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Abstract

This is an expanded version ofmyplenary lecture at the 8thEuropeanCongress
ofMathematics in Portorož on 23 June 2021. Themain part of the paper is a survey
of recent applications of complex-analytic techniques to the theory of conformal
minimal surfaces in Euclidean spaces. New results concern approximation, inter-
polation, and general position properties ofminimal surfaces, existence ofminimal
surfaces with a given Gauss map, and the Calabi–Yau problem for minimal sur-
faces. To be accessible to a wide audience, the article includes a self-contained
elementary introduction to the theory of minimal surfaces in Euclidean spaces.
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1 Minimal surfaces: a link between mathematics, sci-
ence, engineering, and art

Minimal surfaces are among the most beautiful and aesthetically pleasing geometric
objects. These are surfaces in space which locally minimize area, in the sense that
any small enough piece of the surface has the smallest area among surfaces with the
same boundary. From the physical viewpoint, these are surfaces minimizing tension,
hence in equilibrium position. They appear in a variety of applications to engineering,
biology, architecture, and others.

The subject has a luminous history, going back to 1744 when Leonhard Euler
[32] showed that pieces of the surface now called catenoid (see Example 2.7) have
smallest area among all surfaces of rotation in the 3-dimensional Euclidean space R3.
The catenoid derives it name from catenary, the curve that an idealized hanging chain
assumes under its own weight when supported only at its ends. The model catenary
is the graph of the hyperbolic cosine function y = cosh x, and a catenoid is obtained
by rotating this curve around the x-axis in the (x, y, z)-space. Topologically, a catenoid
is a cylinder, and as a conformal surface it is the punctured plane C∗ = C \ {0}.
From mathematical viewpoint, the catenoid is one of the most paradigmatic examples
of minimal surfaces, and it appears in several important classification results and in
proofs of major theorems.

The subject of minimal surfaces was put on solid footing by Joseph–Louis Lagrange
who developed the calculus of variations during 1760-61, thereby reducing the problem
of finding stationary points of functionals to a second order partial differential equation,
now called Lagrange’s equation. His work was published in 1762 by Accademia delle
scienze di Torino [51, 50] and is available in his collected works [52]. In the second
paper [50], Lagrange applied his new method to a variety of problems in physics,
dynamics, and geometry. In particular, he derived the equation of minimal graphs.
The term minimal surface has since been used for a surface which is a stationary
point of the area functional. The question whether a domain in a minimal surface truly
minimizes the area among nearby surfaces with the same boundary can be analysed
by considering the second variation of area. It was later shown that a minimal graph
in R3 over a compact convex domain in R2 is an absolute area minimizer, and hence
small enough pieces of any minimal surface are area minimizers.

In 1776, Jean Baptiste Meusnier [65] discovered that domains in a surface in R3

are minimal in the sense of Lagrange if and only if the surface has vanishing mean
curvature at every point. He also described the second known minimal surface, the
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helicoid; see Example 2.8. It is obtained by a line in 3-space rotating at a constant rate
as it moves at a constant speed along the axis of rotation, which is perpendicular to the
rotating line. Helicoid is the geometric shape of a device known as Archimedes’ screw
(or the water screw, screw pump, or Egyptian screw), named after Greek philosopher
and mathematician Archimedes who described it around 234 BC on the occasion of his
visit to Egypt. There is evidence that this device had been used in ancient Egypt much
earlier. The helicoid is sometimes called "double spiral staircase" — each of the two
half-lines sweeps out a spiral staircase, and these two staircases only meet along the
axis of rotation. Therefore, its physical model is a convenient device for letting people
ascend and descend a staircase without the two crowds meeting in-between. From a
different field, DNA molecules assume the shape of a helicoid.

Topologically and conformally the helicoid is the plane. Its name derives from
helix — for every point on the helicoid, there is a helix (a spiral curve) contained in
the helicoid which passes through that point. The helicoid plays a major role in the
classification of properly embedded minimal surfaces in R3; see the survey paper [28]
by Tobias H. Colding and William P. Minicozzi.

Minimal surfaces appear naturally in the physical world. Laws of physics imply
that a soap film spanned by a given frame (i.e., a closed Jordan curve) is a minimal
surface. The reason is that this shape minimizes the surface tension and puts it in
equilibrium position. Soap films, bubbles, and surface tension were studied by the
Belgian physicist Joseph Plateau in the 19th century. Based on his experiments, Karl
Weierstrass formulated in 1873 the Plateau problem, conjecturing that any closed
Jordan curve inR3 spans aminimal surface (in fact, aminimal disc). Thiswas confirmed
by Tibor Radó [70, 71] (1930) and Jesse Douglas [31] (1931). For his work on the
Plateau problem,Douglas received one of the first twoFieldsMedals at the International
Congress of Mathematicians in Oslo in 1936. Half a century later, it was shown that
the disc of smallest area with given boundary curve (the Douglas–Morrey solution of
the Plateau problem) has no branch points; see the monograph by Anthony Tromba
[76]. Furthermore, if the curve lies in the boundary of a convex domain in R3 then the
solution is embedded according to William H. Meeks and Shing Tung Yau [62, 63].

Minimal surfaces are also studied in more general Riemannian manifolds of di-
mension at least three. Holomorphic curves in complex Euclidean spaces Cn for n > 1,
or in any complex Kähler manifold of complex dimension at least two, are special but
important examples of minimal surfaces. As pointed out by Colding and Minicozzi
[28], there are several fields where minimal surfaces are actively used in understanding
physical phenomena. In particular, they come up in the study of compound polymers,
protein folding, etc. They also play a prominent role in art, especially in architecture.

The connection between minimal surfaces in Euclidean spaces and complex analy-
sis has been known sincemid-19th century. The basic fact is that a conformal immersion
X : M → Rn from a Riemann surface M parameterizes a minimal surface if and only if
the map X is harmonic (see Theorem 2.1); equivalently, the complex derivative ∂X/∂z
in any local holomorphic coordinate z on M is holomorphic. Furthermore, the immer-
sion X is conformal if and only if ∂X/∂z assumes values in the null quadric A ⊂ Cn,
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given by the equation z2
1 + z2

2 + · · · + z2
n = 0 (see (2.23)), and ∂X/∂z , 0 if X is an

immersion. This leads to the Enneper–Weierstrass representation of any conformally
immersed minimal surface M → Rn as the real part of the integral of a holomorphic
map f : M → A∗ = A \ {0} ⊂ Cn (see Theorem 2.6). The period vanishing con-
ditions on f along closed curves in M ensure that the integral is well-defined. The
formula is most concrete in dimension n = 3 (see (2.25)) due to an explicit 2-sheeted
parameterization of the null quadric A ⊂ C3 by C2.

This connection between minimal surfaces and holomorphic maps was used by
Bernhard Riemann around 1860 in his construction of properly embedded minimal
surfaces in R3, now called Riemann’s minimal examples [72] (see the paper [59] by
WilliamH.Meeks and Joaquín Pérez), and in numerous further works by other authors.
It was popularized again in modern times by Robert Osserman [68].

Despite the long and illustrious history of the subject, the author in collaboration
with Antonio Alarcón, Francisco J. López and others obtained in the last decade a
string of new results by exploiting the Enneper–Weierstrass representation. The main
point in our approach is that the punctured null quadric A∗ is a complex homogeneous
manifold, hence anOka manifold, a notion introduced in [35] and treated in [36, Chap-
ter 5]. This implies that holomorphic maps from any open Riemann surface (and, more
generally, from any Stein manifold, that is, a closed complex submanifold of a com-
plex Euclidean space CN ) to A∗ satisfy the Runge–Mergelyan approximation theorem
and the Weierstrass interpolation theorem in the absence of topological obstructions.
Together with methods of convexity theory, this gave rise to many new constructions
of conformal minimal surfaces with interesting properties; see Theorem 3.1. By using
parametric versions of these results, it was possible to determine the rough topological
shape (i.e., the weak or strong homotopy type) of the space of nonflat conformal mini-
mal immersions from any given open Riemann surface into Rn (see Theorem 3.2). It
was also shown that every natural candidate is the Gauss map of a conformal minimal
surface in Rn (see Theorem 3.3).

Another complex analytic technique, which has recently had a major impact on
the field, is an adaptation of the classical Riemann–Hilbert boundary value problem
to conformal minimal surfaces and holomorphic null curves in Euclidean spaces. This
led to an essentially optimal solution of the Calabi–Yau problem for minimal surfaces,
originating in conjectures of Eugenio Calabi from 1965; see Theorems 3.5 and 3.6.
This technique was also used in the construction of complete proper minimal surfaces
in minimally convex domains of Rn (see [16, Chapter 8]).

The recent results presented in Section 3 are carefully explained in the monograph
[16] published in March 2021. The corresponding developments on non-orientable
minimal surfaces are described in the AMS Memoir [12] from 2020. It is needless to
say that both publications contain many other results not mentioned here.

In 2021, David Kalaj and the author [34] obtained an optimal Schwarz–Pick lemma
for conformal minimal discs in the ball ofRn and introduced the notion of hyperbolicity
of domains inRn, in analogy with Kobayashi hyperbolicity of complex manifolds. This
new topic is currently being developed, and it is too early to include it here.



Minimal surfaces in Euclidean spaces by way of complex analysis 5

2 An elementary introduction to minimal surfaces
To make the article accessible to a wide audience including advanced undergraduate
students of Mathematics, we present in this section a self-contained introduction to the
theory ofminimal surfaces in Euclidean spaces.We assume familiaritywith elementary
calculus, topology, and rudiments of complex analysis; however, no a priori knowledge
of differential geometry is expected. We shall use the fact that metric-related quantities
such as length, area, and curvature of curves and surfaces in a Euclidean space Rn are
invariant under translations and orthogonal maps of Rn; these are the isometries of the
Euclidean metric, also called rigid motions. For simplicity of presentation, we focus
on minimal surfaces parameterized by plane domains, although the same methods
apply on an arbitrary open Riemann surface. More complete treatment is available in a
number of texts; see [54, 68, 20, 67, 26, 30, 57, 58, 16], among others. For the theory
of non-orientable minimal surfaces, see [12].

2.1 Conformal maps and conformal structures on surfaces.
From the physical viewpoint, the most natural parameterization of a minimal surface
is by a conformal map (from a plane domain, or a conformal surface). A conformal pa-
rameterization minimizes the total energy of the map and makes the tension uniformly
spread over the surfaces. We give a brief introduction to the subject of conformal maps,
referring to [16, Sections 1.8–1.9] for more details and further references.

Let D be a domain in R2 with coordinates (u, v). A C1 map X : D → Rn (n ≥ 2)
is an immersion if the partial derivatives Xu = ∂X/∂u and Xv = ∂X/∂v are linearly
independent at every point of D. An immersion is said to be conformal if its differential
dXp at any point p ∈ D preserves angles. It is elementary to see (cf. [16, Lemma 1.8.4])
that an immersion X is conformal if and only if

|Xu | = |Xv | and Xu · Xv = 0. (2.1)

Here, x · y denotes the Euclidean inner product between vectors x,y ∈ Rn and |x| =
√

x · x is the Euclidean length of x. A smooth map X : D → Rn (of class C1, not
necessarily an immersion) is called conformal if (2.1) holds at each point. It clearly
follows that X has rank zero at non-immersion points.

Let M be a topological surface. A conformal structure on M is given by an atlas
U = {(Ui, φi)}i∈I with charts φi : Ui

�
→ Vi ⊂ R

2 whose transition maps

φi, j = φi ◦ φ
−1
j : φ j(Ui ∩Uj) → φi(Ui ∩Uj)

are conformal diffeomorphisms of plane domains. Identifying R2 with the complex
plane C, each map φi, j is biholomorphic or anti-biholomorphic. A surface M endowed
with a conformal structure (more precisely, with an equivalence class of conformal
structures) is a conformal surface. If M is orientable, then by choosing the charts φi in
a conformal atlas to preserve orientation, the transition maps φi, j are biholomorphic;
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hence, U is a complex atlas and (M,U) is a Riemann surface. A connected non-
orientable conformal surface M admits a two-sheeted conformal covering M̃ → M by
a Riemann surface M̃ .

Assume now that g is a Riemannian metric on a smooth surface M , i.e., a smoothly
varying family of scalar products gp on tangent spaces TpM , p ∈ M . In any local
coordinate (u, v) on M , the metric g has an expression

g = Edu2 + 2Fdudv + Gdv2,

where the coefficient functions E,F,G satisfy EG − F2 > 0. A local chart (u, v) is said
to be isothermal for g if the above expression simplifies to

g = λ(u, v) (du2 + dv2) = λ |dz |2, z = u + iv

for some positive function λ. An important result, first observed by Carl Friedrich
Gauss, is that in a neighbourhood of any point of M there exist smooth isothermal
coordinates. One way to obtain such coordinates is from solutions of the classical
Beltrami equation. We refer to [16, Secs. 1.8–1.9] for a more precise statement and
references. Since the transitionmap between any pair of isothermal charts is a conformal
diffeomorphism, we thus obtain a conformal atlas on M consisting of isothermal charts.
The upshot is that everyRiemannianmetric on a smooth surface determines a conformal
structure. Furthermore, a pair of Riemannian metrics g, g̃ on M determine the same
conformal structure if and only if g̃ = µg for a smooth positive function µ on M .

Denote by x = (x1, . . . , xn) the Euclidean coordinates on Rn and by

ds2 = dx2
1 + · · · + dx2

n

the Euclidean metric. If X = (X1, . . . ,Xn) : M → Rn is a smooth immersion, then

g = X∗(ds2) = (dX1)
2 + · · · + (dXn)

2

is a Riemannian metric on M , called the first fundamental form. By the definition of g,
the map X : (M,g) → (Rn, ds2) is an isometric immersion. By what has been said, g
determines a conformal structure on M (assuming now that M is a surface), and in this
structure the map X is a conformal immersion. More precisely, X(u, v) is conformal in
any isothermal local coordinate (u, v) on M .

This shows that any immersion X : M → Rn from a smooth surface determines a
unique conformal structure on M which makes X a conformal immersion. If in addition
M is oriented, we get the structure of a Riemann surface. Results of conformality theory
imply that if D is a domain in R2 and X : D → Rn is an immersion, then there is a
diffeomorphism φ : D′ → D from another domain D′ ⊂ R2 such that the immersion
X ◦ φ : D′→ Rn is conformal. In particular, if D is the disc then we may take D′ = D.

The same arguments and conclusions apply to immersions of a smooth surface M
into an arbitrary Riemannian manifold (N, g̃) in place of (Rn, ds2).
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2.2 First variation of area and energy
Assume that D ⊂ R2

(u,v)
is a bounded domain with piecewise smooth boundary and

X : D → Rn is a smooth immersion. Precomposing X with a diffeomorphism from
another such domain in R2, we may assume that X is conformal; see (2.1). We consider
the area functional

Area(X) =
∫
D

|Xu × Xv | dudv =
∫
D

√
|Xu |

2 |Xv |
2 − |Xu · Xv |

2 dudv (2.2)

and the Dirichlet energy functional

D(X) =
1
2

∫
D

|∇X |2 dudv =
1
2

∫
D

(
|Xu |

2 + |Xv |
2
)

dudv. (2.3)

We have elementary inequalities

|x|2 |y|2 − |x · y|2 ≤ |x|2 |y|2 ≤
1
4

(
|x|2 + |y|2

)2
, x,y ∈ Rn,

which are equalities if and only if x,y is a conformal frame, i.e., |x| = |y| and x · y = 0.
Applying this to the vectors x = Xu and y = Xv gives Area(X) ≤ D(X), with equality
if and only if X is conformal. Hence, these two functionals have the same critical points
on the set of conformal immersions.

It is elementary to find critical points of these functional. The calculation is simpler
for the Dirichlet functional D, but the expression for the first variation is the same for
both functionals at a conformal map X . Assuming that G : D → Rn is a smooth map
vanishing on bD, the first variation of D at X in direction G equals

d
dt

���
t=0
D(X + tG) =

∫
D

(Xu ·Gu + Xv ·Gv) dudv = −
∫
D

∆X ·G dudv, (2.4)

where∆X = Xuu+Xvv is the Laplace of X . (We integrated by parts and usedG |bD = 0.)
The right-hand-side of (2.4) vanishes for all G if and only if ∆X = 0. This proves:

Theorem 2.1. Let D be a relatively compact domain in R2 with piecewise smooth
boundary. A smooth conformal immersion X : D → Rn (n ≥ 3) is a stationary point
of the area functional (2.2) if and only if X is harmonic: ∆X = 0.

For completeness, we also calculate the first variation of area at a conformal
immersion X . Let G : D→ Rn be as above. Consider the expression under the integral
(2.2) for the map Xt = X + tG, t ∈ R. Taking into account (2.1) we obtain

|Xu + tGu |
2 · |Xv + tGv |

2 = |Xu |
4 + 2t (Xu ·Gu + Xv ·Gv) |Xu |

2 +O(t2),

|(Xu + tGu) · (Xv + tGv)|
2 = O(t2).

It follows that
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d
dt

���
t=0

(
|Xu + tGu |

2 |Xv + tGv |
2 − |(Xu + tGu) · (Xv + tGv)|

2)
= 2|Xu |

2 (Xu ·Gu + Xv ·Gv)

and therefore

d
dt

���
t=0

Area(X + tG) =
∫
D

(Xu ·Gu + Xv ·Gv) dudv = −
∫
D

∆X ·G dudv.

(We integrated by parts and used that G |bD = 0. The factor 2|Xu |
2 also appears in the

denominator when differentiating the expression for Area(X + tG) at t = 0, so this term
cancels.) Comparing with (2.4), we see that

d
dt

���
t=0

Area(X + tG) =
d
dt

���
t=0
D(X + tG) = −

∫
D

∆X ·G dudv

if X is a conformal immersion.
The same result holds on any compact domain with piecewise smooth boundary

in a conformal surface M . A conformal diffeomorphism changes the Laplacian by a
multiplicative factor, so there is a well-defined notion of a harmonic function on M .

2.3 Characterization of minimality by vanishing mean curvature
In this section, we prove a result due to Meusnier [65] which characterizes minimal
surfaces in terms of vanishing mean curvature; see Theorem 2.3.

To explain the notion of curvature of a smooth plane curveC ⊂ R2 at a point p ∈ C,
we apply a rigid change of coordinates in R2 taking p to (0,0) and the tangent line TpC
to the x-axis, so locally near (0,0) the curve is the graph y = f (x) of a smooth function
on an interval around 0 ∈ R, with f (0) = f ′(0) = 0. Therefore,

y = f (x) =
1
2

f ′′(0)x2 + o(x2). (2.5)

Let us find the circle which agrees with this graph to the second order at (0,0). Clearly,
such a circle has centre on the y-axis, so it is of the form x2 + (y − r)2 = r2 for some
r ∈ R \ {0}, unless f ′′(0) = 0 when the x-axis (a circle of infinite radius) does the job.
Solving the equation on y near (0,0) gives

y = r −
√

r2 − x2 = r − r

√
1 −

x2

r2 = r − r
(
1 −

x2

2r2 + o(x2)

)
=

1
2r

x2 + o(x2).

A comparison with (2.5) shows that for f ′′(0) , 0 the number r = 1/ f ′′(0) ∈ R \ {0}
is the unique number for which the circle agrees with the curve (2.5) to the second
order at (0,0). This best fitting circle is called the osculating circle. The number

κ = f ′′(0) = 1/r (2.6)
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is the signed curvature of the curve (2.5) at (0,0), its absolute value |κ | = | f ′′(0)| ≥ 0
is the curvature, and |r | = 1/|κ | = 1/| f ′′(0)| is the curvature radius. If f ′′(0) = 0 then
the curvature is zero and the curvature radius is +∞.

Consider nowa smooth surface S ⊂ R3. Let (x, y, z) be coordinates onR3. Fix a point
p ∈ S. A rigid change of coordinates gives p = (0,0,0) and TpS = {z = 0} = R2 × {0}.
Then, S is locally near the origin a graph of the form

z = f (x, y) =
1
2

(
fxx(0)x2 + 2 fxy(0,0)xy + fyy(0)y2

)
+ o(x2 + y2). (2.7)

The symmetric matrix

A =
(

fxx(0,0) fxy(0,0)
fxy(0,0) fyy(0,0)

)
(2.8)

is called the Hessian matrix of f at (0,0). Given a unit vector v = (v1, v2) in the
(x, y)-plane, let Σv be the 2-plane through 0 ∈ R3 spanned by v and the z-axis. The
intersection Cv := S ∩ Σv is then a planar curve contained in S, given by

z = f (v1t, v2t) =
1
2
(Av · v) t2 + o(t2) (2.9)

for t ∈ R near 0. Since |v | = 1, the parameters (t, z) on Σv are Euclidean parameters,
i.e., the Euclidean metric ds2 on R3 restricted to the plane Σv is given by dt2 + dz2.
From our discussion of curves and the formula (2.6), we infer that the number

κv = Av · v = fxx(0)v2
1 + 2 fxy(0,0)v1v2 + fyy(0)v2

2

is the signed curvature of the curve Cv at the point (0,0).
On the unit circle |v |2 = v2

1 + v2
2 = 1 the quadratic form v 7→ Av · v reaches its

maximum κ1 and minimum κ2; these are the principal curvatures of the surface (2.7)
at (0,0). Since A is symmetric, κ1 and κ2 are its eigenvalues. The real numbers

H = κ1 + κ2 = trace A, K = κ1κ2 = det A (2.10)

are, respectively, the mean curvature and the Gaussian curvature of S at (0,0,0).
Note that the trace of A (2.8) equals the Laplacian ∆ f (0,0). On the other hand, the

trace of a matrix is the sum of its eigenvalues. This implies

∆ f (0,0) = κ1 + κ2 = H. (2.11)

Lemma2.2. Let D be a domain inR2. If X : D→ Rn is a smooth conformal immersion,
then for every p ∈ D the vector ∆X(p) is orthogonal to the plane dXp(R

2) ⊂ Rn.
Equivalently, the following identities hold on D:

∆X · Xu = 0, ∆X · Xv = 0. (2.12)
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Proof. Recall from (2.1) that X is conformal if and only if Xu · Xu = Xv · Xv and
Xu · Xv = 0. Differentiating the first identity on u and the second one on v yields

Xuu · Xu = Xuv · Xv = −Xvv · Xu,

whence ∆X · Xu = (Xuu + Xvv) · Xu = 0. Likewise, differentiating the first identity on
v and the second one on u gives ∆X · Xv = 0. �

We can now prove the following result due to Meusnier [65].

Theorem 2.3. A smooth conformal immersion X = (x, y, z) : D → R3 from a domain
D ⊂ R2 parameterizes a surface with vanishing mean curvature function if and only if
the map X is harmonic, ∆X = (∆x,∆y,∆z) = 0.

Proof. Fix a point p0 ∈ D; by a translation of coordinates we may assume that
p0 = (0,0) ∈ R2. Since the differential dX(0,0) : R2 → R3 is a conformal linear map,
we may assume up to a rigid motion on R3 that X(0,0) = (0,0,0) and

dX(0,0)(ξ1, ξ2) = µ(ξ1, ξ2,0) for all ξ = (ξ1, ξ2) ∈ R
2

for some µ > 0. Equivalently, at (u, v) = (0,0) the following hold:

xu = yv = µ > 0, xv = yu = 0, zu = zv = 0. (2.13)

Note that
µ = |Xu | = |Xv | =

1
√

2
|∇X |. (2.14)

The implicit function theorem shows that there is a neighbourhoodU ⊂ D of the origin
such that the surface S = X(U) is a graph z = f (x, y) with df(0,0) = 0, so f is of the
form (2.7). Since the immersion X is conformal, (2.12) shows that ∆X is orthogonal
to the (x, y)-plane R2 × {0} at the origin, which means that

∆x = ∆y = 0 at (0,0). (2.15)

We now calculate ∆z(0,0). Differentiation of z(u, v) = f (x(u, v), y(u, v)) gives

zu = fx xu + fyyu, zv = fx xv + fyyv,

zuu =
(
fx xu + fyyu

)
u = fxx x2

u + fxy xuyu + fx xuu + fyx xuyu + fyyy2
u + fyyuu .

At the point (0,0), taking into account (2.13) and fx = fy = 0 we get zuu = µ2 fxx . A
similar calculation gives zvv = µ2 fyy at (0,0), so we conclude that

∆z(0,0) = µ2
∆ f (0,0) = µ2H, (2.16)

where H is the mean curvature of S at the origin (see (2.11)). Denoting by N = (0,0,1)
the unit normal vector to S at 0 ∈ R3, it follows from (2.14), (2.15) and (2.16) that

∆X =
1
2
|∇X |2HN (2.17)

holds at (0,0) ∈ D. In particular, ∆X = 0 if and only if H = 0. This formula is clearly
independent of the choice of a Euclidean coordinate system. �



Minimal surfaces in Euclidean spaces by way of complex analysis 11

Combining Theorems 2.1 and 2.3 gives:

Corollary 2.4. Let D be a relatively compact domain in R2 with piecewise smooth
boundary. A smooth conformal immersion X : D → R3 is a stationary point of the
area functional if and only if the immersed surface S = X(D) has vanishing mean
curvature at every point.

Although we used conformal parameterizations, neither curvature nor area depend
on the choice of parameterization. This motivates the following definition.

Definition 2.5. A smooth surface in R3 is a minimal surface if and only if its mean
curvature vanishes at every point.

Every point in a minimal surface is a saddle point, and the surface is equally curved
in both principal directions but in the opposite normal directions. Furthermore, the
Gaussian curvature K = κ1κ2 = −κ

2
1 ≤ 0 is nonpositive at every point. The integral

TC(S) =
∫
S

K · dA ∈ [−∞,0] (2.18)

of the Gaussian curvature function with respect to the surface area on S is called the
total Gaussian curvature. This number equals zero if and only if S is a piece of a plane.

The results presented in this section easily extend to surfaces in Rn for any n ≥ 3
which are parameterized by conformal immersions X : M → Rn from any open
Riemann surface M . (By the maximum principle for harmonic maps, there are no
compact minimal surfaces in Rn.) There is a sphere Sn−3 of unit normal vectors to the
surface at a given point, and one must consider the mean curvature of the surface in
any given normal direction. This gives the mean curvature vector field H along the
surface, which is orthogonal to it at every point. For surfaces in R3 we have H = HN,
where H is the mean curvature function (2.10) and N is a unit normal vector field to
the surface. The formula (2.17) can then be written in the form

2
|∇X |2

∆X = ∆gX = H,

where ∆gX denotes the intrinsic Laplacian of the map X with respect to the induced
metric g = X∗ds2 on the surface M (cf. [16, Lemma 2.1.2]). The formula (2.4) for the
first variation of area still holds. It shows that the mean curvature vector field H is the
negative gradient of the area functional, and the surface is a minimal surface if and
only if H = 0. We refer to [54, 68, 16] or any other standard source for the details.

2.4 The Enneper–Weierstrass representation
In this section we explain the Enneper-Weierstrass formula, which provides a connec-
tion between holomorphic maps D→ Cn with special properties from domains D ⊂ C
and conformal minimal immersions D → Rn for n ≥ 3. The same connection holds
more generally for maps from any open Riemann surface.
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Let z = x + iy be a complex coordinate on C. Let us recall the following basic
operators of complex analysis, also called Wirtinger derivatives:

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

The differential of a function F(z) can be written in the form

dF =
∂F
∂x

dx +
∂F
∂y

dy =
∂F
∂z

dz +
∂F
∂ z̄

d z̄,

where dz = dx + idy and dz̄ = dx − idy. Note that ∂F
∂z dz is the C-linear part and

∂F
∂z̄ dz̄ is the C-antilinear part of dF. In particular, ∂F/∂ z̄ = 0 holds for holomorphic
functions, and ∂F/∂z = 0 holds for antiholomorphic ones. In terms of these operators,
the Laplacian equals

∆ =
∂2

∂x2 +
∂2

∂y2 = 4
∂

∂ z̄
∂

∂z
= 4

∂

∂z
∂

∂ z̄
.

Hence, a function F : D→ R is harmonic if and only if ∂F/∂z is holomorphic.
It follows that a smooth map X = (X1,X2, . . . ,Xn) : D → Rn is a harmonic

immersion if and only if the map f = ( f1, f2, . . . , fn) : D → Cn with components
fj = ∂Xj/∂z is holomorphic and the component functions fj have no common zero.
Furthermore, conformality of X is equivalent to the following nullity condition:

f 2
1 + f 2

2 + · · · + f 2
n = 0. (2.19)

Indeed, we have that 4 f 2
j =

(
Xj ,x − iXj ,y

)2
= (Xj ,x)

2 −(Xj ,y)
2 −2iXj ,xXj ,y, and hence

4
n∑
j=1

f 2
j = |Xx |

2 − |Xy |
2 − 2iXx · Xy .

Comparing with the conformality conditions (2.1) proves the claim.
Since we know by Theorem 2.1 that a conformal immersion is harmonic if and

only it parameterizes a minimal surface, this gives the following result.

Theorem 2.6 (The Enneper-Weierstrass representation). Let D be a connected domain
in C. For every smooth conformal minimal immersion X = (X1,X2, . . . ,Xn) : D→ Rn,
the map f = ( f1, f2, . . . , fn) = ∂X/∂z : D→ Cn \ {0} is holomorphic and satisfies the
nullity conditions (2.19). Conversely, a holomorphic map f : D→ Cn \ {0} satisfying
(2.19) and the period vanishing conditions

<

∮
C

f dz = 0 for every closed curve C ⊂ D (2.20)

determines a conformal minimal immersion X : D→ Rn given by

X(z) = c + 2<
∫ z

z0

f (ζ) dζ, z ∈ D (2.21)

for any base point z0 ∈ D and vector c ∈ Rn.
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Conditions (2.20) guarantee that the integral in (2.21) is well-defined, that is,
independent of the path of integration. The imaginary components

=

∮
C

f dz = p(C) ∈ Rn (2.22)

of the periods define the flux homomorphism p : H1(D,Z) → Rn on the first homology
group of D. Indeed, by Green’s formula the period

∮
C

f dz only depends on the
homology class [C] ∈ H1(D,Z) of a closed path C ⊂ D.

Remark (The first homology group). If D is a domain in R2 � C then its first
homology group H1(D,Z) is a free abelian group Z` (` ∈ {0,1,2, . . . ,∞}) with finitely
or countablymany generators. If D is bounded, connected, and its boundary bD consists
of l1 Jordan curves Γ1, . . . ,Γl1 and l2 isolated points (punctures) p1, . . . , pl2 , then the
group H1(D,Z) has ` = l1+ l2−1 generators which are represented by loops in D based
at any given point p0 ∈ D, each surrounding one of the holes of D. (By a hole, we
mean a compact connected component of the complement C \ D. A hole which is an
isolated point of C \ D is called a puncture.) Indeed, if Γ1 is the outer boundary curve
of D, then every other boundary curve Γ2, . . . ,Γl1 of D is contained in the bounded
component ofC\Γ1, so it bounds a hole of D. Likewise, each of the points p1, . . . , pl2 is
a hole (a puncture). Every hole contributes one generator to H1(D,Z). The same loops
then generate the fundamental group π1(D, p0) as a free nonabelian group, and group
H1(D,Z) is the abelianisation of π1(D, p0). A similar description of the homology
group H1(D,Z) holds for every surface, except that its genus enters the picture as well;
see [16, Sect. 1.4]. For basics on homology and cohomology, see J. P. May [55].

It is clear from Theorem 2.6 that the following quadric complex hypersurface in
Cn plays a special role in the theory of minimal surfaces in Rn:

A = An−1 =
{
(z1, . . . , zn) ∈ Cn : z2

1 + z2
2 + · · · + z2

n = 0
}
. (2.23)

This is called the null quadric in Cn, and A∗ = A \ {0} is the punctured null quadric.
Note that A is a complex cone with the only singular point at 0. Theorem 2.6 says
that we get all conformal minimal surfaces D→ Rn as integrals of holomorphic maps
f : D→ A∗ ⊂ Cn satisfying the period vanishing conditions (2.20).
TheEnneper–Weierstrass representation inR3. In dimension n = 3, the null quadric
A admits a 2-sheeted quadratic parameterization φ : C2 → A given by

φ(z,w) =
(
z2 − w2, i(z2 + w2),2zw

)
. (2.24)

This map is branched at 0 ∈ C2, and φ : C2 \ {0} → A∗ is a 2-sheeted holomorphic
covering map. It follows that every conformal minimal immersion X = (X1,X2,X3) :
D→ R3 can be written in the following form (see [68] or [16, pp. 107–108]):

X(z) = X(z0) + 2<
∫ z

z0

(
1
2

(1
g
− g

)
,
i

2

(1
g
+ g

)
,1

)
∂X3. (2.25)
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Here, ∂X = ∂X
∂z dz = (∂X1, ∂X2, ∂X3), and

g =
∂X3

∂X1 − i ∂X2
: D −→ CP1 = C ∪ {∞} (2.26)

is a holomorphic map to the Riemann sphere (a meromorphic function on D), called
the complex Gauss map of X . Identifying CP1 with the unit 2-sphere S2 ⊂ R3 by the
stereographic projection from the point (0,0,1) ∈ S2, g corresponds to the classical
Gauss map N = Xx × Xy/|Xx × Xy | : D→ S2 of X .

Many important quantities and properties of a minimal surface are determined by
its Gauss map. In particular, we have that

g = X∗ds2 = 2
(
|∂X1 |

2 + |∂X2 |
2 + |∂X3 |

2
)
=
(1 + |g|2)2

4|g|2
|∂X3 |

2

Kg = −
4|dg|2

(1 + |g|2)2
= −g∗(σ2

CP1).

Here, K is the Gauss curvature function (2.10) of the metric X∗ds2 and σ2
CP1 is the

spherical metric on CP1. It follows that the total Gaussian curvature (see (2.18)) of
a conformal minimal surface X : D → R3 equals the negative spherical area of the
image of the Gauss map g : D → CP1 counted with multiplicities, where the area of
the sphere CP1 = S2 is 4π:

TC(X) = −Area g(D). (2.27)

It is a recent result that every holomorphic map D → CP1 is the complex Gauss map
of a conformal minimal immersion X : D → R3; see Theorem 3.3. Hence, the total
Gaussian curvature of a minimal surface can be any number in [−∞,0].

Example 2.7 (Catenoid). A conformal parameterization of a standard catenoid (see
[16, Fig. 2.1, p. 117]) is given by the map X = (X1,X2,X3) : R2 → R3,

X(u, v) = (cos u · cosh v, sin u · cosh v, v) . (2.28)

It is 2π-periodic in the u variable, hence infinitely-sheeted. Introducing the variable
z = e−v+iu ∈ C∗, we pass to the quotient C/(2π Z) � C∗ and obtain a single-sheeted
parameterization X : C∗ → R3 having the Enneper–Weierstrass representation

X(z) = (1,0,0) − 2<
∫ z

1

(
1
2

( 1
ζ
− ζ

)
,
i

2

( 1
ζ
+ ζ

)
,1

)
dζ
ζ
. (2.29)

Its Gauss map is g(z) = z extends to the identity map CP1 → CP1. Hence, by (2.27)
the catenoid has total Gaussian curvature equal to −4π.

The catenoid is one of the most paradigmatic examples in the theory of minimal
surfaces. A compendium of major results about it can be found in [16, Example 2.8.1].
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Example 2.8 (Helicoid). A conformal parameterization X : R2 → R3 of the standard
left helicoid, shown on [16, Fig. 2.2, p. 119], is

X(u, v) = (sin u · sinh v,− cos u · sinh v,u). (2.30)

Its Weierstrass representation in the complex coordinate z = u + iv ∈ C is

X(z) = <
∫ z

0

(
1
2

(
1

eiζ
− eiζ

)
,
i

2

(
1

eiζ
+ eiζ

)
,1

)
dζ .

Its complex Gauss map g(z) = eiz is transcendental, so the helicoid has infinite total
Gaussian curvature −∞. Changing the sign of the second component in (2.30) gives
a right helicoid. Like the catenoid, the helicoid is a paradigmatic example satisfying
various uniqueness theorems. E. Catalan [23] proved in 1842 that the helicoid and the
plane are the only ruled minimal surfaces in R3, i.e., unions of straight lines. Much
more recently, W. H. Meeks and H. Rosenberg proved in 2005 [61] that the helicoid
and the plane are the only properly embedded, simply connected minimal surfaces in
R3. Their proof uses curvature estimates of T. H. Colding and W. P. Minicozzi [27].

Remark (Branch points). Our definition of a conformal map X : D → Rn of class
C1(D) requires that equations (2.1) hold. We have already observed that such a map
has rank zero at non-immersion points. Assuming that X is harmonic at immersion
points, it follows that f = ∂X/∂z : D → Cn is a continuous map with values in the
null quadric A (2.23) which is holomorphic at immersion points of X and vanishes at
non-immersion points. By a theorem of T. Radó [69] (cf. [73, Theorem 15.1.7]), such
f is holomorphic everywhere on D, and in particular its zero set consists of isolated
points (assuming that X and hence f are nonconstant). This shows that the minimal
surface parameterized by X has only isolated singularities. See [76] for more details.

There are interesting examples ofminimal surfaceswith branch points. For example,
Henneberg’s surface (see [16, Example 2.8.9]) is a complete non-orientable minimal
surface with two branch points (a branched minimal Möbius strip), named after Ernst
Lebrecht Henneberg [45] who first described it in his doctoral dissertation in 1875. It
was the only known non-orientable minimal surface until 1981 whenW. H.Meeks [56]
discovered a properly immersed minimal Möbius strip in R3. A properly embedded
minimal Möbius strip in R4 was found in 2017 [12, Example 6.1].

2.5 Holomorphic null curves
There is a family of holomorphic curves in Cn which are close relatives of conformal
minimal surfaces in Rn. A holomorphic map Z = (Z1, . . . , Zn) : D → Cn for n ≥ 3
from a domain D ⊂ C satisfying the nullity condition

(Z ′1)
2 + (Z ′2)

2 + · · · + (Z ′n)
2 = 0

is a holomorphic null curve in Cn. Its complex derivative f = Z ′ assumes values in the
null quadric A (2.23), and we have

∮
C

f dz =
∮
C

dZ = 0 for any closed curve C ⊂ D.
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Conversely, a holomorphic map f : D→ A satisfying the period vanishing conditions∮
C

f dz = 0 for every closed curve C ⊂ D (2.31)

integrates to a holomorphic null curve

Z(z) = c +
∫ z

z0

f (ζ)dζ, z ∈ D, (2.32)

where z0 ∈ D is any given base point and c ∈ Cn. Indeed, conditions (2.31) guarantee
that the integral in (2.32) is independent of the choice of a path of integration. These
period conditions are trivial on a simply connected domain D.

If Z = X + iY : D→ Cn is an immersed holomorphic null curve, then its real part
X = <Z : D → Rn and imaginary part Y = =Z : D → Rn are conformal minimal
surfaces which are harmonic conjugates of each other. Indeed, denoting the complex
variable in C by z = x + iy, the Cauchy-Riemann equations imply

f = Z ′ = Zx = Xx + iYx = Xx − iXy = 2
∂X
∂z

.

Since f = Z ′ : D → An−1
∗ satisfies the nullity condition (2.19), X is a conformal

minimal immersion. In the same way we find that f = Z ′ = Yy + iYx = 2iYz , so Y
is a conformal minimal immersion. Being harmonic conjugates, X and Y are called
conjugate minimal surfaces. Conformal minimal surfaces in the 1-parameter family

X t = <(ei tZ) : D→ Rn, t ∈ R

are called associated minimal surfaces of the holomorphic null curve Z .
Conversely, if X : D → Rn is a conformal minimal surface and the holomorphic

map f = 2∂X∂z : D → An−1 satisfies period vanishing conditions (2.31), then f
integrates to a holomorphic null curve Z : D→ Cn (2.32)with<Z = X . In general, the
imaginary parts of the periods (2.32) determine the flux homomorphismH1(M,Z) → R
of the minimal surface X (see (2.22)); hence, X is the real part of a holomorphic null
curve if and only if it has vanishing flux. The periods (2.31) always vanish on a simply
connected domain D, and hence every conformal minimal immersion D → Rn is the
real part of a holomorphic null curve D→ Cn.

The relationship between conformal minimal surfaces and holomorphic null curves
extends to maps having (isolated) branch points.

Example 2.9 (Helicatenoid). Consider the holomorphic immersion Z : C→ C3,

Z(z) = (cos z, sin z,−iz) ∈ C3, z = x + iy ∈ C. (2.33)

We have that

Z ′(z) = (− sin z,cos z,−i), sin2 z + cos2 z + (−i)2 = 0.
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Hence, Z is a holomorphic null curve. Consider the 1-parameter family of its associated
minimal surfaces in R3 for t ∈ [0,2π]:

X t (z) = <
(
eitZ(z)

)
= cos t ©­«

cos x · cosh y

sin x · cosh y

y

ª®¬ + sin t ©­«
sin x · sinh y

− cos x · sinh y

x

ª®¬ . (2.34)

At t = 0 and t = π we have a catenoid (see Example 2.7), while at t = ±π/2 we have
a helicoid (see Example 2.8). Hence, these are conjugate minimal surfaces in R3. The
holomorphic null curve (2.33) is called helicatenoid.

3 A survey of new results
This section is a survey of recent results in the theory of minimal surfaces in Euclidean
spaces, which were discussed in my lecture at 8 ECM. A detailed presentation is
available in the monograph [16] and, for non-orientable surfaces, in the AMS Memoir
[12] by Alarcón, López and myself.

3.1 Approximation, interpolation, and general position theorems
Holomorphic approximation is a central topic in complex analysis. Holomorphic func-
tions andmaps with interesting properties are often constructed inductively, exhausting
the manifold by an increasing sequence of compact sets such that one can approxi-
mate holomorphic functions uniformly on each one by holomorphic functions on M .
The quintessential example is Runge’s theorem from 1885 [74] on approximation
of holomorphic functions on a compact set K ⊂ C with connected complement by
holomorphic polynomials. A major extension is Mergelyan’s theorem [64] from 1951.

In order to generalize Runge’s theorem, we need the following concept. Denote
by O(M) the algebra of holomorphic functions on a complex manifold M . Given a
compact set K in M , its O(M)-convex hull (or holomorphic hull) is the set

K̂ =
{
z ∈ M : | f (z)| ≤ sup

K
| f | for all f ∈ O(M)

}
.

If K = K̂ then K is said to be holomorphically convex, or O(M)-convex, or a Runge
compact. If M is the complex plane or, more generally, an open Riemann surface, then
the hull K̂ is the union of K and all relatively compact connected components of M \K
(the holes of K in M). There is no topological characterization of the hull in higher
dimensional complex manifolds.

Holomorphically convex sets are the natural sets for holomorphic approximation.
Runge’s theorem was extended to open Riemann surfaces by H. Behnke and K. Stein
[21] in 1949, who proved that any holomorphic function on a neighborhood of a
Runge compact K in open Riemann surface M can be approximated uniformly on
K by holomorphic functions on M . A related result on higher dimensional complex
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manifolds is the Oka–Weil theorem which pertains to Runge compacts in Cn and, more
generally, in any Stein manifold (a closed complex submanifold of a Euclidean space
Cn). A recent survey of holomorphic approximation theory can be found in [33].

We have seen in Subsection 2.4 that every conformal minimal immersion M → Rn

from an open Riemann surface M is the integral of a holomorphic map f : M → A∗ ⊂
Cn into the punctured null quadricA∗; furthermore, f must satisfy the period vanishing
conditions (2.20). Hence, a Runge-type approximation theorem for conformal minimal
surfaces inRn (or holomorphic null curves inCn) reduces to the approximation problem
for holomorphic maps f : M → A∗ satisfying the period vanishing conditions (2.20)
(or (2.31) when considering null curves). This is a nonlinear approximation problem.
The first part, ignoring the period conditions, fits within Oka theory. In particular,
the manifold A∗ is easily seen to be a homogeneous space of the complex orthogonal
group On(C). Runge-type approximation theorems for holomorphic maps from Stein
manifolds to complex homogeneous manifolds were proved by Hans Grauert [40]
(1957) and Grauert and Kerner [41] (1963). More generally, a complex manifold Y
is said to be an Oka manifold if and only if approximation results of this type hold
for holomorphic maps M → Y from any Stein manifold in the absence of topological
obstructions. Oka theory also includes interpolation theorems for holomorphic maps,
generalizing classical theorems of K. Weierstrass [77] and H. Cartan [22]. For the
theory of Oka manifolds, see [36].

The second part of the problem, ensuring the period vanishing conditions (2.20)
or (2.31) for holomorphic maps to A∗, can be treated by using sprays of holomorphic
maps together with elements of convexity theory. More precisely, Gromov’s one-
dimensional convex integration lemma from [42] is useful in this regard. The main
techniques underlying all subsequent developments were established in [6] (2014).
Their application led to the following result, which is a summary of several individual
theorems. Parts (i), (ii) and (iv) are due to Alarcón, López, and myself [6, 13, 12] (the
special case of (i) for n = 3 was obtained beforehand in [19]), while (iii) was proved
by Alarcón and Castro-Infantes [2, 3]. Related results for conformal minimal surfaces
of finite total curvature were given by Alarcón and López [18].

Main Theorem 3.1. Let K be a compact set with piecewise smooth boundary and
without holes (a Runge compact) in an open Riemann surface M . Then:

(i) Every conformal minimal immersion X : K → Rn (n ≥ 3) can be approximated
uniformly on K by proper conformal minimal immersions X̃ : M → Rn.

(ii) The approximating map X̃ can be chosen to have only simple double points if
n = 4, and to be an embedding if n ≥ 5.

(iii) In addition, one can prescribe the values of X̃ on any closed discrete subset of M
(Weierstrass-type interpolation).

(iv) The analogous results hold for non-orientable minimal surfaces in Rn and for
holomorphic null curves in Cn, n ≥ 3.



Minimal surfaces in Euclidean spaces by way of complex analysis 19

The proof of Theorem 3.1 is fairly complex, and we shall only outline the main
idea. Fix a nowhere vanishing holomorphic 1-form θ on the open Riemann surface
M . (Such a 1-form always exists; see [43].) By Enneper–Weierstrass (Theorem 2.6), it
suffices to prove the Runge approximation theorem for holomorphic maps f : M → A∗
satisfying the period vanishing conditions (2.20).

Consider an inductive step. Assume that K ⊂ L are connected Runge compacts
with piecewise smooth boundaries in M , X : K → Rn is a conformal minimal surface,
and f = 2∂X/θ : K → A∗. We wish to approximate X by a conformal minimal
immersion X̃ : L → Rn. We may assume that f (K) is not contained in a complex ray
C∗z of the null quadric A∗, for otherwise the result is trivial. There are two main cases
to consider, the noncritical case and the critical case.

The noncritical case: there is no change of topology from K to L. It is well known
that there are closed curves C1, . . . ,C` in K forming a basis of H1(K,Z) whose union
C =

⋃`
j=1 Cj is a Runge compact. Let Bn denote the unit ball of Cn. By using flows of

holomorphic vector fields on Cn tangent to A, we construct a smooth map

F : K × Bn` → A∗, F(· ,0) = f = 2∂X/θ,

which is holomorphic on K̊ × Bn, such that the associated period map

Bn` 3 t 7−→

(∫
C j

F(· , t)θ

)`
j=1

∈ Cn`

is biholomorphic onto its image. Such period dominating spray can be found of the
form

F(p, t) = φ1
g1(p)t1

◦ φ2
g2(p)t2

◦ · · · ◦ φn`gn` (p)tn`
( f (p)) ∈ A∗, p ∈ K, (3.1)

where each φ j is the flow of a holomorphic vector field tangent to A and gj ∈ O(M).
We first construct smooth functions gi on C which give a period dominating spray;
this can be done since the convex hull of A equals Cn. As C is Runge in M , we can
approximate the gi’s by holomorphic functions on M , thereby obtaining a holomorphic
period dominating spray F as above.

In the next key step, we use that A∗ is an Oka manifold, so we can approximate F
by a holomorphic map F̃ : M × Bn` → A∗. (There is no topological obstruction since
A∗ is connected.) If the approximation is close enough, the implicit function theorem
furnishes a parameter value t̃ ∈ Bn` close to 0 such that the map f̃ = F(· , t̃) : M → A∗
has vanishing real periods on the curves C1, . . . ,C` . Hence, fixing a point p0 ∈ K , the
map X̃ : L → Rn given by

X̃(p) = X(p0) +<

∫ p

p0

f̃ θ, p ∈ L

is a conformal minimal immersion which approximates X : K → Rn on K .
The critical case. Assume now that E is an embedded smooth arc in L \ K̊ attached

with its endpoints to K such that K ∪ E is a deformation retract of L. (Thus, L has the
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same topology as K ∪ E . This situation arises when passing a critical point of index 1
of a strongly subharmonic Morse exhaustion function on M .) Let a, b ∈ bK denote the
endpoints of E . We extend f smoothly across E to a map f : K ∪ E → A∗ such that

<

∫
E

f θ = X(b) − X(a) ∈ Rn.

This is possible since the convex hull of A∗ equals Cn. We then proceed as in the
noncritical case: embed f into a period dominating spray of smooth maps K∪E → A∗
which are holomorphic on K̊ = K \ bK , approximate it by a holomorphic spray on L
by Mergelyan’s theorem, and pick a parameter value for which the map in the spray has
vanishing real periods on K ∪ E , and hence on L. The Enneper–Weierstrass formula
gives a conformal minimal surface X̃ : L → Rn approximating X on K .

The proof of the basic approximation theorem (i) (without the properness condition)
is then completed by induction on a suitable exhaustion of M by Runge compacts,
alternatively using the above two cases. Critical points of index 2 do not arise.

Interpolation (part (iii)) is easily built into the same inductive construction. Indeed,
in each of the two cases considered above, we can arrange that none of the points
pj ∈ M at which we wish to interpolate lies on the boundary of K or L. By choosing
the functions gi in the spray F (3.1) to vanish at those points pj which lie in the interior
of K , we ensure that the spray F is fixed at these points (independent of the parameter
t), and hence the approximating map X̃ will agree with X at these points. For each of
the finitely many points pj ∈ L̊ \ K we choose a smooth embedded arc Ej ⊂ L \ K̊
with one endpoint pj and the other endpoint qj ∈ bK such that Ej \ {qj} ⊂ L \ K and
these arcs are pairwise disjoint. The set S = K ∪

⋃
j Ej is then a Runge compact. We

extend the map f : K → A∗ smoothly to S such that for each j,
∫
Ej

f θ has the correct
value which ensures that the integral assumes the prescribed value at pj . It remains to
apply the same method as above with a spray which is period dominating also on each
of the arcs Ej and to use Mergelyan approximation on the set S.

Properness of the approximating conformal minimal immersion X̃ : M → Rn

(part (ii) of the theorem) requires considerable additional work. The main point is to
prove a relative version of the approximation theorem in part (i) in which all but two
components of the given map X extend to harmonic functions on all of M . One can
keep these components fixed while approximating the remaining two components such
that the resulting map X̃ is a conformal minimal immersion. This requires a more
precise version of the Oka principle. This result is then used in an inductive scheme
which is designed so that | X̃(z)| tends to infinity as the point z ∈ M goes to the ideal
boundary of M (i.e., it exists any compact subset).

Finally, the general position theorem in part (ii) uses the same technique together
with the transversality theorem. The details of proof are considerably more involved
from the technical viewpoint, and we shall not deal with this subject here.
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3.2 Topological structure of spaces of minimal surfaces
Assume that M is an open Riemann surface. Fix a nowhere vanishing holomorphic
1-form θ on M . Let n ≥ 3. An immersion M → Rn is said to be nonflat if its image is
not contained in an affine 2-plane. We introduce the following notation:

• O(M,A∗) and C(M,A∗) denote spaces of holomorphic and continuous maps
M → A∗, respectively.

• CMI(M,Rn) denotes the space of conformal minimal immersions M → Rn.

• CMInf(M,Rn) is the subspace of CMI(M,Rn) consisting of nonflat immersions.

• NC(M,Cn) is the space of holomorphic null immersions M → Cn.

• NCnf(M,Cn) is the subspace of NC(M,Cn) consisting of nonflat immersions.

Consider the commutative diagram

NCnf(M,Cn)
φ //

<

��

O(M,A∗)
� � τ // C(M,A∗)

<NCnf(M,Cn)
� � ι // CMInf(M,Rn)

ψ

OO

where

• the maps φ : NCnf(M,Cn) → O(M,A∗) and ψ : CMInf(M,Cn) → O(M,A∗) are
given by Z 7→ ∂Z/θ and X 7→ 2∂X/θ, respectively;

• the map NCnf(M,Cn) → <NCnf(M,Cn) is the projection Z = X + iY 7→ X;

• the maps ι : <NCnf(M,Cn) ↪→ CMInf(M,Rn) and τ : O(M,A∗) ↪→ C(M,A∗)
are the natural inclusions.

Recall that a continuous map φ : X → Y between topological spaces is said to be
a weak homotopy equivalence if it induces a bijection of path components of the two
spaces and, for each integer k ∈ N, an isomorphism πk(φ) : πk(X)

�
→ πk(Y ) of their

k-th homotopy groups. The map φ is a homotopy equivalence if there is a continuous
map ψ : Y → X such that ψ ◦ φ : X → X is homotopic to the identity on X and
φ ◦ψ : Y → Y is homotopic to the identity onY . These notions indicate that the spaces
X and Y have the same rough topological shape.

Since A∗ is an Oka manifold, the inclusion τ : O(M,A∗) ↪→ C(M,A∗) is a weak
homotopy equivalence by the Oka–Grauert principle (see [36, Corollary 5.5.6]), and
by Lárusson [53] it is a homotopy equivalence if M is of finite topological type, i.e., if
the homology group H1(M,Z) is a finitely generated abelian group.

The real-part projection map < : NCnf(M,Cn) → <NCnf(M,Cn) is evidently a
homotopy equivalence.
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It turns out that all other maps in the above diagram are also weak homotopy
equivalences. The first part of the following theorem was proved by Lárusson and
myself in [38], and the second part was proved by Alarcón, López and myself in [15].
Validity of statement (a) for CMI(M,Rn) and NC(M,Cn) remains an open problem.

Main Theorem 3.2. Let M be an open Riemann surface.

(a) Each of the maps ι, φ, ψ in the above diagram is a weak homotopy equivalence,
and a homotopy equivalence if M is of finite topological type.

(b) The map τ ◦ψ : CMI(M,Rn) → C(M,A∗) induces a bijection of path components
of the two spaces. Hence,

π0(CMI(M,Rn)) =

{
Z`2, n = 3, H1(M,Z) = Z` ;
0, n > 3.

It follows that each of the spaces NCnf(M,Cn) and CMInf(M,Cn) is weakly homo-
topy equivalent to the space C(M,A∗) of continuous maps M → A∗, and is homotopy
equivalent to C(M,A∗) if the surface M has finite topological type.

The group Z2 = {0,1}, which appears in part (b), is the fundamental group of the
punctured null quadric A∗ ⊂ C3; see (2.24) and note that C2 \ {0} is simply connected.
If X ∈ CMI(M,R3) then ∂X/∂z : M → A∗ maps every generator of the homology
group H1(M,Z) either to the generator of π1(A∗) or to the trivial element. This gives
2` choices, each one determining a connected component of CMI(M,R3). The null
quadric A∗ ⊂ Cn for n > 3 is simply connected.

These results are proved by using the parametric versions of techniques discussed
in Subsection 3.1. Each of the maps in question satisfies the parametric h-principle,
which implies that it is a weak homotopy equivalence.

3.3 The Gauss map of a conformal minimal surface
The Gauss map is of major importance in the theory of minimal surfaces. We have
already seen that the Gauss map of a conformal minimal immersion X : M → R3 is
a holomorphic map g : M → CP1 (2.26), which coincides with the classical Gauss
map M → S2 under the stereographic projection from S2 onto CP1. In general for
any dimension n ≥ 3 one defines the generalized Gauss map of a conformal minimal
immersion X = (X1,X2, . . . ,Xn) : M → Rn as the Kodaira-type holomorphic map

G = [∂X1 : ∂X2 : · · · : ∂Xn] : M → Qn−2 ⊂ CPn−1, (3.2)

where

Q = Qn−2 =
[z1 : · · · : zn] ∈ CPn−1 :

n∑
j=1

z2
j = 0


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is the projectivization of the punctured null quadric A∗, a smooth quadric complex
hypersurface in CPn−1. A recent discovery is the following converse result from [15]
(see also [16, Theorem 5.4.1]), which shows that every natural candidate is the Gauss
map of a conformal minimal surfaces.

Main Theorem 3.3. Assume that n ≥ 3.

(i) For every holomorphic map G : M → Qn−2 from an open Riemann surface there
exists a conformal minimal immersion X : M → Rn with the Gauss map G.

(ii) If M is a compact bordered Riemann surface andG : M → Qn−2 is a map of class
Ar−1(M,Qn−2) for some r ∈ N, then there is a conformal minimal immersion
X : M → Rn of class Cr (M,Rn) with the Gauss map G.

Here, Ar−1(M,Qn−2) denotes the space of maps M → Qn−2 of class Cr−1 which
are holomorphic in the interior M \ bM of M .

Furthermore, the following assertions hold true in both cases in the above theorem.

(i) The conformal minimal immersion X can be chosen to have vanishing flux.
In particular, every holomorphic map G : M → Qn−2 is the Gauss map of a
holomorphic null curve M → Cn.

(ii) If G(M) is not contained in any projective hyperplane of CPn−1, then X can be
chosen with arbitrary flux, to have prescribed values on a given closed discrete
subset Λ of M , to be an immersion with simple double points if n = 4, and to be
an injective immersion if n ≥ 5 and the prescription of values on Λ is injective.

When n = 3, the quadric Q1 is an embedded rational curve in CP2 parameterized
by the biholomorphic map

CP1 3 t
τ
7−→

[
1
2

(1
t
− t

)
:
i

2

(1
t
+ t

)
: 1

]
=

[
1 − t2 : i(1 + t2) : 2t

]
∈ Q1. (3.3)

Writing (1 − t2, i(1 + t2),2t) = (a, b, c), we easily find that

t =
c

a − i b
=

b − i a
i c

∈ CP1.

Suppose that X = (X1,X2,X3) : M → R3 is a conformal minimal immersion, and write
2∂X = 2(∂X1, ∂X2, ∂X3) = (φ1, φ2, φ3). In view of the above formula for t = t(a, b, c)
it is natural to consider the holomorphic map

g =
φ3

φ1 − i φ2
=

∂X3
∂X1 − i ∂X2

: M −→ CP1.

This is the complex Gauss map (2.26) of X , which appears in the Enneper–Weierstrass
representation (2.25). The generalized Gauss map G : M → Q1 ⊂ CP2 (3.2) of X is
then expressed by G = τ ◦ g, where τ : CP1 → Q1 is given by (3.3).
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Let us say a few words about the proof of Theorem 3.3. The first step is to lift the
given map G : M → Q to a holomorphic map G : M → A∗. Note that the natural
projection A∗ → Q sending (z1, . . . , zn) to [z1 : · · · : zn] is a holomorphic fibre bundle
with fibre C∗ = C \ {0}. The existence of a continuous lifting follows by noting that the
homotopy type of M is a wedge of circles, and every oriented C∗-bundle over a circle
is trivial. Further, since C∗ is an Oka manifold, every continuous lifting is homotopic
to a holomorphic lifting according to the Oka principle [36, Corollary 5.5.11].

In the second and main step of the proof, the holomorphic map G : M → A∗ is
multiplied by a nowhere vanishing holomorphic function h : M → C∗ such that the
product f = hG : M → A∗ has vanishing periods along closed curves in M (see
(2.31)), and hence it integrates to a holomorphic null immersion Z : M → Cn. Its real
part X = <Z : M → Rn is then a conformal minimal immersion having the Gauss
map G. The construction of such a multiplier h follows the idea of proof of Theorem
3.1, but the details are fairly nontrivial and we refer to the cited works.

There are many results in the literature relating the behaviour of a minimal surface
to properties of its Gauss map. A particularly interesting question is how many hyper-
planes in a general position in CPn−1 can be omitted by the Gauss map of a complete
conformal minimal surface of finite total curvature. A discussion this topic can be
found in [16, Chapter 5] and in several other sources.

3.4 The Calabi–Yau problem
A smooth immersion X : M → Rn is said to be complete if X∗ds2 is a complete metric
on M . Equivalent, for every divergent path γ : [0,1) → M (i.e., such that γ(t) leaves
every compact set in M as t → 1) the image path X ◦ γ : [0,1) → Rn has infinite
Euclidean length. Clearly, if X is proper then it is complete since any such path X ◦γ(t)
diverges to infinity as t → 1. The converse is not true; it is easy to construct complete
immersions (and embeddings if n ≥ 3) with bounded image X(M) ⊂ Rn.

It is however not so easy to find complete bounded immersions with additional
properties, such as conformalminimal or, in casewhen the target is a complexEuclidean
spaceCn, holomorphic. The following conjecturewas posed byEugenioCalabi in 1965,
[49, p. 170]. Calabi’s conjecture was also promoted by S. S. Chern [24, p. 212].

Conjecture 3.4. Every complete minimal hypersurface in Rn (n ≥ 3) is unbounded.
Furthermore, every complete nonflat minimal hypersurface in Rn (n ≥ 3) has an
unbounded projection to every (n − 2)-dimensional affine subspace.

A particular reason which may have led Calabi to propose these conjectures was
the theorem of S. S. Chern and R. Osserman [25] from that time. Their result says in
particular that if X : M → Rn (n ≥ 3) is a complete conformal minimal surface of
finite total Gaussian curvature TC(X) > −∞, then M is the complement of finitely
many points p1, . . . , pm in a compact Riemann surface R, the holomorphic 1-form ∂X
has an effective pole at each point pj , and X is proper. (The first statement holds even
without the completeness assumption on X , due to a result of Huber [46] from 1957.)
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The Chern–Osserman theorem says that such X is complete if and only if ∂X has an
effective pole at each puncture pj . The asymptotic behaviour of X at the punctures was
described by M. Jorge and W. Meeks [47] in 1983.

It turns out that, at least in dimension n = 3, Calabi’s conjecture is both right and
wrong, depending on whether the minimal surface is embedded or merely immersed.
(This point was not specified in the original question.) In dimension n = 3, the answer
is radically different for these two cases, as we now explain.

The first counterexample to Calabi’s conjecture in the immersed case was given
by L. P. de M. Jorge and F. Xavier in 1980 [48], who constructed a complete nonflat
conformal minimal immersion D → R3 from the disc with the range contained in a
slab between two parallel planes.

In 1982, S.-T. Yau pointed out in [79, Problem 91] that the question whether there
are complete bounded minimal surfaces in R3 remained open despite Jorge–Xavier’s
example. This became known as the Calabi-Yau problem for minimal surfaces.

The problem was resolved for immersed surfaces by N. Nadirashvili [66] who in
1996 constructed a complete conformal minimal immersion D → R3 with the image
contained in a ball. Many subsequent results followed, showing similar results for
topologically more general surfaces; see [16, Section 7.1] for a survey and references.
However, the conformal type of the examples could not be controlled by the methods
developed in those papers, except for the disc. The reason is that the increase of the
intrinsic radius of a surface was achieved by applying Runge’s theorem on pieces of
a suitable labyrinth in the surface, chosen such that any divergent path avoiding most
pieces has infinite length, while crossing a piece of the labyrinth increases the length
by a prescribed amount. However, Runge’s theorem does not allow to control the map
everywhere, and hence small pieces of the surface had to be cut away in order to keep
the image bounded. This surgery changes the conformal type of the surface, and only
its topological type can be controlled by this method.

After Nadirashvili’s paper, Yau revisited the Calabi–Yau conjectures in his 2000
millenium lecture and proposed several new questions (see [80, p. 360] or [81, p. 241]).
He asked in particular: What is the geometry of complete bounded minimal surfaces
in R3? Can they be embedded? What can be said about the asymptotic behaviour of
these surfaces near their ends?

Concerning Calabi’s conjecture for embedded surfaces, Colding and Minicozzi
showed in 2008 [29] that every complete embedded minimal surface in R3 of finite
topological type is proper in R3. Their result was extended to surfaces of finite genus
and countably many ends by W. H. Meeks, J. Pérez, and A. Ros in 2018, [60]. Hence,
Calabi’s conjecture holds true for embedded minimal surfaces of finite genus and
countably many ends in R3.

Against this background, we have the following result for immersed surfaces.

Main Theorem 3.5. Every open Riemann surface of finite genus and at most countably
many ends, none of which are point ends, is the conformal structure of a complete
bounded immersed minimal surface in R3.
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By the uniformization theorem of Z.-X. He and O. Schramm [44, Theorem 0.2]
(1993) solving Koebe’s conjecture, every open Riemann surface of finite genus and at
most countably many ends is conformally equivalent to a domain of the form

M = R \
⋃
i

Di, (3.4)

where R is a compact Riemann surface without boundary and {Di}i is a finite or
countable family of pairwise disjoint compact geometric discs or points in R. (A
geometric disc in R is a compact subset whose preimage in the universal holomorphic
covering space of R, which is one of the surfaces CP1, C, or D, is a family of pairwise
disjoint round discs or points.) Such M is called a circled domain in R. Hence, Theorem
3.5 is a corollary to the followingmore precise result, which includes information about
the boundary behaviour of surfaces.

Main Theorem 3.6. Assume that M is a circled domain of the form (3.4). For any
n ≥ 3 there exists a continuous map X : M → Rn such that X : M → Rn is a complete
conformal minimal immersion and X : bM → Rn is a topological embedding. If n ≥ 5
then there is a topological embedding X : M → Rn such that X : M → Rn is a
complete embedded minimal surface.

This means that the image X(M) is a complete immersed minimal surface whose
boundary X(bM) consists of pairwise disjoint Jordan curves. The control of conformal
structures on complete minimal surfaces in Theorems 3.5 and 3.6 is one of the main
new aspect of these results; the other one is that the surfaces in Theorem 3.6 have
Jordan boundaries. These answer the aforementioned questions by Yau.

For surfaces M of type (3.4) with finitely many boundary components, Theorem
3.6 was proved in [4]. This covers all finite bordered Riemann surfaces in view of
the uniformization theorem [75, Theorem 8.1] due to E. L. Stout. In this case, we
actually showed that any conformal minimal immersion M → Rn can be approximated
uniformly on M by a map X as in the theorem. The general case for countably many
ends was obtained in [10]; an approximation theorem also holds in that case.

The situation regarding point ends remains elusive and does not have a clear-cut
answer. On the one hand, a bounded conformal minimal surface cannot be complete at
an isolated point end (a puncture) since a bounded harmonic function extends across
a puncture. On the other hand, it was shown in [10, Theorem 5.1] that an analogue of
Theorem 3.6 holds for connected domains of the form

M = R \
(
E ∪

⋃
i

Di

)
,

where E is a compact set in a compact Riemann surface R and Di ⊂ R \E are pairwise
disjoint geometric discs such that the distance to E is infinite within M . In particular,
there are complete bounded conformal minimal surfaces in R3 with point ends which
are limits of disc ends.
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Our construction uses an adaptation of the Riemann–Hilbert boundary value prob-
lem to holomorphic null curves and conformal minimal surfaces, together with a
method of exposing boundary points of such surfaces. This technique is explained in
detail in [16, Chapter 6]. The modifications which we use provide a good control of the
position of the whole surface in the ambient space, thereby keeping it bounded. The
main technical lemma of independent interest (see [16, Lemma 7.3.1]) enables one to
make the intrinsic radius of a conformal bordered minimal surface in Rn as large as
desired by a deformation of the surface which is uniformly as small as desired. One
uses this lemma in an inductive process which converges to a bounded complete limit
surface. This lemma also allows the construction of complete minimal surfaces with
other interesting geometric properties. In particular, every bordered Riemann surface
admits a complete proper conformal minimal immersion into any convex domain in
Rn (embedding if n ≥ 5) and, more generally, into any minimally convex domain (see
[16, Section 8.3]). A smoothly bounded domain in R3 is minimally convex if and only
if the boundary has nonnegative mean curvature at each point.

We give a brief description of the modifications which lead to proof of the
above results. A complete presentation of this technique is given in [16, Chapter
6], and Theorem 3.6 is proved in [16, Chapter 7]. Illustrations can be found in my
lecture at https://8ecm.si/system/admin/abstracts/presentations/000/
000/663/original/8ECM2021.pdf?1626190740.

Each step consists of two substeps. In the first substep, we choose a large but finite
number of roughly equidistributed points on the boundary of the surface and change the
surface so that it grows long spikes (tentacles) at these points, which however remain
uniformly close to the attachment points. (Imagine the picture of a corona virus.) The
effect of this modification is that curves in the surface which terminate near one of the
exposed boundary points get elongated by a prescribed amount. (See [16, Sect. 6.7].)

In the second substep, we perform a Riemann–Hilbert type modification which
increases the intrinsic radius along each of the boundary arcs between a pair of exposed
points, without destroying the effect of substep one. To each boundary arc between a
pair of exposed points we attach a 3-dimensional cylinder, consisting of a 1-parameter
family of conformal minimal discs centred at points of the given arc. The boundaries of
these discs form a 2-dimensional cylinder, a product of the arc with a circle, and their
radii shrink to zero near the exposed endpoints of the arc. Is then possible to modify the
surface by pushing each arc very near the corresponding 2-dimensional cylinder, with
the modification tempering out near the exposed endpoints and away from the arcs. So,
the modification in substep 2 is big very close to the boundary (except near the exposed
points), and it is arbitrarily small outside a given neighbourhood of the boundary. The
new conformal minimal surface is contained in an arbitrarily small neighbourhood of
the union of the surface from substep 1 and the 3-dimensional cylinders that have been
attached to the arcs in substep 2. The metric effect of the modification in substep 2
is that the length of any path in the surface terminating at an interior point of one of
the boundary arcs increases almost by the radius of the disc that was attached at this
point. (For curves terminating near the exposed points a desired elongation was already

https://8ecm.si/system/admin/abstracts/presentations/000/000/663/original/8ECM2021.pdf?1626190740
https://8ecm.si/system/admin/abstracts/presentations/000/000/663/original/8ECM2021.pdf?1626190740
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achieved in substep 1.) For technical reasons, we actually work with ∂-derivatives of
these conformal minimal surfaces, including the boundary discs, so the entire picture
concerns families of holomorphic maps with values in the punctured null quadric A∗.
In order to control the period conditions, we work with sprays of such configurations,
like in the proof of Theorem 3.1. Special attention is paid to avoid introducing branch
points to our surfaces in the process. As said before, this provides themainmodification
lemma, and its inductive application leads to the proof of Theorem 3.6.

By thismethod, theCalabi–Yau property has been established in several geometries:
for holomorphic curves in complex manifolds [5], holomorphic null curves in Cn and
conformal minimal surfaces in Rn for n ≥ 3 [7, 4, 10], holomorphic Legendrian curves
in complex contact manifolds [14, 8], and superminimal surfaces in self-dual or anti-
self-dual Einstein 4-manifolds [37]. For a survey and further references, see [16, Sect.
7.4]. An axiomatic approach to the Calabi–Yau problem was proposed in [11].

The analogue of the Calabi–Yau problem for complex submanifolds in Cn, which
is known as Paul Yang’s problem who raised it in 1977 [78], has also received a lot of
recent attention. In particular, J. Globevnik showed [39] that for any pair of integers
1 ≤ k < n, the ball of Cn admits holomorphic foliations by complete k-dimensional
proper complex subvarieties, most of which are without singularities (submanifolds).
Another construction using a different technique was given by Alarcón et al. [17],
and it was also shown that there are nonsingular holomorphic foliations of the ball
having complete leaves (Alarcón [1]). Furthermore, there are nonsingular holomorphic
foliations of the ball whose leaves are complete properly embedded discs [9]. The
techniques in these papers do not apply to more general minimal surfaces, and they do
not provide control of complex structures of examples.

In conclusion, I propose the following conjecture. Although I am fully aware of the
lack of technical tools to solve it in this generality, I believe that it is true.

Conjecture 3.7. The Calabi–Yau property holds for bordered minimal surfaces in any
smooth Riemannian manifold (N,g) with dim N ≥ 3. Explicity, for every bordered
Riemann surface, M , and conformal minimal immersion X : M → N it is possible to
approximate X uniformly on M by complete conformal minimal immersions M → N .
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