

Vectors

1. Leaving the outpost, Alejandro went on a three-day journey into the desert. His displacement (distance and direction) from start to finish on day one was $u = (3, 7)$. His displacement from start to finish on day two was $v = (-1, 8)$. (All distances are given in km.) His displacement on day three, w , took him back to the outpost. What distance did Alejandro travel on day three?

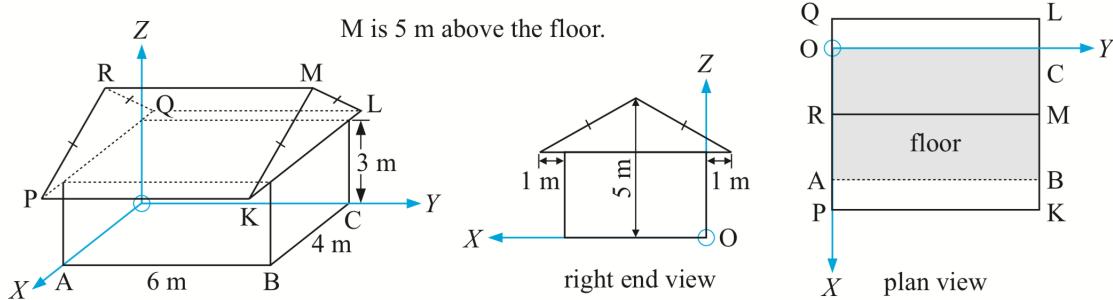
2.
 - a) Sketch $u = (4, 0, 0)$ and $v = (0, 3, 0)$.
 - b) Calculate the cross product of u and v . Add this vector to your sketch.
 - c) Based on your sketch, what seems to be the angle between u and $u \times v$?
 - d) Is there a way to verify this mathematically?
 - e) When this is the case, we say that u is _____ to v .
 - f) Calculate the cross product of u and the vector $2u$.
 - g) What is the length of the vector $u + v$?
 - h) What is the length of $u \times v$?
 - i) Calculate the length of $(u + v) \times u$. (What does this quantity correspond to geometrically?)
 - j) Let $w = (1, 1, 3)$. Calculate the length of the vector $u \cdot (v \times w)$? (What does this quantity correspond to geometrically?)

3. In \mathbb{R}^3 we are given three points $A(5, -2, 2)$, $B(3, -4, 6)$ and $C(2, 1, -1)$.
 - a) Compute the length of the line segment AB .
 - b) Compute the angle $\angle BAC$.

4. Let $\vec{a} = (0, 1, 2)$ and $\vec{b} = (1, 2, 3)$. Find x and y such that the vector $\vec{c} = (1, x, y)$ will be orthogonal to \vec{a} and \vec{b} .

5. A garage is illustrated below. Three-dimensional coordinate axes have been inserted for convenience. Three-dimensional geometry enables us to solve problems in space provided that each point can be specified by coordinates.
 - a) Can you specify the coordinates of the midpoint of RM?
 - b) Can you find the distance PC?

- c) Can you find (the coordinates of) a point on AC that divides AC in the ratio 2:3?
- d) Can you write the vector for QK?



6. Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are said to be *linearly dependent* if there exist scalars a_1, a_2, \dots, a_k not all zero, such that

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_k\vec{v}_k = 0,$$

i.e. one vector is zero or a linear combination of the others. Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are said to be *linearly independent* if the equation

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_k\vec{v}_k = 0$$

can only be satisfied by $a_i = 0$ for all $i = 1, \dots, k$.

a) Show that $\vec{v}_1 = (2, 5)$ and $\vec{v}_2 = (-1, 2)$ are linearly independent.

7. In trapezoid $ABCD$ the sides AB and CD are parallel. In what ratio does the diagonal AC divide the diagonal BD if $|AB| = 3|CD|$?