ¢, meromorfna,
funkcija na CP!. Opomba: funkcija f : CP! — C je meromorfna, e je holomorfna na komplementu neke diskretne
mnozice, kjer ima pole.

Resitev 46. Naj p(z) oznacuje zgornji polinom. O¢itno je p|y, = p|c holomorfna funkcija. Na Uz pa imamo

_ 1 1 c1 1
ows )6 =p (1) ment Tkt S

torej ima p pol n-te stopnje v ;' (0) = occ.

Naloga 47. Naj bo a € ) singularnost holomorfne funkcije f : 2* — C in recimo, da obstajata odprta mnozica
U cC C in odprta okolica V' C Q tocke a, tako da velja f(V) c C\U. Pokazi, da je tedaj a bodisi odpravljiva
singularnost bodisi pol funkcije f.

Resitev 47. Definirajmo funkcijo g(z) = 1/(f(z) — b), kjer je b € U poljubna totka. Tedaj je g omejena na
okolici tocke a, torej ima po Riemannovem izreku odpravljivo singularnost v a ter se holomorfno razsiri na V. Ce
je g(a) # 0, je a odpravljiva singularnost funkcije f. Ce pa je g(a) = 0, potem velja g(z) = (z — a)*h(z), kjer je h
holomorfna funkcija brez nicel, na neki okolici tocke a, saj g ni identi¢no enaka ni¢. Sledi

torej je a pol funkcije f.
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5 Izreki Koebeja, Landaua in Picarda

Izrek 2 (Koebe). Naj bo f: D — C injektivna holomorfna funkcija. Tedaj je D(f(0),1/4) C f(D).

Naloga 48. Naj bo f(z) = (e** — 1)/5. Pokazi, da f izpusti vrednost —1/5. Zakaj to ni v nasprotju s Koebejevim
izrekom?

Resitev 48. Poskusimo refiti ena¢bo f(z) = —1/5. Dobimo €% = 0, ta enacba pa o€itno nima resitve. To ni v
nasprotju s Koebejevim izrekom, saj f ni injektivna na D.

Naloga 49. Naj bo G enostavno povezano obmocdje, a € G ter f : G — D enoli¢no doloc¢ena biholomorfna preslikava,
ki ustreza f(a) =0 in f’(a) > 0. Pokazi, da velja
1 1
— < { < —.
4 dist(a,bG) — fla) = dist(a, bG)
Resitev 49. Oznacimo
R = dist(a, bG) = sup{r > 0: D(a,r) C G}.

Dokazimo najprej neenakost na desni. Preslikava f : 2= f(a+ Rz) je holomorfna preslikava D — D, torej velja po
Schwarzovi lemi

R|f'(a)| = |f(0)] < 1.

Ker je f’(a) > 0, neenakost sledi. Pokazimo Se drugo neenakost. Ker je f biholomorfna, ima holomorfen inverz
f~1:D — G, ki ustreza lastnosti

Naj bo h(z) = f(0) - f~*(2) — a. Tedaj je h preslikava D — C razreda S, torej po Koebejevem izreku velja
D(0,1/4) C k(D). Sledi D(a,1/4) C h(D) + a, D(a,1/(4f'(0))) C f~1(D), torej je 1/(4f'(0)) < R.

Naloga 50. Naj bo f : D — C funkcija razreda S, za katero so vsi koeficienti v Taylorjevem razvoju okoli z = 0
realni, tj.
f(z)=z+az*+---, a; €R.

Fiksirajmo 0 < r < 1 in definirajmo funkcijo ¢ na [—m, 7| s predpisom

9(0) = 5 (7 (re®) — F(re=))sinf.
i
a) Pokazi, da je g soda in da so edine njene nicle v tockah —, 0, 7.
b) Pokazi, da je ["_g(6)df = mr. Sklepaj, da velja g > 0.

c) Naj bo n > 2. Pokazi, da velja

T

2 G — "
0< — g(0)(1 £ cos(nd))dd =2 £ (anH 2 1) r’.

T J_x

d) S pomocjo c) sklepaj, da velja |an11 — an—1] < 2 za vse n > 2.

e) Dokazi, da velja |a,| < n za vse n > 1. To je ravno Bieberbachova domneva za funkcije, ki so realne na realni
osi. Trditev je dokazal Dieudonne leta 1931.

Resitev 50. a) Velja
9(=0) = (f(re=") = f(re”)) sin(=0) = (f(re”®) — f(re™™))sind = g(6).

O¢itno velja g(f) = 0 natanko tedaj, ko je bodisi sin @ = 0 bodisi f(re?) = f(re~*?). Ker je f injektivna, je
g(0) = 0 natanko tedaj, ko je sin(#) = 0.
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b)

d)

Naj bo z = re’. Ker ima f realne Taylorjeve koeficiente, velja f(2) = f(z), torej je

9(0) = - (f(2) ~ [(2))sinf = Sf(2) sin .

Razvijemo f v Taylorjevo vrsto v okolici izhodis¢a in dobimo

Sf(z) =S (7‘6 +agr?e®™ ... ) = rsin€ + asr?sin(20) +

Sledi

/ 0)do = Z/ apr® sin(k0) sin 0d6 = / rsin® 0d6 = 7.

—T

Sledi, da obstaja 6 € [—m, |, tako da je g(6) > 0. Ker je g soda, obstaja tak 6 na intervalu (0, 7). Recimo,
da je g(6") < 0 za nek 6’ € (0, 7). Brez skode za splognost lahko predpostavimo 6’ < 6. Ker je g zvezna, ima
niclo na (¢’,6). To je protislovje, saj so edine ni¢le funkcije g tocke —m, 0 in 7. Sledi g > 0.

Na enak nacin kot zgoraj vidimo, da je

/ g(0) cos(nb)dd = Z/ axr® sin(k6) sin(6) cos(nb)df = Z arr® Iy .
—7 k=177 k=1

Iz adicijskih formul
. . 1 : 1 . .
sinzsiny = i(cos(x —y) —cos(x +y)), sinxcosy= i(sm(x +y) +sin(x — y))

izra¢unamo

)

Tpw = % / " (sin(k6) sin((n + 1)6) — sin(k8) sin((n — 1)8))d0

— T
Oznacimo
_ 7t —
Ikﬂl - Ik:,n - Ik,n'

O¢itno je I,j’n = m/2, ko je k =n+ 1 in 0 sicer, podobno pa tudi I, = 7/2, ko je k =n — 1 in 0 sicer. Sledi

n+1 1
E agr Iknf (an+1r —ap_1r"7 ),

torej je
2 (7 _
— g(0)(1 % cos(nh))dh = 2+ (api17" — ap_17" %) =2+ (an_H — a:a 1) r’.
7r

—T

Ker sta funkciji 1 + cos(nf) sodi in nenegativni ter je g tudi sama soda in nenegativna, je integrand povsod
vecji od 0, torej je tudi integral nenegativen, kar dokazuje Zeleno.

Vemo, da za poljuben 0 < r < 1 velja

Gn—1
ogzi(anﬂ— = )7«".

Ko posljemo 7 — 1 dobimo v limiti 2 — (ap4+1 — an—1) > 0, torej je apy1 — an—1 < 2 za vse n > 2. Podobno
dobimo 2 + (an4+1 — an—1) > 2, kar skupaj s prejsnjim rezultatom da

|an+1 - an—1| S 2.
Dokazujemo z indukcijo. Ker je f € S, velja |f/(0)] = 1 < 1. Recimo, da je |a,| = [f™(0)|/n! < n za vse

n < m. Tedaj je
l[amt1] < lam-1]+ |@Gms1 — @m-1] <m—14+2=m+1

po tocki d), kar dokazuje indukcijski korak.
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Naloga 51. Naj bo € > 0. Pokazi, da za vse ¢ € C* obstaja neskon¢no mnogo z € C, tako da velja
e/*=c in 0<|z|<e.

Resitev 51. ZapiS§imo c v polarnih koordinatah kot ¢ = (7, ¢) in naj bo z = = + iy. Veljati mora

1 T — 1y T .y .
exp <Z> = exp (M> = exp (M> exp (_ZM) = (T, Y+ 2Zk7T), kel.

%_'_yzzlogr::f in Y = @+ 2ikm =: ¢.

.1?2 + y2 o
Iz obeh enacb izrazimo 2 + y? in dobimo

Sledi

x2—|—y =

1;2 52
$2+y2:y2 (1+2> =y2(1+~2> =—£~.
Yy ¥ ¥

v+ &%) +yp = 0.

V primeru, ko je ¢ € R, je y = 0 resitev zgornje enacbe, sicer pa lahko delimo z y # 0 in dobimo

|8

torej je
Mnozimo z $? in dobimo

Y2 T

Yy 2y O YT Rig

Spomnimo se, da je ¢ = ¢ + 2ikm, torej gresta oba zgornja izraza proti 0, ko posljemo k — +oo. Z drugimi
besedami, za poljubna fiksna r,  obstaja reSitev enacbe e'/# = ¢ = (r, ) poljubno blizu izhodisca.

Naloga 52. Naj bo f : D(0,2)* — C holomorfna preslikava, ki ne zavzame vrednosti 0 in 1. DokaZi, da ima bodisi
f bodisi 1/f odpravljivo singularnost v 0. Namig: oglej si druzino f(z/2") in uporabi dejstvo, da je druZina
O(£,C\{0,1}) normalna, kjer je Q@ = A(0;1/2,2).

Resitev 52. Najbo f,(z) = f(2/2")zaz € A = A(0;1/2,2). Kerje F = {fn}nen € O(A,C\{0,1}), je F normalna
druzina, torej neko podzaporedje {f,,} C {fn} konvergira enakomerno na kompaktih v.A = A(0;1/2,2) bodisi k
oo bodisi k holomorfni funkciji f € O(A(0;1/2,2)). V prvem primeru velja 1/f,, — 0 enakomerno na A. Za dovolj
velike k je torej |f| < € na kolobarju A(0;1/2™*+1 1/27~1) v posebnem je 1/|f| < e na kroznici {|z| = 1/2"*}.
Ker je f holomorfna na neki okolici kolobarja A(0;1/2™+1 1/2™) in po predpostavki f nima nicel na D(0,2)*,
je na tem kolobarju holomorfna tudi 1/f. Po principu maksimuma je torej 1/|f| < & na A(0;1/27k+1 1/27k),
Sledi, da konvergira 1/f(z) — 0, ko gre z — 0, torej je f omejena na okolici izhodis¢a in ima po Riemannovem
izreku odpravljivo singularnost v izhodis¢u. V drugem primeru pa je druzina F' = {f,,} enakomerno omejena na
kompaktih v A(0;1/2,2), torej je enakomerno omejena na bD = {|z| = 1} C A(0;1/2,2). Naj bo M tak3en, da velja
| frglop] < M. Tedaj velja za poljuben k € N:

IF(2)| < M, zavse z € BD(0,1/2"+1) UbD(0,1/2") = bA(0; 1/2"+1, 1/27%).

Po principu maksimuma je |f(z)| < M za vse z € A(0;1/2™+1,1/2™). Ker je bil k poljuben, sledi ||f|| < M na
D(0,2)*, torej ima f po Riemannovem izreku odpravljivo singularnost v 0.

Naloga 53 (Veliki Picardov izrek). PokaZi, da holomorfna funkcija v poljubni okolici bistvene singularnost zavzame
vse kompleksne vrednosti z izjemo najvec ene, ki je neodvisna od okolice.

Resitev 53. Naj bo f: U* — C holomorfna na neki punktirani okolici U tocke a. Recimo, da obstajata a,b € C,
a # b, tako da je f(U*) C C\{a,b}. Z zamenjavo koordinat lahko predpostavimo U = ID(0,2), a = 0, b = 1. Po
prejsnji nalogi ima tedaj bodisi f bodisi 1/f odpravljivo singularnost. Ce velja prvi primer, je izrek dokazan, v
drugem primeru pa se 1/f holomorfno razsiri na D(0,2). Iz prej$nje naloge je razvidno, da v tem primeru velja
|f(2)| = oo, ko gre z — 0, torej je f meromorfna funkcija.
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Izrek 3 (Landau). Naj bo f : D — C holomorfna funkcija, ki zadosca f'(0) = 1 in (1 — |2])|f'(2)| — 0, ko gre
|z] = 1. Tedaj slika f(D) vsebuje disk D(b,1/16) za nek b € C.

Opomba 6. Najvecdje §tevilo A > 1/16, za katero slika f (D), kjer je f kot v izreku, vsebuje disk radija A, se imenuje
konstanta Landaua.

Naloga 54. Naj bo

1 1+2
=1 .
f(2) 20g1 p

S pomodjo funkcije f pokazi, da je konstanta Landaua omejena s /4.

Resitev 54. Najprej preverimo, ali funkcija f ustreza predpostavkam izreka. Velja

1/ 1 1 1
4 = — =
f(z)_2(1+2+1—z> 1— 22

torej je f/(0) = 1. Velja
1—|z| 1—z| 1 1

< = - =,
T—22) “1— 22 1+[z 2

(1= 2DIf (=) =

ko gre |z| — 1, torej izreka ne moremo direktno uporabiti na funkeiji f. Ideja: f predkomponiramo s skréitvijo
diska za faktor 1/r, r > 1, uporabimo izrek in nato posljemo r | 1. Pigimo

" 1+z/r

fr(z) = Pl z/r’

Ker je f, holomorfna na disku D, D D in velja f/(0) = 1, ustreza predpostavkam izreka Landaua. Funkcija

1+=2
}_)
1—=z

preslika enotski disk biholomorfno na polravnino H = {§z > 0}, torej je slika funkcije

1+z/r
1—z/r

prava podmnozica v H. Sledi, da je logaritem zgornje vrednosti vsebovan v pasu {—7/2 < Sw < 7/2}, torej je

(D) C {—%r < SQw < %T}

Za poljuben r > 1 torej obstaja funkcija f : D — C, ki ustreza predpostavkam izreka Landaua, najvedji radij diska,
ki ga vsebuje njena slika, pa ne presega 7r/4. Rezultat sledi, ko posljemo r — 1.

Naloga 55. Naj bodo f, g, h: C — C cele funkcije, ki zados¢ajo h(z) = ef(*) 4 e9(2).

a) S pomocjo malega Picardovega izreka dokazi, da ima enacba h(z) = 0 bodisi neskonéno mnogo resitev bodisi
reSitev nima.

b) S pomocjo tocke a) pokazi, da ima enacba e* — p(z) = 0, kjer je p nekonstanten polinom, vsaj eno resitev.

c) S pomocjo velikega Picardovega izreka pokaZzi, da ima enactba e* — p(z) = 0, kjer je p neniceln polinom,
neskon¢no mnogo resitev.

Resitev 55. a) Ker je ¢ holomorfna funkcija brez nicel, lahko ena¢bo h = 0 delimo z ¢9 in dobimo enac¢bo

1+ e/=a) _ o f=az) — 1.

Loc¢imo dve moznosti: ¢e je f—g = C konstantna funkcija, je bodisi C' € {ir+2ik7}iez in je enacbi zadosceno
za vse z € C. Sicer pa enacba nima reitev. Recimo, da je H(z) := f(z) — ¢g(z) nekonstantna cela funkcija.
Ker je e* = —1 za vse z € {im + 2ik7}rez ter funkcija H po malem Picardovem izreku izpusti najve¢ dve
vrednosti, je H(z) = im 4 2ik7 za neskonéno mnogo k, torej ima enacba neskonéno mnogo resitev.
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b)

Recimo, da enatba nima reitev. Tedaj je H(z) = e*

dopusca logaritem, ki ga oznac¢imo z g, tj.

— p(z) povsod nenielna holomorfna funkcija, torej

e* —p(z) = 9,

Tedaj je p(z) = e* — e9*) torej p bodisi nima nicel bodisi jih ima neskonéno mnogo po tocki a). Ker je p
nekonstanten, velja druga moznost. To je protislovje, saj ima vsak polinom kon¢no mnogo nicel.

Enacba je ekvivalentna enacbi

Ker ima polinom p konéno mnogo nicel, je F' holomorfna na komplementu nekega dovolj velikega diska.
Opazimo, da ima F' "bistveno singularnost v oco", tj. funkcija

1 el/?
G(z)=F () =
z)  p(1/?)
je definirana na neki punktirani okolici Q* izhodis¢a in ima v izhodi§¢u bistveno singularnost. Res, funkcija
2+ 1/p(1/z) je meromorfna in velja p(1/z) — oo, ko gre z — 0, torej je v okolici izhodii¢a holomorfna, e'/*
pa ima v izhodi§¢u bistveno singularnost, torej ima bistveno singularnost tudi G. OC¢itno je tudi G povsod
nenicelna blizu 0, torej po velikem Picardovem izreku v poljubni okolici izhodis¢a zavzame vse vrednosti v C

z izjemo ene, ki pa je ravno 0. V posebnem ima enatba G(z) = 1 neskon¢no mnogo resitev na neki okolici
izhodisca, torej ima tudi enacba e — p(z) = 0 nesko¢no mnogo resitev.
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6 Holomorfna aproksimacija

Izrek 4 (Runge). Naj bo K C C kompaktna mnoZica brez lukenj in naj bo f : U — C holomorfna funkcija na odprti
mnoZici U, ki vsebuje K. Tedaj obstaja zaporedje holomorfnih polinomov p, : C — C, ki konvergirajo enakomerno
na K k funkciji f.

Naj bo K C © C C. Njena holomorfno konveksna ogrinjaca je mnoZzica

RO(Q) = {z eQ: |f(z) < s1€12|f(35)|7 za vse f € O(Q)}

Naloga 56. Dokazi naslednje trditve:

2) K C Ko in Kow) = Ko,

b) éejechK,jefQCf(.

c) k@(Q) je zaprta v Q. Ce je K omejena, je tudi omejena.
Resitev 56.  a) Prvi del je ociten.

b) Ocitno za vse f € O(Q) velja

sup [f ()] < sup |f(z)],
zeKq reK

saj je K1 C K. V posebnem torej iz z € K sledi z € K, torej je K, CK.

c) Naj bo (z,)nen zaporedje v K z limito z € Q. Ker so holomorfne funkcije zvezne, velja za vsako funkcijo
feomQ):
[f ()] = lim |f(zn)] < sup [f(2)],
n—r00 zeK

torej je z € K. Sledi, da je K zaprta. Ce je K omejena, je vsebovana v nekem zaprtem disku D = D(0,r) C C.
Za poljuben z € Q\D konstruiramo celo funkcijo f, za katero velja |f|x < |f(2)|: meromorfno funkcijo

1
16) = 7=
razvijemo v Taylorjevo vrsto v okolici izhodis¢a in dobimo
1 ¢ ¢
= (14242 ),
FQO =2+ + 5+
Ce je ¢ € K, je v posebnem [¢| < r. Ker je |z| > r, je z oznako ¢ = [¢|/|2] < 1 o€itno
1 ¢ ¢ " 11 1 n+1
Ol=-=(1+2 424+ )< ——<|fu®)|=—Q+1+ - +1)= ——,
O1=| -2 (1 S+ Gt S |2 G SRl = e =22

torej z ¢ KO(Q). Ker je bil z € Q\D poljuben, je K'@(Q) C D, torej je omejena.
V posebnem vidimo tudi, da velja K C D(0,7) za vsak r, ki zados¢a K C D(0,7).

Opomba 7. Lahko se zgodi, da je Q\D prazna mnoZica. Tedaj je seveda Q0 omejena, torej je f(o(m cQ
omejena po definiciji.

Naloga 57. Naj bo K C ; C 5. Pokazi, da velja
Koa,) € Koa)-
Resitev 57. Naj bo z C k@(gl). Tedaj za poljubno holomorfno funkcijo f € O(€2) velja

|f(2)] < sup | flo, (x)] = sup [f(x)],
zeK reK

saj je fla, holomorfna na ;. Trditev sledi.
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Naloga 58. Naj bo K ={z € C: 1 < |z| <2}. Dolo¢i

2)
b)

KO(C))

K(’)((C*).

Resitev 58. a) Naj bo f € O(C). Tedaj za vse z € D(0,2) velja po principu maksimuma:

[f(z)] < max |f(z)].

z€bD(0,2)

Sledi, da je X@(C) D D(0,2). Recimo sedaj da je z € C\D(0,2). Mnozica K’ = D(0,2) U {z} je kompaktna
in brez lukenj. Naj bo U = U; U U, odprta mnozica, ki vsebuje D, tako da velja D C Ui, {z} C Us in

U; NUsy = (. Funkcija
0; e U
9(¢) = et
1, (el;

je holomorfna na U, torej po Rungejevem izreku obstaja zaporedje holomorfnih polinomov p,,, ki konvergirajo
enakomerno na K’ k funkciji g. Za dovolj velike n torej velja

Pa(Q)] < e <1—¢e<|pa(2)|
za vse ( € D, torej z ¢ KO(C). Ker je bil z poljuben, je KO(C) =D.

Naj bo sedaj f € O(C*). Bodisi se f holomorfno razgiri na C bodisi ima singularnost v izhodis¢u. Recimo
najprej, da se razsiri na C. Na enak nacin kot prej vidimo, da je Koc+) C D(0,2)*. Ce je z € D, pa velja za
funkcijo f(¢) = 1/¢, ki je holomorfna na C*:

1 1
() = = = = (O
2| Il

za vse ¢ € K, torej z ¢ KO(C). Ker je K C K, sledi K@(C) = K, torej je K holomorfno konveksna domena v
C*.

Naloga 59. Naj bosta Q in K kot v prej$nji nalogi ter naj bo p € Q\K' Pokazi, da za poljubna M, e > 0 obstaja
holomorfna funkcija f € O(Q), ki zados¢a |f|x < e in |f(p)| > M.

Resitev 59. Po predpostavki obstaja funkcija g € O(Q), ki zadoséa |g(p)| > |g|kx. Naj bo r € R tak, da velja
lglx < r <|g(p)|- Za poljuben n € N definirajmo funkcijo

n

fule) = 9(z)"

,r-’I'L

Ocitno gre f,, — 0 na K in |f,(p)] — oo, tore] f, ustreza pogojem za vse dovolj velike n.

Naloga 60. Dokazi, da obstaja zaporedje polinomov (pg)ien, tako da velja (po tockah)

1, Rz>0
lim pr(z) =<0, RNz=0.
k—o0

-1 Rz<0

Namig: oglej si mnozice K,, = ([-n,—1/n] x [-n,n]) U ({0} x [-n,n]) U ([1/n,n] x [-n,n]).

Resitev 60. Za poljubno mnozico A C C oznagimo

A ={z€C: dist(z,4) < e}.

Naj bo €, = 1/(4n). Tedaj je mnozica K, ., odprta okolica mnozice K,, in velja

K,. =U'0U2UU?, U.NU =0,
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kjer so mnozice U’ odprte okolice komponent mnozice K,,. Funkcija f,, K, ., — C, podana s predpisom

1, zeU}
fn(z>: 07 ZGUEL?
-1 zeU?

je torej holomorfna funkcija na okolici K, ., mnoZice K,. Ker K, nima lukenj, lahko funkcijo f, po Rungejevem
izreku aproksimiramo s holomorfnim polinomom p,,, tako da velja sup_c g [fn(2) — pn(2)| < €,. Rezultat sledi.

Naloga 61. Dokazi, da za poljubno odprto mnozico Q2 C C obstaja normalno izérpanje (K;);eny mnozice 2, tako
da velja K; = K za vse j. Namig: velja dist(K, bQ) = dist(K, bQ2).

Resitev 61. Naj bo (K});en neko normalno izérpanje mnozice Q2. Lahko definiramo na primer

K; =D(0,j) N D;, Dj:={zeQ: dist(z,bQ) > 1/j}.
O¢itno tako definirano zaporedje mnozic K ]’ ustreza definiciji normalnega iz¢rpanja. Ker je K ; kompaktna, je
omejena, torej je IA(j’ tudi omejena po eni od prejsnjih nalog. Ker je zaprta, je tudi kompaktna. Normalno izérpanje

s holomorfno konveksnimi mnozicami sedaj konstruiramo induktivno. Naj bo K; = Ki Ker je (K}) normalno

izérpanje, obstaja tak jo, da je K3 = K/ C Int Kj,. Postavimo Ky := K}z. Recimo, da smo 7e konstruirali
Ky, ...,K,. Z enakim argumentom kot pri K> vidimo, da je K,, C Int K;'n,+1’ torej je K,, C Int IA(;HI in postavimo
K"+1 = KJ%H‘

Naloga 62. Naj bo K; normalno izérpanje domene D z O(D)-konveksnimi mnozicami. Pokazi, da za poljubno
zaporedje {p, }nen, ki zadosca p,, € K,+1\K,, obstaja holomorfna funkcija f : D — C, ki zadoica

lim |f(pn)| = oc.

n— oo

Resitev 62. Funkcijo f bomo konstruirali kot vrsto f = )", fy, kjer so f, € O(D) funkcije, ki zados¢ajo

1 ) n—1
Falicy < 3o i [Fala)l > n 414D 1£(p0)l.
j=1

Prvi pogoj nam jaméi, da vrsta ) f, konvergira absolutno in enakomerno na kompaktih v D, torej je limita f
holomorfna funkcija na D. Drugi pogoj nam da z uporabo trikotniske neenakosti:

i#n
n—1 n—1 o]
>n4+1+ > L)l =D @)l = D 11l
j=1 j=1 j=n+1
1 S
>n+l-= Z 2J
Jj=n+1

>n,

saj iz prvega pogoja sledi |fj(pn)| < 1/27 za vse j > n. Funkcije f, konstruiramo takole: ker je za poljuben n
mnozica K, holomorfno konveksna v D, po eni od prejs$njih nalog za poljubna 0 < &, < M, in poljubno tocko
zn € D\K, obstaja holomorfna funkcija g, : D — C, ki zados¢a |g,| < € na K, in |g,(2n)| > M,. Izberemo

Zn = Dn, €n = 1/2™ in (induktivno) M,, =n+ 1+ Z?:_ll |fj(pn)|, kar kon¢uje dokaz.
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7 Mittag-LefHlerjev razvoj
Izrek 5 (Mittag-Leffler). Naj bo {ay,}nen diskretna mnoZica v obmocju Q C C in naj bo za vsak n podan polinom
gn(z) — Cn,lz + PPN + cn,knzkn

brez konstantnega clena. Tedaj obstaja meromorfna funkcija f : Q2 — C, za katero velja, da je funkcija

f(2) = gn (2 _lan>

holomorfna na neki okolici tocke a,,, ter [ nima drugih polov (razen v tockah a.,).

Kako pois¢emo f: Recimo, da iS€emo meromorfno funkcijo f : C — C. Izberimo normalno izérpanje C
s holomorfno konveksnimi mnozicami, recimo K, = D(0,n). Ker je mnozica polov diskretna, so vsi glavni deli
9n(1/(z — a,)) razen kon¢no mnogo njih holomorfni na okolici diska K, (za nek fiksen m), torej lahko na K,
zapisemo f kot vsoto

f(z) = meromortfni del + Z (9n(1/(2 = an)) — Pu(2)),

n=no

kjer je P, Taylorjev polinom v razvoju funkcije g, (1/(z —a,)) v vrsto okoli izhodis¢a dovolj visoke stopnje, tako da
zgornja vrsta konvergira na K,,. Ce to velja za poljuben m, rep vrste za f konvergira enakomerno na kompaktih v

C.

Opomba 8. 1. V praksi izfrpanje izberemo v odvisnosti od mnozice polov. Ce imamo npr. pole vn e NCC,
je smiselno vzeti K,, = ID(0,n/2), saj je tedaj glavni del g, holomorfen na okolici K.

2. Dovolj je videti, da konvergira rep vrste > (g, — P,) enakomerno na kompaktih, tj. za dani kompakt lahko f
zapiSemo kot

f(2) = vsota kon¢no mnogo glavnih delov + Z (gn — Pn),
n=N

kar je uporabno, ¢e imamo npr. oceno za razliko ||g, — P, || na mnozicah K,,, m < n.
Naloga 63. Konstruiraj meromorfne funkcije na C s predpisanimi glavnimi deli:
a) gn(z) =n/(z —n), n € N, tj. iskana funkcija ima enostavne pole v tockah n € N in ostanke Res(f,n) = n.
b) ga(z) = 1/(z =)
Resitev 63.  a) Glavni del iskane funkcije f v tocki z = n je torej

no_ 1
n—z 1—z/n

_gn(z> =

Izberimo normalno izérpanje ravnine C z diski K,, = D(0,n/2). Tedaj je za vse n glavni del g, holomorfna
funkcija na okolici K, in velja

S S S CONE
Ini2) = 1—z/n n  n? ’

Ce od zgornje funkcije odstejemo njen linearni Taylorjev polinom P,, dobimo

2 z Z2 22 n

z
P, =-(1+Z4+ 4. )= ,
n = o n2< +n+n2+ ) n2z—n

Naj bo ng € N poljuben. Za n > ng velja za vse |z| < ng/2:

o0

Z gn(z) — Pu(2)

n=no

sZﬁ

n=no

n

ng o= 1
< — — < 00
z—mn| " 2 Zn2 ’
n=no
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torej vrsta konvergira enakomerno na K. Ker je bil ng poljuben, vrsta konvergira enakomerno na kompaktih
v C. Sledi, da je s predpisom

o0 oo 2

F2) =3 (gn(x) ~ Pu(2)) = Y

n=1 n=1

podana meromorfna funkcija z ustreznimi glavnimi deli.

Drug nacin: Pois¢emo polinome P,, n € N, tako da bo za nek € > 0 veljalo

1
Hpn_gnH < %, Za vse ‘Z| <

|3

Tedaj za poljuben k € N, |z| < k/2 velja

f(2) = meromorfni del + Z (

n=~k

- Pn<z>) |

n—=z

torej je

- P, < —.
n—z (2) 2k

||f — meromorfni del”{\z\gkﬂ} < Z
n=k

torej je f meromorfna funkcija. V posebnem je vsak kompakt K C C vsebovan v nekem disku D(0, k/2), kjer
velja zgornja neenakost. Polinome lahko pois¢emo bodisi z uporabo Rungejevega izreka, saj je za vsak n € N
funkcija z — n/(n — z) holomorfna na okolici diska D(0,n/2), bodisi direktno, tako da za vsak n izberemo
ustrezen Taylorjev polinom funkcije g, pri razvoju okoli izhodis¢a. Za fiksen n velja na {|z| < n/2}:

(2) ! A i (142424
—g(2) = ) ELE ).
g 1—2z/n n n? Pk nktl n  n?

Desni ¢len lahko omejimo z

Lahko izberemo kar k = n, torej je

in velja

Z’nr‘rl = 22 Zn+1 n
n n o n

Iskana funkcija je torej podana z vrsto

) = i (Z)nﬂ ziln

Iz konstrukcije sledi, da vrsta konvergira enakomerno na kompaktih v C\N.

Naj bo z oznakami iz prejinje tocke:
1
hn(z) - gn(Z) = .
n n—=z
Taylorjev razvoj funkcije h,, okoli izhodisca je
k+1
Pn,k(Z z 1
h(z) = ) 4 2
n nktln —z
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Naj bo ng € N. Tedaj za vse n > ng in |z| < ng/2 velja

L1 1 n

C 2kl pktl o —pg’

k+1
0 2

nktln —z

Naj bo k = 0. Zgornji izraz ima tedaj vrednost

1@ 2 ) <n0
2n 2n—ng n(2n—ng) ~ n?

Izberimo kar k = 0, torej P,(2) = 1/n + z/n?. Tedaj je

Definirajmo
= 1
flz2) =2 ;:1: nG—n)

Iz zgornjih ocen sledi, da vrsta Y - 1/(n(z — n)) konvergira enakomerno na {|z| < ng/2} za poljuben ng,

n=no
torej za |z| < ng/2 velja

f(z):zz;l ﬁ—i—z Z ﬁ:M(z)—FR(z).

Ker je M meromorfna in R(z) konvergira enakomerno, je f dobro definirana meromorfna funkcija na C s
predpisanimi glavnimi deli v n € N.
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8 Weierstrassova p-funkcija

Naloga 64. Pokazi, da je vsaka dvojno periodi¢na holomorfna funkcija f : C — C konstantna. Pokazi Se, da je
vsaka nekonstantna dvojno periodi¢na holomorfna funkcija f : C — CP! surjektivna.

Resitev 64. Naj bo f dvojno periodi¢na cela funkcija. Sledi, da je f(C) = f(K), kjer je
K=[0,1]x[0,1]={a+ibeC:0<ab<1}.

Ker je K kompaktna, je f(C) omejena, torej je konstantna po Liouvilleovem izreku.

Naj bo sedaj f : C — CP! nekonstantna dvojno periodi¢na holomorfna funkcija. Iz prejinjega dela naloge sledi,
da obstaja z € C, tako da velja f(z) = oo, sicer bi veljalo f(C) C C in smo v situaciji iz prej$njega dela, ki pove,
da je f konstantna. Recimo sedaj, da obstaja nek ¢ € C, tako da je f(C) c CP'\{¢}. Naj bo g : CP! — CP!
avtomorifzem projektivne premice, podan s predpisom g(z) = 1/(z—¢). Tedaj je go f : C — CP! dvojno periodi¢na
holomorfna funkcija, ki izpusti oo, torej je g o f konstantna po prejsnjem delu naloge, torej je tudi f konstantna,
kar je v nasprotju s predpostavko. Sledi, da je f surjektivna.

Naloga 65. Naj bo
1 2
f(z) = — tcaztcpzt +

dvojno periodi¢na meromorfna funkcija s poli v Z + iZ. DokaZi, da je f — p konstantna. S pomocjo Taylorjevega
razvoja funkcije p okoli izhodis¢a pokazi, da je f = p.

Resitev 65. Ker je f dvojno periodi¢na, je tudi ¢ = f — g dvojno periodi¢na funkcija. Ker je tudi g blizu izhodisca
oblike p(z) = 1/22 + h(2), kjer je h holomorfna funkcija na okolici izhodi§¢a, je g holomorfna blizu izhodis¢a. Ker g
nima polov, razen mogoce v mnozici Z + iZ\{0}, je holomorfna na okolici kvadrata [-1/2,1/2] x [-1/2,1/2] C C.
Ker je dvojno periodi¢na, je cela, torej je konstantna po eni od prej$njih nalog. Za Weierstrassovo p-funkcijo velja

na okolici izhodisc¢a: ) ) ) )
= — ——— — | == +h
p(2) 22 - wz#o ((Z —w)? w2> 22 +h(2),

kjer je h holomorfna vsota zgornje vrste. O¢itno je h(0) = 0, saj so vsi ¢leni v vrsti nicelni pri z = 0. Ker je tudi
h(z) = f(z) — 1/2? holomorfna na okolici izhodis¢a in je h(0) = 0, kar sledi iz Taylorjevega razvoja funkcije f, je

f(2) = p(2) = h(z) = h(z) = C =0,

saj je h(0) — h(0) = 0. Sledi f = p.
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9 Weierstrassov izrek

Izrek 6 (Weierstrass). Naj bo {a, }nen diskretna mnoZica v obmocju Q C C in naj bo k : N — N funkcija. Obstaja
holomorfna funkcija f : Q — C, ki ima za vse n € N v tocki a,, ni¢lo stopnje k(n) in nima drugih nicel.

Kako poiskati funkcijo f: Recimo, da is¢emo celo funkcijo f : C — C s predpisanimi ni¢lami in njihovimi
stopnjami. Mnozico {a,}\{0} razvrstimo v zaporedje (zp,)men, pri ¢emer za vsak fiksen n velja a,, = z,, za k(n)-
mnogo m, tj. ¢len a, se v zaporedju pojavi natanko tolikokrat, kolikor je Zelena stopnja nicle v tej tocki. Nato
izberemo zaporedje (I,,)men, tako da velja

S
Zi<oo za vse z € C.
Lt [ [Fr T

Iskano funkcijo zapisemo kot neskoncéen produkt

kjer je za dano naravno §tevilo n:

22 "
En = —_— ... — 5
(2) exp(z+2+ +n)

in je k € NU {0} stopnja nicle, ki jo ima iskana funkcija v izhodis¢u.
Naloga 66. Zapisi funkcijo sin 7z kot neskoncen produkt.
Resitev 66. Velja sinz = 0 natanko tedaj, ko je z = k, k € Z. Iz analize 1 vemo, da za poljuben k velja

. sinwz
lim =1,
z—k TZ

torej so vse nic¢le zx = k funkcije sin 7z enostavne. I§¢emo torej funkcijo g oblike

2

== T () B () =TT (- ) B (149 e =TT (1 3) B

kez\{0} k=1 k=1
kjer je By, kot zgoraj. Natancneje, produkt bo konvergiral, ¢e za vse z € C konvergira vrsta

|mk+1

|z

kez\{0}

Opazimo, da velja
|22

E =L < 00
2 b
keZ\{0} ‘k|

torej lahko izberemo my = 1 za vse k € Z\{0}.
Drug nacin: S predavanj vemo, da neskonéen produkt

[T+ e
k=1

konvergira, ¢e konvergira vrsta .- [ck|. Zdruzimo faktorja pri —k in k. Za poljuben M > 0 in |z| < M velja
|22 /K% < M?/k?, torej produkt
(=)
L2
k=1
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konvergira enakomerno na kompaktih v C. S predpisom

(e

je torej podana cela funkcija, ki ima enake nicle kot sinmz. Sledi, da je njun kvocient cela funkcija brez nicel, tj.

oo 2
sinmz = e"®)z H (1 - ;) = g(2)e"(2) = G(2),
k=1

kjer je h neka cela funkcija. Naj bo zp € C\Z. Na dovolj majhni enostavno povezani okolici tocke zg je G holomorfna
funkcija brez nicel, torej dopuscéa logaritem in velja

2
log G(z) = h(z) + log z + Zlog (1 - I€2>
Zgornja vrsta konvergira enakomerno na nekem (manjsem) disku, torej jo lahko ¢lenoma odvajamo in dobimo
= 2z/k? 1 & 22 J— 1 1
G =n - — ——— =" - .
=M 3 e =) L B g = L ()

Ce v ¢lene zgornje vsote vrinemo +1/k — 1/k in vse skupaj pomnoZimo s 7, dobimo ravno Mittag-Lefflerjev razvoj
funkcije 7 cot 7z:

1 cos Tz G'(z) d
—7+ D G - =l _
weot mz ( ) Liemon ﬂ-G(z) T og G(2)
keZ\{0}

Sledi, da je h' = 0 na neki okolici tocke zg, torej je A’ = 0 na C po principu identi¢nosti. Sledi, da je h konstantna
funkcija. Ker je

lim =1,
z—0 T2
velja
1= lim ¢ (Z), M) = T,
z—0 e
torej je
o 2
sinmz = 7z H (1 - Zz>
k=1

Naloga 67. S pomodjo prejsnje naloge zapisi naslednje funkcije kot neskoncen produkt:
a) sinhnz,
b) coswz,
c) e —1.

Resitev 67. a) Velja sinh7z = —isin(inz), torej je

o0 N2
sinh7z = —i(irz) H (1 - (z];)
k=1

) k=1 k
b) Velja cosmz = sinw(z 4+ 1/2), torej je

s (o ) T (1 CE22),

35



Zgornji produkt zapisemo kot
ad (z 4 1/2)? ad z+1/2 z+1/2
l——7F—— ) = 1-— 1
1 (- 20 - [T (- 2522) (1

Levi faktor v zgornjem produktu je enak

z4+1/2 z 1 1 2k —1 z
1- =12 = (2%k—-22-1)= 1—
k ST T T < k—1/2>’
desni pa
z+1/2 z 1 1 2k +1 z
I+ ——=14+—-+—==—(2k+22+1) = 1 .
T M T A 7 (+k+1/2)
Sledi

k=1 k=1

Vstavimo v zgornjo enakost za cos 7z in dobimo

cos7TZ=7T<Z+;> ﬁ% (1_ kzl/2> (1+if+21/2>

k=1

(%) ()T ) ()

ZapiSemo

torej je

e ST ) 5O )0

k=1 k=0

Izra¢unajmo Se konstantni ¢len. Ker je

o) 52

torej je
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c) Opazimo, da velja
e* — 1 =e/%(e*/? — e7*/2) = 2¢*/2 sinh(2/2).

Iz tocke a) vemo, da velja

o0 2
sinh7z =7z H <1 + 22) ,

k=1
torej je

oo 2
z 1 9,2/2 _9,2/2 _ .z/2 z
e® —1=2e**sinh(z/2) = 2e*/“sinhn(z/27) = e ,;[II (1 + 47T2k2) .
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