% 1.NALOGA % funkcija in odvodi f = @(x) x.^2 + log(x); df = @(x) 2*x + 1/x; ddf = @(x) 2 - 1/(x.^2); % iteracijske funkcije g1 = @(x) exp(-x.^2); g2 = @(x) (x + exp(-x.^2))/2; g3 = @(x) (2*x.^3 + exp(-x.^2))./(1 + 2*x.^2); % parametri iteracije tol = 1e-10; N = 200; x0 = 2; % tocna nicla xp = fzero(f,x0); % regula falsi in bisekcija N1 = 15; a = 0.1; b = 2; r = regula_falsi(f,a,b,N1); b = bisekcija(f,a,b,N1); % navadna iteracija [x1,X1,k1] = iteracija(g1,x0,tol,N); [x2,X2,k2] = iteracija(g2,x0,tol,N); [x3,X3,k3] = iteracija(g3,x0,tol,N); % tanegnta in Halleyeva metoda [xt,Xt,kt] = tangentna(f,df,x0,tol,N); [xh,Xh,kh] = halley(f,df,ddf,x0,tol,N); % stevilo korakov st_korakov = [k1 k2 k3 kt kh N1 N1]'; Stevilo korakov: 144 11 10 5 4 15 15 % koncni priblizki priblizki = [x1 x2 x3 xt xh r b]'; Dobljeni priblizki: 0.6529186405 0.6529186404 0.6529186404 0.6529186404 0.6529186404 0.6529186466 0.6528717041 % napake priblizki_napake = abs([x1 x2 x3 xt xh r b]' - xp); Napake priblizkov: 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000062 0.0000469363 % vsi priblizki Povprecne vrednosti vseh izracunanih priblizkov (brez regula-falsi in bisekcije, ker tam ne hranimo vseh izracunanih priblizkov): 0.6590322503 %g1 0.7977594143 %g2 1.0696671471 %g3 0.9296950920 %tangentna 0.9301038489 %halley Se resitve za parametre: tol = 1e-10; N = 7; % prej smo gledali za N=200 in so bile napake zelo majhne, za N=7 bodo vecje x0 = 2; N1 = 15; Stevilo korakov: 7 7 7 5 4 15 15 Dobljeni priblizki: 0.5235309984 0.6529187092 0.6544223829 0.6529186404 0.6529186404 0.6529186466 0.6528717041 Napake priblizkov: 0.1293876420 0.0000000688 0.0015037425 0.0000000000 0.0000000000 0.0000000062 0.0000469363 Povprecne vrednosti vseh izracunanih priblizkov (brez regula-falsi in bisekcije, ker tam ne hranimo vseh izracunanih priblizkov): 0.7567275308 %g1 0.8701798006 %g2 1.2259474536 %g3 0.9296950920 %tangentna 0.9301038489 %halley % 2.NALOGA % LU brez pivotiranja A = [2 -1 1 4; 4 -3 7 14; 0 -3 18 19; 6 -2 7 14]; [~,U] = lubp(A); U frobeniusova: 10.9087121146 A norma 1: 51.0 % LU z delnim pivotiranjem L Inf norma: 2.2222222222 % Thomasov algoritem, matriki L in U po vrsticah L(1,:) = 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 3.0000000000 L(2,:) = -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 -0.2500000000 L(3,:) = 0.8000000000 0.6896551724 0.6060606061 0.5405405405 0.4878048780 0.4444444444 0.4081632653 0.3773584906 0.3508771930 0.3278688525 0.3076923077 0.2898550725 0.2739726027 0.2597402597 0.2469135802 0.2352941176 0.2247191011 0.2150537634 0.2061855670 0.1980198020 0.1904761905 U(1,:) = 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 U(2,:) = -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 -8.0000000000 U(3,:) = 1.2500000000 1.4500000000 1.6500000000 1.8500000000 2.0500000000 2.2500000000 2.4500000000 2.6500000000 2.8500000000 3.0500000000 3.2500000000 3.4500000000 3.6500000000 3.8500000000 4.0500000000 4.2500000000 4.4500000000 4.6500000000 4.8500000000 5.0500000000 5.2500000000 U(4,:) = -0.2000000000 0.2413793103 0.5757575758 0.8378378378 1.0487804878 1.2222222222 1.3673469388 1.4905660377 1.5964912281 1.6885245902 1.7692307692 1.8405797101 1.9041095890 1.9610389610 2.0123456790 2.0588235294 2.1011235955 2.1397849462 2.1752577320 2.2079207921 2.2380952381 % Cholesky A = [1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; [V,~] = CholPivot(A); det(V-A): 744.3972103718 det(V1'-V): 0.2795591260