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1. Permutation groups

Informally speaking, a permutation of a collection of objects is just a way of
(linearly) order the objects. Permutations are often thought either as purely com-
binatorial objects, usually in counting problems, or as one of the �rst examples
in a �rst class of group theory. In these �rst sections we will look at the interplay
between these two approaches. We will use permutations to understand combi-
natorial problems and the other way around, we will use counting techniques to
understand group theoretical properties of permutations. In this section we �rst
review some basic properties of permutations.

Let X be a set, a permutation of X is a bijection σ : X → X . Observe that the
identity εX : X → X , de�ned by εX (x) = x for every x ∈ X , is a permutation
(if there is no ambiguity we often write ε instead of εX ). Moreover, if σ and τ
are permutations of X , then so σ−1 and τ ◦ σ are. That implies that the set of
permutations of X , denoted SX , is a group with the composition as operation.
This group is called the symmetric group onX . We usually omit the symbol ◦ and
simply write τσ .

In this course we will mostly work with �nite sets. If |X | = n we will think
of X either as the set [n] := {1, . . . , n} or as the set Zn of integers modulo n, as
convenient. In either situation we write Sn instead of SX (see Exercise 1.1).

If σ ∈ Sn, then it is convenient (particularly for small values of n) to represent
σ with a 2 × n matrix where the entries of the �rst row are the elements of [n]
and we write σ(x) below every element x. For example the equation

σ =
[

1 2 3 4 5
3 1 5 4 2

]
E-mail address: antonio.montero@fmf.uni-lj.si.
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means that σ is such that σ(1) = 3, σ(2) = 1, σ(3) = 5, σ(4) = 4 and σ(5) =
2. Observe that this representation is not unique, the following matrices also
represent the permutation σ described above.

σ =
[

3 1 2 5 4
5 3 1 2 4

]
=
[

5 4 3 2 1
2 4 5 1 3

]
.

Matrix representation of permutations allows us to �nd inverses and operate
permutations easily. The inverse of a permutation σ is just the permutation given
by swapping the rows of any representation of σ . For the example above:

σ−1 =
[

3 1 5 4 2
1 2 3 4 5

]
=
[

1 2 3 4 5
2 5 1 4 3

]
We can �nd a matrix representation for τσ by considering the �rst and third

row of a 3× n matrix M where the �rst two rows come from a matrix represen-
tation of σ and the third one is given by writing τ(y) below every element y in the
second row. For example, if

(1.1) σ =
[

1 2 3 4 5
3 1 5 4 2

]
, τ =

[
1 2 3 4 5
4 3 1 2 5

]
,

then

M =

1 2 3 4 5
3 1 5 4 2
1 4 5 2 3

 , τσ =
[

1 2 3 4 5
1 4 5 2 3

]
Keep in mid that since we are thinking of permutations as functions, our con-

vention is to evaluate them from right to left, that is τσ means we apply �rst σ
and then τ. Other authors (notably, those of [1]) use the other convention. Usu-
ally the choice of one or another has little to none theoretical implications but
one has to be careful when doing explicit computations. For example, observe
that for the permutations used above

στ =
[

1 2 3 4 5
4 5 3 1 2

]
6= τσ.

Another common way of represent a permutation is as a product of disjoint
cycles. We say that a permutation τ ∈ Sn is a k-cycle if there are k di�erent ele-
ments x1, . . . , xk ∈ [n] such that τ(xi) = xi+1 for 1 6 i 6 k − 1 and τ(xk) = x1
and τ(y) = y for every other element y ∈ X . In this case we write

τ = (x1 x2 · · · xk)

A 2-cycle is called a transposition. Notice that there is not a unique way of writing
a cycle (see Exercise 1.3)
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Example 1.1. The permutation

γ =
[

1 2 3 4 5
2 3 1 4 5

]
is the 3-cycle (1 2 3). The permutations σ and τ de�ned in Equation (1.1) can be
written as

σ = (1 3 5 2) , τ = (1 4 2 3 ) .

Proposition 1.2. Every permutation σ ∈ Sn can be written as a product of disjoint
cycles. Moreover, this way of writing a permutation is unique up to the order in
which the cycles appear and the inclusion or not of 1-cycles, which represent fixed
points of σ.

Proof. See Exercises 1.3 to 1.5. �

Proposition 1.2 is also true when we consider permutations of a in�nite set X
but there might be in�nite cycles (see Exercise 1.7) and possibly in�nitely many
of them. In this case the de�nition of product is just formal and should be rein-
terpreted suitably.

If γ = (x1 · · · xk) is a cycle, then we can convince ourselves that γ−1 is the cycle
(xx · · · x1). Recall that if γ1, . . . , γr are elements of a group, then (γ1 · · · γr)−1 =
γ−1
r · · · γ−1

1 . These two observations give us a way of �nding the inverse of a per-
mutation written as a product of cycles: just write each cycle in reverse order and
then write the product of the reversed cycles also in reverse order. The example
below should show the idea

((2 4 5 7)(1 3 6))−1 = (1 3 6)−1(2 4 5 7)−1 = (6 3 1)(7 5 4 2)

If we have two permutations written as product of cycles we can compute its
product is just the permutation given by concatenating the corresponding cycles.
Observe that in general, this is not an expression as disjoint cycles, but we can
compute one as follows. First, pick a random element and trace its image along
the cycles. Keep in mind that we evaluate permutation form right to left. For
example, consider the expression (1 2)(4 5)(1 5 3)(2 4) and pick the number 1, by
tracking its image along the cycle we see that 1 goes to 4:

←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
4→4

(4 5)︸︷︷︸
5→4

(1 5 3)︸ ︷︷ ︸
1→5

(2 4)︸︷︷︸
1→1︸ ︷︷ ︸

1→4

= (1 4 · · ·

Then we need to track the image of 4, which we see that it is 1 and hence, the �rst
cycle is complete.

←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
2→1

(4 5)︸︷︷︸
2→2

(1 5 3)︸ ︷︷ ︸
2→2

(2 4)︸︷︷︸
4→2︸ ︷︷ ︸

4→1

= (1 4) · · ·
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Now pick another symbol, say 2 and proceed similarly:
←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
5→5

(4 5)︸︷︷︸
4→5

(1 5 3)︸ ︷︷ ︸
4→4

(2 4)︸︷︷︸
2→4︸ ︷︷ ︸

2→5

= (1 4)(2 5 · · ·

If we continue this way, we can see that

(1 2)(4 5)(1 5 3)(2 4) = (1 4)(2 5 3).

Observe that the fact that we omit �xed points when writing a permutation
as product of cycles disjoint cycle allow us to abuse notation a do not specify on
which set a given permutation acts. For example, the permutation (2 3)(4 7 5)
can be regarded as a permutation in S7, in S8 or in S2022. In fact, with no further
information, this could even be a permutation on the set of natural numbers or
even a permutation on the set {2, 3, 4, 5, 7}. For these reason we should adopt
some conventions. We always assume that a permutation act on a set [n] for some
n ∈ N, that is, we shall avoid thinking of a permutation such as (2 3)(4 7 5) acting
on a smaller set than [7]. Moreover, if k 6 n we might regard the group Sk as
the subgroup of Sn consisting of the permutations that �x every numbermwith
k < m 6 n. Unless it is explicitly speci�ed, we should keep symmetric groups
on in�nite sets out of the game.

If σ = γ1 · · · γk is a permutation written as a product of disjoint cycles (in-
cluding 1-cycles), the cycle-type of σ is the tuple [a1, . . . , ak] where the number ai
is the length of the cycle γk. Observe that if σ ∈ Sn, then a1 + · · · + ak = n. Of
course, we might safely omit the entries with value 1 from the cycle type and say,
for example, that the permutation (2 3)(3 7 5) has cycle-type [2, 3].

The following is a straight forward observation:

Proposition 1.3. Let σ ∈ Sn and assume that σ has cycle type [a1, . . . , ak], then
the order of σ is lcm(a1, . . . , ak).

Proof. Just observe that if σ = γ1 · · · γk is written as a product of disjoint cycles
then

σ r = γr1 · · · γrk = ε⇔ ai|r for all i ∈ {1, . . . , k} . �

These �rst results describe some tools to work with permutations. Now we
turn our attention to some group-theoretical properties of permutations.

Two elements σ ,τ in a group Γ are conjugate if there exists µ ∈ Γ such that
σ = µτµ−1. Observe that this notion de�nes an equivalence relation in Γ. The
equivalence classes are called conjugacy classes of Γ.

Proposition 1.4. Let n ∈ N and let σ and τ two permutations in Sn. Then σ and
τ are conjugate if and only if σ and τ have the same cycle-type.

Proof. See Exercise 1.6. �
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De�nition 1.5. A permutation group is a subgroup of a symmetric group.
Let us now show a more group-theoretical property.

Theorem 1.6. Let n ∈ N. The group Sn can be generated by the set of transposi-
tions. This is

Sn = 〈(x y) : x, y ∈ [n]〉
Proof. Just observe that if (x1 · · · xk) is a k-cycle, then

(x1 · · · xk) = (x1 x2)(x2 x3) · · · (xk−2 xk−1)(xk−1 xk).
�

Theorem 1.6 shows that every permutation can be written as a product of
transpositions. However, there is no a unique way of writting a permutation
as product of transposition, for example:

(2 1)(2 4)(2 3) = (2 3 4 1) = (1 2)(2 4)(4 3)(2 4)(4 3).
As shown in the example above, not even the number of transpositions re-

quired is constant. However we shall prove that parity of the number of trans-
positions depends only on the given permutation and not on a particular way of
writing it as a product of transpositions. First we prove the following lemma.
Lemma 1.7. Let n ∈ N and assume that γ1, . . . , γr is a family of transpositions
such that

γr · · · γ1 = ε.
Then r is even.
Proof. We will prove this by induction over r. First observe that r > 2, otherwise
we would have ε = (x y) for some pair {x, y} ⊆ [n], which is impossible. If r = 2
there is nothing to prove. Assume that if 2 6 k < r and that δ1, . . . , δk is a family
of transpositions with δk · · · δ1 = ε, then k is even. Let γ1, . . . , γr be a family of r
transpositions that satisfy γr · · · γ1 = ε.

De�ne α1 = γ1 and consider the product γ2α1 = γ2γ1. Observe that there must
be 4 elements x, y, w, z ∈ [n] such that one of the following holds:

γ2α1 =


(x y)(x y),
(x z)(x y),
(w z)(x y).

In the �rst case, γ2α1 = γ2γ1ε, which implies that γ3, · · · , γr satisfy the induc-
tive hypothesis. In other words, r − 2 is even and so it is r,

If γ2α1 = (x z)(x y) = (x y z) = (x y)(y z). In this case de�ne α2 = (x y) and
β1 = (y z). If γ2γ1 = (w z)(x y) = (x y)(w z) then take α2 = (x y) and β1 = (w z).
Notice that in any case

ε = γr · · · γ2γ1 = γr · · · γ3α2β1.
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Observe also that α2 moves x but β1 does not.
Proceed again but now with the product γ3α2. If γ3 = α2 then we apply the

inductive hypothesis to the family β1, γ4 · · · , γr−1, γr and we are done. If not,
then proceed as before to build a new pair of transpositions α3, β2 that satisfy
γ3α2 = α3β2, the permutation α3 moves x but β2 does not.

Keep going this way. In the i-th iteration of this process we have constructed
(i − 1) permutations β1, . . . βi−1 such that all of them �x x and a permutation αi
such that αi moves x. These permutations satisfy that

ε = γr · · · γ1 = γr · · · γi+1αiβi−1 · · · β1.

We have to analyse the possibilities for the product γi+1αi. If γi+1 = αi we apply
the inductive hypothesis to the family of transpositions β1, . . . , βi−1, γi+2, . . . , γr.

If the previous condition is never satis�ed after r iterations of the process we
have a family of transpositions β1, · · · , βr−1, αr such that βi(x) = x for every 1 6
i 6 r − 1 and αr(x) 6= x. However, these transpositions satisfy that

ε = γr · · · γ1 = αrβr−1 · · · β1,

which is obviously a contradiction. It follows that at some point αi = γi+1, and
by the inductive hypothesis r − 2 is even and so it is r. �

An immediate consequence of the previous result is the next theorem.

Theorem 1.8. Let n ∈ N and σ ∈ Sn. Assume that σ is written as a product of
transpositions, say σ = γr · · · γ1. Then the parity of r depends only on σ and not on
the particular choice of the transpositions.

Proof. Assume that
βs · · · β1 = σ = γr · · · γ1

are two ways of writing σ with β1, . . . , βs, γ1, . . . , γr transpositions. Observe that

ε =
(
βs · · · β1

) (
γr · · · γ1

)−1

= βs · · · β1γ1 · · · γr .

Lemma 1.7 implies that r + s is even or equivalently, that r and s have the same
parity. �

A permutation σ is called even if whenever σ is written as a product of trans-
positions, then number of transposition is even. Otherwise σ is called odd.

The setAn consisting of all the even permutations in Sn is a subgroup (see Ex-
ercise 1.12) of Sn and it is called the alternating group on n symbols. Theorem 1.8
allows us to de�ne a group homomorphism sgn : Sn → {1,−1}where

sgn(σ) = (−1)r

whenever σ can be written as a product of r transpositions.
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Figure 1. The action of Dn

As usuall, two subgroups Γ and ∆ of Sn are conjugate if there exists a permu-
tation µ ∈ Sn such that

Γ = µ∆µ−1 {µδµ−1 : δ ∈ ∆}
There are two important subgroups of Sn that we should introduce now. The

cyclic group Cn is a group generated by a permutation of order n. Usually we
think of Cn as the permutation group generated by the n-cycle (1 2 . . . n) (cf.
Exercise 1.16 ) The dihedral group on n symbols Dn is the subgroup of Sn gener-
ated by the permutations σ and ρ where

(1.2)

σ = (1 · · · n)

ρ =

{
(1 n− 1) (2 n− 2) · · ·

(n
2 − 1 n

2 + 1
)

if n is even,
(1 n− 1) (2 · · · n− 2) · · ·

(n−1
2

n+1
2

)
if n is odd.

The groupDn can be seen as the permutations of the vertices of a n-cycle that
preserve neighbours (see Figure 1)

Example 1.9 (The 15-puzzle1). The 15-puzzle consist of a set of squared tiles such
that the tiles �t in a box arranged in a 4 × 4 grid leaving a blank space (see Fig-
ure 2a). A valid movement of the puzzle is given by sliding one adjacent tile to
the blank space or, equivalently, moving the blank space to an adjacent tile.

A position P of the puzzle is solvable if the blank space is at the bottom-right
corner of the box, and it can be taken to the solved position S (Figure 2a) by a
sequence of valid movements. Obviously, if we can go from a position P to the
position S by a sequence of movements, by applying the same movements in re-
versed order we can go from S toP, so we can think of the set of solvable position
as those that blank space is in the bottom-right corner and can be reached from
the position S. Moreover, if P1 and P2 are solvable positions then so it is the
position P1P2, which is de�ned as the position given by applying a sequence of

1Pictures and historical notes were taken from Wikipedia

https://en.wikipedia.org/wiki/15_puzzle
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movements that take S toP2 to the positionP1. Observe that this is only possible
because P1 has the blank space at the bottom-right corner. By de�nition, we can
take S to P1P2 and since P2 also has the blank space at the bottom-right corner,
thenP1P2 has the blank space at the bottom-right cornet. It follows that ifP1 and
P2 are solvable position, then so it is P1P2.

If you want to play, you can do it here2.
The 15-puzzle is often associated with the puzzle inventor and problem com-

poser Sam Loyd (1841-1911), who claimed his entire life that he had invented the
puzzle. Loyd should be credited with the original challenge: to take the puzzle
from the position in Figure 2b to the solved position. It is believe that Loyd of-
fered a prize of $1,000 USD to that who could solve the problem. In 1879 Johnson
and Story proved that this was in fact impossible. We will prove a slightly more
general result.

First, observe that we can associate a permutation σ to any position of the puz-
zle. We can label the spaces of the grid at the bottom of the box, as in Figure 2c.

A given position of the puzzle can be associated with the permutation σ ∈ S16
de�ned by

σ(x) = y⇔ the tile x is over the space y.
Here the blank space is thought as a tile with number 16.

For example the position in Figure 2d is given by the permutation

σ =
[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 13 9 6 7 12 5 10 11 8 4 15 14 1 16

]
Of course, we can also write

σ = (1 3 13 15)(4 9 10 11 8 5 6 7 12)(14)(16).

A valid move in the puzzle consists in swapping the blank space with an adja-
cent tile. Assume that P1 is the position associated to the permutation σ and let
P2 the position resulting from P1 after applying a valid movement. An natural
question is: can we obtain the permutation τ associated to P2 in terms of σ . The
answer is yes, we claim that

τ = σ(16 y),
where y is the tile that we swap with the blank space.

To see, this observe that any tile that is not 16 or the one on the space y in P1
remains in the same place. In other words, if x /∈ {16, y}, then

τ(x) = σ(x) = σ(16 y)(x).

In P2, the blank space is where the tile y used to be in P1, that is τ(16) = σ(y).
Meanwhile, in P2 the tile y is in the space where 16 used to be in P1, that is τ(y) =
σ(16). This proves that τ and σ(16 y) are exactly the same permutation.

2Applet obtained from ©Jamie Mulholand’s website (SFU Math)

https://www.sfu.ca/~jtmulhol/math302/applets/fifteen-puzzle/15-puzzle.html
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In our example, let us slide the tile with 7 to de blank space. Our claim is that
we obtain the permutation τ = σ(16 7). In fact, this is obvious if we look at the
matrix representation of (16 7), which is[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 16 8 9 10 11 12 13 14 15 7

]
,

and the matrix representation of σ :[
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 13 9 6 7 12 5 10 11 8 4 15 14 1 16

]
=
[

1 2 3 4 5 6 16 8 9 10 11 12 13 14 15 7
3 2 13 9 6 7 16 5 10 11 8 4 15 14 1 12

]
.

It follows that

σ(16 7) =
[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 13 9 6 7 16 5 10 11 8 4 15 14 1 12

]
.

Claim. If σ is a permutation associated to a solvable position of the 15-puzzle, then
(a) σ fixes 16.
(b) σ ∈ A16, that is, σ is an even permutation.

Proof. The �rst condition is obvious, since it is equivalent to the fact that the
blank tile is on the space 16, which was part of the de�nition of a solvable po-
sition. To see that the second condition must hold, just consider a checkboard
colouring of the bottom of the box. Observe that every movement changes the
color below the blank space. Since the blank space starts and ends over the space
labelled with 16, we need an even number of movements. By our analysis above,
this is equivalent to the associated permutation being a product of an even num-
ber of transpositions. �

Corollary. It is impossible to solve the 15-puzzle from the position in Figure 2b.

We will prove that the conditions in our previous claim are not only necessary
but also su�cient. More precisely:

Proposition 1.10. If σ ∈ A16 is a permutation such that σ(16) = 16, then the
associated position of the 15-puzzle is solvable. In particular, there are exactly 15!

2
solvable positions of the this puzzle.

Before proving this proposition observe that

Remark 1.11. The set of permutation associated with solvable positions of the
15-puzzle is a subgroup of the symmetric group S15.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) Solved position

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

(b) Impossible position

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 

(c) Empty box of 15 puzzle

15 2 1 12

8 5 6 11

4 9 10 7

3 14 13

(d) An arbitrary position.

Figure 2. The 15-puzzle

Proof. The trivial permutation is associated to the solved position.
Let σ and τ be the permutation associated to the (solvable positions Pσ and

Pτ , respectively. Let P = PσPτ , that is, the position obtained after applying to Pσ
the same sequence of movements that takes the solved position to Pτ . We claim
that the permutation associated with P is precisely τσ . To see this just observe
that a given tile x is on the space σ(x) in Pσ . If we ignore the numbers on the tiles
and apply a sequence of movements that takes the solved position to Pτ to any
position (whenever this is possible) the tile on the space y will end up in on τ(y).
In particular, forPσ that means that the tile x is at τ(σ(x)) = τσ(x) in the position
P.
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A very similar argument can be used to prove that if σ is associated with Pσ
then the sequence of movements that takes Pσ to S takes S to Pσ−1 , the position
associated with σ−1.

Finally observe that all the permutation associated to solvable positions �x the
tile 16, hence the associated subgroup is not only a subgroup of S16, but a sub-
group of S15. �

Proof (of Proposition 1.10). We will show that the group G associated to the set
of solvable position is in fact the alternating group A15. First, observe that by
moving the blank tile to the following spaces

16 −→ 12 −→ 11 −→ 15 −→ 16

We end up with the position associated to the 3-cycle γ = (11 12 15) (see Fig-
ure 3a). This proves that γ ∈ G. From the solved position move the tiles 12 and
11 (in that order) so that the resulting position is as shown in Figure 3b. Consider
the drawn by the arrows in Figure 3c. For every x ∈ [15] \ {11, 12}we can move
the blank space along that cycle as many time as needed so that x ends on the
space 15 and the blank tile on the space 11. For example, if x = 7, after moving
the blank tile along the cycle once, we obtain the position in Figure 3d. Then we
can move the tiles 11 and 12 to its original position.

Notice the �nal position is a solvable one: it was constructed by a sequence of
valid movements and the blank tile is at the bottom-right corner. It follows that
the induced permutation µx ∈ G. Observe that µx satis�es that

µx(x) = 15
µx(11) = 11
µx(12) = 12.

The latter imply that µ−1γµ = (11 12 x). It follows that (11 12 x) ∈ G and since
we have proved that G 6 A15, Exercise 1.14 implies that G is indeed A15 �

Exercises.
1.1 Show that ifX and Y are (not necessarily �nite) sets with |X | = |Y |, then

SX ∼= SY .
1.2 Let X be a set.

(a) If |X | = n, how many elements does the set SX have?
(b) LetX be a countably in�nite set, that is, |X | = |N|. Prove that |SX | 

|N| (that is, strictly greater than |N|). Can you determine |SX |?

1.3 Prove that a k-cycle σ = (x1 · · · xk) and an ℓ -cycle τ =
(
y1 · · · yℓ

)
, both

elements of Sn, are equal if and only if k = ℓ and for some h ∈ Z, xi+h = yi
or every 1 6 i 6 r (the indices are taken modulo r).

1.4 Prove that every permutation σ can be written as a product of disjoint
cycles. Hint: two symbols x, y ∈ X lie in the same cycle of σ if some
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 15 11

13 14 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 15 11

13 14 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

(b)

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

(c)

5 1 2 3

6 10 8 4

13 9 11

14 15 7 12

(d)

5 1 2 3

6 10 8 4

13 9 11 12

14 15 7

(e)

Figure 3

power of σ maps x to y. Prove that this condition de�nes an equivalence
relation and hence a partition of X .

1.5 Prove that disjoint cycles commute.
1.6 Let n ∈ N.

(a) Prove that if σ = (x1 · · · xk) is a k-cycle and µ ∈ Sn then µσµ−1 =(
µ(x1) · · · µ(xk)

)
.

(b) Show that for every k 6 n every two k-cycles are conjugate.
(c) Conclude that two permutations in Sn are conjugate if and only if

they have the same cycle-type.
1.7 LetX be a in�nite set. An infinite cycle in SX is a permutation γ such that

there exists a family Z = {xi : i ∈ Z} of elements of X with γ(xi) = xi+1
for every i ∈ Z and γ(y) = y for every y ∈ X \Z. Find two in�nite cycles
in SZ that are not conjugate.

1.8 Let n ∈ N. Show that the set of involutions I = {(1 k) : 2 6 k 6 n} is a
minimal generating set of Sn. That is, show that

Sn = 〈(1 k) : 2 6 k 6 n〉 ,

and that no proper subset of I generates Sn.
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1.9 Let n ∈ N. Show that The involution (1 n) and the n-cycle (1 2 · · · n)
generate Sn.

1.10 Let n ∈ N, �nd necessary and su�cient conditions for i, j ∈ [n] so that
〈(i j), (1 2 · · · n)〉 = Sn

1.11 Show that the group SN cannot be generated by a �nite number of per-
mutations.

1.12 Prove that the set An is a subgroup of Sn.
1.13 Prove that an r-cycle in Sn is even if and only if r is odd. Conclude that

a permutation σ is even if and only if the number of even entries in its
cycle-type is even.

1.14 Let n > 3 and let An denote the alternating group.
• Show that

An =
〈(
x y z

)
: x, y, z ∈ [n]

〉
.

• Show that
An = 〈(1 2 z) : z ∈ [n]〉 .

• Show that if x and y are �xed elements in [n] then
An =

〈(
x y z

)
: z ∈ [n]

〉
.

1.15 Prove that if Γ is a permutation group, then either Γ consists of only even
permutations or half of the permutations in Γ are even. Conclude that
An is normal in Sn and that every permutation group that contains an
odd permutation has a normal subgroup of index 2.

1.16 Show that if n is prime, then any two cyclic of order n in Sn are conjugate.
Find two cyclic groups of order 6 in S6 that are not conjugate.

1.17 Let n ∈ N and Dn = 〈ρ, σ〉 the dihedral group de�ned in Equation (1.2).
(a) Show that these permutations satisfy the following relations:

ρ2 = ε
σn = ε
ρσρ = σ−1

(b) De�ne τ = σρ. Show that the relations above are quivalent to
τ2 = ρ2 = (τρ)n = ε

We will prove later that any group generated by two involutions is isomor-
phic to a dihedral group.

1.18 Prove that |Dn| = 2n. Hint: work the cases where n is even and n is odd
separately.

1.19 Find the conjugacy clases of the symmetric groupS5 and of the alternating
group A5. Hence, show that A5 is the only normal subgroup of S5 (apart
from 1 and S5, and that A5 is simple.)
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1.20 If H 6 G are groups, the normaliser of H in G is the largest subgroup
of G in which H is normal. Find the nomaliser in Sn of the cyclic group
Cn = 〈(1 2 . . . n)〉.
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