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1. PERMUTATION GROUPS

Informally speaking, a permutation of a collection of objects is just a way of
(linearly) order the objects. Permutations are often thought either as purely com-
binatorial objects, usually in counting problems, or as one of the first examples
in a first class of group theory. In these first sections we will look at the interplay
between these two approaches. We will use permutations to understand combi-
natorial problems and the other way around, we will use counting techniques to
understand group theoretical properties of permutations. In this section we first
review some basic properties of permutations.

Let X be a set, a permutation of X is a bijection o : X — X. Observe that the
identity ey : X — X, defined by ex(x) = x for every x € X, is a permutation
(if there is no ambiguity we often write ¢ instead of ex). Moreover, if & and 7
are permutations of X, then so o 'and 7 o o are. That implies that the set of
permutations of X, denoted Sy, is a group with the composition as operation.
This group is called the symmetric group on X . We usually omit the symbol o and
simply write 7o .

In this course we will mostly work with finite sets. If |X| = » we will think
of X either as the set [z] := {L,..., n} or as the set Z, of integers modulo 7, as
convenient. In either situation we write S, instead of Sy (see Exercise r.1).

If 7 € S, then itis convenient (particularly for small values of #) to represent
o with a 2 X 7 matrix where the entries of the first row are the elements of [7]
and we write o(x) below every element x. For example the equation

[t 23 45
1315 4 2
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means that o is such that (1) = 3,(2) = 1,5(3) = 5, 7(4) = 4and #(5) =
2. Observe that this representation is not unique, the following matrices also
represent the permutation ¢ described above.

3125 4] [543 21
7715 31 2 4" |2 45 1 3|
Matrix representation of permutations allows us to find inverses and operate

permutations easily. The inverse of a permutation ¢ is just the permutation given
by swapping the rows of any representation of ¢. For the example above:

L 31 s 4 2] [1 2345
7 711 2 3 4 5 251 4 3

We can find a matrix representation for zo by considering the first and third
row of a 3 X » matrix M where the first two rows come from a matrix represen-
tation of ¢ and the third one is given by writing 7(y) below every element y in the
second row. For example, if

) 123 45 123 45
II 315 421”7 "7 l431 25|
then
123 45
T N N R
1 452 3

Keep in mid that since we are thinking of permutations as functions, our con-
vention is to evaluate them from right to left, that is 7o means we apply first &
and then 7. Other authors (notably, those of [1]) use the other convention. Usu-
ally the choice of one or another has little to none theoretical implications but
one has to be careful when doing explicit computations. For example, observe
that for the permutations used above

_[r234s],
T4 5 31 2|7

Another common way of represent a permutation is as a product of disjoint
cycles. We say that a permutation 7 € S, is a k-cycle if there are £ different ele-
ments xy, ..., % € [#7] such that 7(x;) = x4 forl <7 < bk —land 7(x;) = x
and 7(y) = y for every other element y € X. In this case we write

7= (2120, -+ x)

A 2-cycle s called a transposition. Notice that there is not a unique way of writing
a cycle (see Exercise 1.3)
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Example 1.1. The permutation

[t 2345
1231 45

is the 3-cycle (1 2 3). The permutations ¢ and 7 defined in Equation (1.1) can be

written as
c=(1352), 7=(1423).

Proposition 1.2. Every permutationo € S, can bewritten asa product of disjoint
cydes. Moreover, this way of writing a permutation is unigque up to the order in
which the cycles appear and the inclusion or not of 1-cycles, which represent fixed
points of 7.

Proof. See Exercises 1.3 to L.5. O

Proposition 1.2 is also true when we consider permutations of a infinite set X
but there might be infinite cycles (see Exercise 1.7) and possibly infinitely many
of them. In this case the definition of product is just formal and should be rein-
terpreted suitably.

Ify = (x - - x) isacycle, then we can convince ourselves that ' is the cycle
(% -+ x1). Recall thatif y4,.. ., 7, are elements of a group, then (y; - - %,) ™" =
717", These two observations give us a way of finding the inverse of a per-

mutation written as a product of cycles: just write each cycle in reverse order and
then write the product of the reversed cycles also in reverse order. The example
below should show the idea

(2457)(136) " =(136)'(2457) " = (631)(7542)

If we have two permutations written as product of cycles we can compute its
productis just the permutation given by concatenating the corresponding cycles.
Observe that in general, this is not an expression as disjoint cycles, but we can
compute one as follows. First, pick a random element and trace its image along
the cycles. Keep in mind that we evaluate permutation form right to left. For
example, consider the expression (12)(4 5)(15 3)(2 4) and pick the number 1, by
tracking its image along the cycle we see that 1 goes to 4:

212)(45)(153)(24)=(14...
NN

4—4 S5—4 15 1—1

1—4
Then we need to track the image of 4, which we see thatitis 1 and hence, the first
cycle is complete.

212)(45)(153)(24)=(14)...
At st eulhned

2—1 292 22 42
A g

~~
4—1
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Now pick another symbol, say 2 and proceed similarly:

(12)(45)(153)(24) = (14)(25 -~
M~ =

5S—S 4—5 4—4 24

J/

255
If we continue this way, we can see that
(12)(45)(153)(24)=(14)2523)

Observe that the fact that we omit fixed points when writing a permutation
as product of cycles disjoint cycle allow us to abuse notation a do not specify on
which set a given permutation acts. For example, the permutation (2 3)(4 7 5)
can be regarded as a permutation in S, in S or in S50,,. In fact, with no further
information, this could even be a permutation on the set of natural numbers or
even a permutation on the set {2,3,4,5,7}. For these reason we should adopt
some conventions. We always assume thata permutation act on a set [#] for some
n € N, thatis, we shall avoid thinking of a permutation such as (2 3)(4 7 5) acting
on a smaller set than [7]. Moreover, if £ < 7 we might regard the group S; as
the subgroup of S, consisting of the permutations that fix every number 7 with
k < m < n. Unless it is explicitly specified, we should keep symmetric groups
on infinite sets out of the game.

If & = y -y is a permutation written as a product of disjoint cycles (in-
cluding 1-cycles), the cycle-type of o is the tuple [y, . . ., 4;] where the number 4,
is the length of the cycle y;. Observe thatif o € S, thenay + - - - + a4 = n. Of
course, we might safely omit the entries with value 1 from the cycle type and say,
for example, that the permutation (2 3)(3 7 5) has cycle-type [2, 3].

The following is a straight forward observation:

Proposition 1.3. Let o € S, and assume that o has cycle type |ay, . . ., ai], then
the order of o islem(ay, . . . , az).

Proof. Just observe thatif o = y; - - - y is written as a product of disjoint cycles
then
o=y =earforali € {1,...,k}. O

These first results describe some tools to work with permutations. Now we
turn our attention to some group-theoretical properties of permutations.

Two elements ¢ ,7 in a group I are conjugate it there exists ¢ € I such that
o = uru'. Observe that this notion defines an equivalence relation in I. The
equivalence classes are called conjugacy classes of T.

Proposition 1.4. Letn € Nand let 7 and v two permutations in S,. Then o and
T are conjugate if and only if ¢ and T have the same cycle-type.

Proof. See Exercise 1.6. O
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Definition 1.5. A permutation group is a subgroup of a symmetric group.
Let us now show a more group-theoretical property.

Theorem 1.6. Let n € N. The group S, can be generated by the set of transposi-
tions. This is

S, =((xy):x%y € [n])
Proof. Just observe thatif (x; - - - xy) is a k-cycle, then

(21 -+ 2) = (o0 02)(202 263) -+ - (Wp—2 Xp—1)(26p—1 X%)-

0

Theorem 1.6 shows that every permutation can be written as a product of
transpositions. However, there is no a unique way of writting a permutation
as product of transposition, for example:

(21)(24)(23) = (2341) = (12)(2 4)(4 3)(2 4)(4 3).

As shown in the example above, not even the number of transpositions re-
quired is constant. However we shall prove that parity of the number of trans-
positions depends only on the given permutation and not on a particular way of
writing it as a product of transpositions. First we prove the following lemma.

Lemma v.7. Let n € N and assume that y,, ..., y, is a_family of transpositions
such that
7/}" “ e 7/1 = &.

Then r is even.

Proof. We will prove this by induction over 7. First observe that » > 2, otherwise
we would have ¢ = (x y) for some pair {x, y} C [#], which is impossible. If » = 2
there is nothing to prove. Assume thatif 2 < k# < 7and thatdy, ..., J; is a family
of transpositions with dy - - - 9 = ¢, then £is even. Let 3, ..., 7, be a family of »
transpositions that satisfy y,. - - - 94 = &

Define ; = ; and consider the product y,2; = 7,71. Observe that there must
be 4 elements x, y, w, z € [7] such that one of the following holds:

(x7)(x 7)
7201 = { (¥ 2)(x ),
(wz)(x y).
In the first case, y,21 = y2y1¢, which implies that y, - - - , ¥, satisty the induc-
tive hypothesis. In other words, » — 2 is even and so it is 7,
If yo21 = (x 2)(x y) = (xy2) = (x y)(y2). In this case define 2, = (x y) and
Bi = (yz2). f yoy1 = (w2)(xy) = (x y)(w2) then take @, = (xy) and By = (w 2).

Notice that in any case

E=Yr V2N :7r"'73“2181-
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Observe also that 2, moves x but 8; does not.

Proceed again but now with the product y3a,. If 3 = «, then we apply the
inductive hypothesis to the family £, ¥4 - - -, %,—1, - and we are done. If not,
then proceed as before to build a new pair of transpositions a3, 3, that satisfy
y30t, = asf3,, the permutation 3 moves x but 8, does not.

Keep going this way. In the 7-th iteration of this process we have constructed
(7 — 1) permutations A, . . . 5,1 such that all of them fix x and a permutation «;
such that 2; moves x. These permutations satisfy that

£ = }/r. . .}/1 = 7V . .}/H_I“Z.[gl._l . 'ﬂl'

We have to analyse the possibilities for the product y,.1a;. If 7,41 = a; we apply
the inductive hypothesis to the family of transpositions By, ..., i1, Yis2 - o> ¥

If the previous condition is never satisfied after » iterations of the process we
have a family of transpositions &y, - - - , £,_1, @, such that £;(x) = x for every 1 <
{ < r — land a,(x) # x. However, these transpositions satisfy that

E=Yr N zﬂr‘gr—l e '(817
which is obviously a contradiction. It follows that at some point &; = 7,1, and
by the inductive hypothesis » — 2 is even and so it is 7. O

An immediate consequence of the previous result is the next theorem.

Theorem 1.8. Letn € Nand o € S,. Assume that o is written as a product of
transpositions, say o =y, - - - v1. Then the parity of r depends only on o and not on
the particular choice of the transpositions.

Proof. Assume that
B bi=c=ym

are two ways of writing o with 4y,..., 8, 1, ..., 7, transpositions. Observe that

8.---4) (%...71)*1
=B By

Lemma 1.7 implies that 7 + s is even or equivalently, that 7 and s have the same

parity. O

£

A permutation ¢ is called even if whenever 7 is written as a product of trans-
positions, then number of transposition is even. Otherwise ¢ is called odd.

The set 4, consisting of all the even permutations in S, is a subgroup (see Ex-
ercise 1.12) of S, and it is called the alternating group on n symbols. Theorem 1.8
allows us to define a group homomorphism sgn : S, — {1, —1} where

sgn(o) = (—1)°

whenever 7 can be written as a product of 7 transpositions.
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TS
n— 2 2
n—2 2
n n _
n+1 n—1 2 1 > 2 1
2 2 5

FIGURE 1. The action of D,

As usuall, two subgroups I'and A of S, are conjugate if there exists a permu-
tation ¢ € S, such that

[=ply " {udp:0 €A}
There are two important subgroups of S, that we should introduce now. The
cyclic group C, is a group generated by a permutation of order z. Usually we
think of C, as the permutation group generated by the z-cycle (12 ... ) (cf.

Exercise 1.16 ) The dibedral group on n symbols D, is the subgroup of S, gener-
ated by the permutations ¢ and p where

c=(1---n)

(12) ﬁ:{(l n—1)(2 n—2)---(2—1 2+1) ifniseven,

1 n=1)@2 - n-2)-- (%5 =)  ifnisodd

The group D, can be seen as the permutations of the vertices of a #-cycle that
preserve neighbours (see Figure 1)

Example 1.9 (The 15-puzzle’). The z5-puzzle consist of a set of squared tiles such
that the tiles fit in a box arranged in a 4 X 4 grid leaving a blank space (see Fig-
ure 2a). A valid movement of the puzzle is given by sliding one adjacent tile to
the blank space or, equivalently, moving the blank space to an adjacent tile.

A position P of the puzzle is solvable if the blank space is at the bottom-right
corner of the box, and it can be taken to the solved position S (Figure 2a) by a
sequence of valid movements. Obviously, if we can go from a position P to the
position S by a sequence of movements, by applying the same movements in re-
versed order we can go from S to P, so we can think of the set of solvable position
as those that blank space is in the bottom-right corner and can be reached from
the position S. Moreover, if P; and P, are solvable positions then so it is the
position P P,, which is defined as the position given by applying a sequence of

"Pictures and historical notes were taken from Wikipedia
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movements that take S to P to the position P;. Observe that this is only possible
because P; has the blank space at the bottom-right corner. By definition, we can
take S to PP, and since P, also has the blank space at the bottom-right corner,
then P, P, has the blank space at the bottom-right cornet. It follows that if P and
P, are solvable position, then so it is P P;.

If you want to play, you can do it here*.

The 15-puzzle is often associated with the puzzle inventor and problem com-
poser Sam Loyd (1841-1911), who claimed his entire life that he had invented the
puzzle. Loyd should be credited with the original challenge: to take the puzzle
from the position in Figure 2b to the solved position. It is believe that Loyd of-
fered a prize of $1,000 USD to that who could solve the problem. In 1879 Johnson
and Story proved that this was in fact impossible. We will prove a slightly more
general result.

First, observe that we can associate a permutation ¢ to any position of the puz-
zle. We can label the spaces of the grid at the bottom of the box, as in Figure 2c.

A given position of the puzzle can be associated with the permutation & € Sig
defined by

o(x) = y & thetile x is over the space y.

Here the blank space is thought as a tile with number 16.
For example the position in Figure 2d is given by the permutation

123 456 7 8 9 1011 1213 14 15 16
7713 213 9 6 7125 10 11 8 4 15 14 1 16

Of course, we can also write
7= (131315)(4 9101185 67 12)(14)(16).

A valid move in the puzzle consists in swapping the blank space with an adja-
cent tile. Assume that P is the position associated to the permutation ¢ and let
P, the position resulting from P after applying a valid movement. An natural
question is: can we obtain the permutation 7 associated to P, in terms of 7. The
answer is yes, we claim that

7 =0(16y),
where y is the tile that we swap with the blank space.

To see, this observe that any tile that is not 16 or the one on the space y in P,
remains in the same place. In other words, if x & {16, y}, then

7(x) = o(x) = 7(16 y)(x).
In P,, the blank space is where the tile y used to be in P, that is 7(16) = o(y).

Meanwhile, in P, the tile y is in the space where 16 used to be in P, thatis 7(y) =
7(16). This proves that 7 and (16 y) are exactly the same permutation.

*Applet obtained from ©Jamie Mulholand’s website (SFU Math)
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In our example, let us slide the tile with 7 to de blank space. Our claim is that
we obtain the permutation 7 = (16 7). In fact, this is obvious if we look at the
matrix representation of (16 7), which is

123 45 6 7 89 10 11 12 13 14 15 16
1 23 45 6 16 8 9 10 11 12 13 14 15 7}’

and the matrix representation of ¢

1 2 3 4 7 8 9 10 11 12 13 14 15 16
3213 9 125 10 11 8 4 15 14 1 16

6

7
112 3 45 6 16 8 9 10 11 12 13 14 15 7
B 9 6 716 5 10 11 8 4 15 14 1 12|°

It follows that

7 8 9 10 11 12 13 14 15 16
"(167)‘[3 2 13 5 }

10 11 8 4 1S 14 1 12

Claim. [f7 is a permutation associated to a solvable position of the 15-puzzle, then

(a) 7 fixes 16.

(b) o € A, that is, 7 is an even permutation.

Proof. The first condition is obvious, since it is equivalent to the fact that the
blank tile is on the space 16, which was part of the definition of a solvable po-
sition. To see that the second condition must hold, just consider a checkboard
colouring of the bottom of the box. Observe that every movement changes the
color below the blank space. Since the blank space starts and ends over the space
labelled with 16, we need an even number of movements. By our analysis above,
this is equivalent to the associated permutation being a product of an even num-
ber of transpositions. ]

Corollary. It is impossible to solve the 15-puzzle from the position in Figure 2b.

We will prove that the conditions in our previous claim are not only necessary
but also sufficient. More precisely:

Proposition 1.10. [f'oc € Ay is a permutation such that o(16) = 16, then the
associated position of the 1s-puzzle is solvable. In particular, there are exactly 175'
solvable positions of the this puzzle.

Before proving this proposition observe that

Remark 1.11. The set of permutation associated with solvable positions of the
15-puzzle is a subgroup of the symmetric group Sis.
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1 a2 3 lnd

13|14 | 15

1315 | 14

(a) Solved position
| |

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

(B) Impossible position

45 2 Il 12

8 > b |yl

4 9 W10 e/

3 (14|13

(c) Empty box of 15 puzzle

(D) An arbitrary position.

FIGURE 2. The 15-puzzle

Proof. The trivial permutation is associated to the solved position.

Let o and 7 be the permutation associated to the (solvable positions P, and
P,, respectively. Let P = P,P,, that is, the position obtained after applying to P,
the same sequence of movements that takes the solved position to 2,. We claim
that the permutation associated with P is precisely zo. To see this just observe
that a given tile x is on the space o(x) in ;. If we ignore the numbers on the tiles
and apply a sequence of movements that takes the solved position to P, to any
position (whenever this is possible) the tile on the space y will end up in on z(y).
In particular, for P, that means that the tile x is at 7(o(x)) = 7o(x) in the position

P.
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A very similar argument can be used to prove that if ¢ is associated with P,
then the sequence of movements that takes 2, to S takes S to P,-1, the position
associated with o1,

Finally observe that all the permutation associated to solvable positions fix the
tile 16, hence the associated subgroup is not only a subgroup of Sje, but a sub-

group of Sjs. O

Proof (of Proposition 1.10). We will show that the group G associated to the set
of solvable position is in fact the alternating group A;s. First, observe that by
moving the blank tile to the following spaces

16 —12 — 11 — 15 — 16

We end up with the position associated to the 3-cycle y = (11 12 15) (see Fig-
ure 3a). This proves that y € G. From the solved position move the tiles 12 and
11 (in that order) so that the resulting position is as shown in Figure 3b. Consider
the drawn by the arrows in Figure 3c. For every x € [15] \ {11, 12} we can move
the blank space along that cycle as many time as needed so that x ends on the
space 15 and the blank tile on the space 11. For example, if x = 7, after moving
the blank tile along the cycle once, we obtain the position in Figure 3d. Then we
can move the tiles 11 and 12 to its original position.

Notice the final position is a solvable one: it was constructed by a sequence of
valid movements and the blank tile is at the bottom-right corner. It follows that
the induced permutation z, € G. Observe that g, satisfies that

Ux(x) =15
w1 = 11
1:(12) = 12.
The latter imply that ¢ 'y = (1112 x). It follows that (1112 x) € G and since
we have proved that G < 45, Exercise 1.14 implies that G is indeed 45 O
Exercises.

1 Show thatif X and Y are (not necessarily finite) sets with [ X| = | Y|, then
Sy = Sy.

2 Let X beaset.

(a) If |X| = n, how many elements does the set Sy have?
(b) LetX beacountably infinite set, thatis, | X| = |N|. Prove that [Sy| >
IN| (that is, strictly greater than |NJ). Can you determine [Sy|?

L3 Prove thata k-cycle s = (x; - - - x3) and an C-cycle 7 = ()/1 ce yg), both
elements of S, are equal if and only if £ = ¢ and forsome b € Z, x4, = y;
orevery 1 < 7 < 7 (the indices are taken modulo 7).

1.4  Prove that every permutation ¢ can be written as a product of disjoint
cycles. Hint: two symbols x, y € X lie in the same cycle of ¢ if some
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12|34 1 a2 I3 lad 213 1[1
5s|e[7]8 56|78 56 | 8
911011511 9 (10 11 0 11
| T
1314 | 12 1314 | 15| 12 3445 | 12
S ———
(A) (B) (©)
T Ay T Ty
6 (10| 8 | 4 6 (10| 8 | 4
13| 9 T 11 13| 9 |11 |12
1415 7 | 12 14|15 7
_— |
(D) (E)
FIGURE 3
power of ¢ maps x to y. Prove that this condition defines an equivalence
relation and hence a partition of X.
LS Prove that disjoint cycles commute.
.6 Letn e N
(a) Prove thatif o = (x; -+ x;) is a k-cycleand ¢ € S, then pou™" =
(1) -+~ ).
(b) Show that for every £ < 7 every two k-cycles are conjugate.
(c) Conclude that two permutations in S, are conjugate if and only if
they have the same cycle-type.

1.7 Let X beainfinite set. An infinite cycle in Sy is a permutation y such that
there exists a family Z = {x; : 7 € Z} of elements of X with y(x;) = x;41
forevery7 € Zand y(y) = y forevery y € X \ Z. Find two infinite cycles
in §7 that are not conjugate.

1.8 Let » € N. Show that the set of involutions 7 = {(1£) : 2 < k < n}isa

minimal generating set of S,,. That is, show that
S, ={((1k):2< k< n),

and that no proper subset of 7 generates S,,.
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Let » € N. Show that The involution (1 #) and the z-cycle (12 --- »)
generate S,.
Let » € N, find necessary and sufficient conditions for 7 j € [#] so that

(/)12 n) =S,

Show that the group Sy cannot be generated by a finite number of per-
mutations.
Prove that the set 4,, is a subgroup of S,.
Prove that an 7-cycle in S, is even if and only if 7 is odd. Conclude that
a permutation ¢ is even if and only if the number of even entries in its
cycle-type is even.
Let » > 3 and let 4, denote the alternating group.

e Show that

A, = <(xyz) DX 0,2 € [n]>
e Show that
A,={(12z): 2z € [n]).

e Show that if x and y are fixed elements in [7] then

A, = <(xyz) 12 € [n]>

Prove that if T'is a permutation group, then either I' consists of only even
permutations or half of the permutations in I' are even. Conclude that
A, is normal in S, and that every permutation group that contains an
odd permutation has a normal subgroup of index 2.

Show that if 7 is prime, then any two cyclic of order 7 in S, are conjugate.
Find two cyclic groups of order 6 in Sy that are not conjugate.

Letn € Nand D, = (p, o) the dihedral group defined in Equation (1.2).

(a) Show that these permutations satisfy the following relations:
2

P TE
o’ =¢
pop=a

(b) Define 7 = gp. Show that the relations above are quivalent to

Tzzﬁzz(rﬁ)nzg

We will prove later that any group generated by two involutions is isomor-

phic to a dihedral group.
Prove that | D,| = 2x. Hint: work the cases where 7 is even and 7 is odd
separately.

Find the conjugacy clases of the symmetric group Ss and of the alternating
group As. Hence, show that 45 is the only normal subgroup of Ss (apart
from 1 and Ss, and that A4s is simple.)
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120 If H < G are groups, the normaliser of H in G is the largest subgroup
of G in which A is normal. Find the nomaliser in S, of the cyclic group

C,={(12... n)).
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