
1 Background and Axioms

Georg Cantor famously proved that the set N of natural numbers and the set R of real
numbers cannot be put in bijection with each other. Whereas the set N is countable, the
set R is uncountable. The infinity of real numbers is strictly larger than the infinity of
natural numbers. In contemplating these different sizes of infinity, Cantor further suggested
that there should be no intermediate size of infinity between N and R, formulating this as
follows.

The continuum hypothesis (CH)

Every infinite set of real numbers can be put in bijection with either N or R.

Cantor was unable to he prove this statement, and so left it as a hypothesis. The brilliant and
influential mathematician David Hilbert, who thought it was an important question, posed
the continuum hypothesis as the first problem on his famous list of mathematical challenges
for the 20th century, presented at the 1900 International Congress of Mathematicians. Even
today, the continuum hypothesis continues to be a question that divides opinion as to whether
it is in reality true, false or perhaps even possesses no objective truth value, allowing its truth
or falsity to be chosen according to preference.

A second and related contribution of Cantor’s was the identification of the general notion
of cardinal, a quantity measuring the size of sets, and the ℵ (aleph) notation that is used
as its numbering system. The natural numbers N have the smallest infinite cardinality ℵ0,
which is the only countable infinite cardinality. The next aleph cardinal ℵ1 can be defined
as the cardinality of the smallest uncountable well-order. And the uncountable cardinality
of the real numbers R can be expressed as 2ℵ0 , using the operation of cardinal exponenti-
ation. Exploiting this notation, we can formulate a version of the continuum hypothesis as
an equality in cardinal arithmetic.

The aleph continuum hypothesis (ACH)

2ℵ0 = ℵ1

We call the above statement the aleph continuum hypothesis because it is formulated
using the aleph notation. The relationship between Cantor’s original CH and its aleph version
is slightly subtle. Although one implication, that from ACH to CH, is straightforward, the
converse implication requires the axiom of choice. For this reason, we find it useful to
give ACH its own name.1 Without the axiom of choice, it is not even possible to show that
ℵ1 ≤ 2ℵ0 .

Cardinal arithmetic is in essence the arithmetic of infinite sizes. It is not, however, the
only arithmetic of infinite quantities. Another is ordinal arithmetic: the arithmetic of
well-orderings.

Both cardinal and ordinal arithmetic are very much the province of set theory. Set theory
is a fascinating field of mathematics, which impinges on several mainstream mathematical

1In the literature, often the axiom of choice is assumed, and both CH and ACH are referred to interchange-
ably as CH.
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areas, and also has deep connections with the philosophy of mathematics. Cardinal and
ordinal arithmetic form just a part of set theory. This course will study set theory more
broadly, including cardinal and ordinal arithmetic amongst other equally interesting topics.
Nevertheless, cardinal arithmetic will provide us with a focal point to which we shall return
at several points during the course, each time with new tools to hand.

There are (at least) four different sides to set theory in relation to the rest of of mathe-
matics.

1. Set theory as a complement to other mathematical subjects.

Sets were originally introduced as a tool for organising and defining concepts in other
mathematical fields. Indeed, crucial use of the notion of set is made in many mathe-
matical areas. In several such fields there is also a dependency of central mathematical
results on basic assumptions (axioms) about sets; for example, many theorems of math-
ematics rely on the axiom of choice.

2. Set theory as a foundation for mathematics.

Once the notion of set has been introduced together with appropriate axioms governing
its use a truly remarkable situation arises. It turns out that all the common notions of
ordinary mathematics (the different kinds of number, functions, etc.) can be redefined
purely in terms of sets. Furthermore, all the expected properties of these notions, and
indeed all the theorems of mathematics, can be proved to follow from the few axioms
for set theory alone. Thus set theory provides one possible foundation for the entirety
of mathematics. All of mathematics can ultimately be reduced to definitions and proofs
in set theory. It is a truly astonishing fact that an area as immense as mathematics can
be reduced to such a minimal conceptual basis.

3. Set theory as a source of new mathematical areas.

Not only does set theory subsume the standard mathematical fields, but the abstrac-
tions of set theory naturally suggest new subjects for mathematical investigation. In
particular, the mathematics of infinite quantities emerges naturally from set theory,
leading to mathematical theories of cardinals and ordinals. More generally, set theory
naturally accommodates infinite versions of other mathematical structures such as trees
and graphs, leading to a rich mathematical theory of infinite combinatorics.

4. Set theory as a basis for independence proofs.

The reduction of mathematics to set theory mentioned in point 2 above opens up a new
possibility: techniques from mathematical logic can be used to prove that mathematical
statements are independent from the axioms for set theory — that is, neither the
statement nor its negation can be proved from the axioms. The most famous example
of this phenomenon is the continuum hypothesis CH itself.2 In 1940, Kurt Gödel showed
that ¬CH is not provable from the axioms of set theory. In 1963, Paul Cohen showed
also that CH is also not provable.3 Arguably, these results settle the status of Hilbert’s
first problem, mentioned earlier, in that they show that there is no hope of either
proving or refuting CH using the usual axioms for mathematics, namely the axioms

2Similarly the aleph continuum hypothesis (ACH).
3For this achievement, Cohen was awarded a Fields Medal in 1966 (alongside Michael Atiyah, Alexander

Grothendieck and Stephen Smale).
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for set theory. There is disagreement, however, about whether this really solves the
continuum hypothesis as a mathematical question. Some believe that CH is either true
of false in reality, and we have simply not yet found the right axioms to settle it one
way or the other.4

In this course, we shall start of with aspect 1 above, and consider sets as they arise as
an abstraction needed to support other pre-existing mathematical fields. This leads to a
natural set of axioms. It will turn out that these axioms are sufficiently rich to derive existing
mathematics as a consequence of the axioms, thus addressing aspect 2. Furthermore, the
axioms give rise to rich theories of cardinals and ordinals, thus providing a glimpse of aspect
3. The theory of cardinals will also provide us with a plentiful supply of properties that will
turn out to be independent of the axioms, providing us with several examples illustrating
aspect 4. We will not, however, have time to introduce the proof methods that are used to
justify such independence claims, for these are highly technical and require a firm grounding
in mathematical logic that will not be assumed in this course.

1.1 Sets in mathematics

As we learn mathematics, the kinds of mathematical entities we work with become progres-
sively more complicated.

• Numbers: integers, rationals, reals, complex, . . .

• Constructions: tuples (x1, . . . , xn), functions, indexed families {xi}i∈I , . . .

• Sets: Z, Q, R, C, N×R, Rn, Cn(Rk,R), . . .

• Structures: ordered sets, graphs, algebraic structures (e.g., groups, rings, fields), . . .

• Sets of sets: open sets O(R), Borel sels B(R), powersets P(N), . . .

• Sets of sets of sets: the set of all topologies on R, . . .

• etc.

Mathematical experience shows that sets are an important notion, and that it is important
to be able to allow sets to contain other sets as their elements.

In the remainder of today’s lecture, we aim to provide axioms for sets as they are actually
used in mathematics. In mathematics, one starts with simple mathematical entities such as
number and function, and the sets are later introduced alongside such preexisting entities. It
is thus natural to proceed in the same way. We shall work with a ‘universe’ of mathematical
entities that is allowed to include numbers and other mathematical constructs as primitive
entities that need not themselves be sets. Our aim is to understand the role sets play in such
a universe.

It should be said that the approach outlined above differs from that offered in most
textbooks on set theory in one respect. Typically, textbooks make the assumption that sets

4For an interesting and forthright argument in this direction, by one of the great mathematicians of the
20th century, I recommend reading the article What is Cantor’s Continuum Problem by Kurt Gödel. Although
this article was written before Cohen’s proof of the independence of CH, it was written with the expectation
that CH would be found to be independent.

3



are the only mathematical entities that exist. We believe our approach offers a more natural
starting point, as it better concords with mathematical practice. Quite swiftly, however,
we shall find that standard mathematical constructs such as number and function can be
redefined as sets. From then on, it will be immaterial whether or not the universe contains
entities in it that are not themselves sets.

1.2 Sets and classes

We introduce the notation U for the (perhaps open-ended) universe of all mathematical
entities that we are allowed to use as elements of sets. We note the following.

• Sets are collections of elements from U .

• Since sets can be elements of sets, they are themselves elements of U .

Indeed, we take the two points above as the definition of the concept of set.

A set is a collection of elements from U that is itself an element of U .

The setting is thus far very general. We have not yet imposed any axioms on sets.
Nevertheless, even at this generality it is possible to use Betrand Russell’s famous argument,
Russell’s paradox, to show that we must not allow every collection of elements from U to
be considered a set. In order to do this, we first introduce some notation and terminology.

We call an arbitrary collection of elements from U a class. Typically, we shall use under-
lined capital letters X,Y , Z,A,B,C, . . . to denote classes. Also, For any property P (x) of
elements x of U we introduce the notation:

{x | P (x)} := the collection of all x ∈ U that satisfy P .

For a class X and an arbitrary element x ∈ U we define:

x ∈ X ≡ the element x belongs to X .

It follows in particular that, for any y ∈ U ,

y ∈ {x | P (x)} ⇔ P (y) . (1)

Theorem 1.1 (Russell’s paradox). Not every class is a set.

Proof. Define the class
R := {x | x is a set and x /∈ x} .

Suppose for contradiction that R is a set. Then R ∈ U and, by (1), we have that

R ∈ R ⇔ R /∈ R .

This is a contradiction. Hence R is not a set.
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A class that is not a set is called a proper class. So the class R defined in the proof above
is an example of a proper class.

As we have seen above, unavoidably there exist classes that are not sets. It is thus
incumbent on us to provide some principles governing which classes we allow to form sets.
We shall formulate such principles as a collection of axioms for sets. Before coming to these,
it is useful to first explore important various important mathematical concepts pertaining to
classes that do not depend on the notion of set.

1.3 Basic notions related to classes

It is implicit in the very notion of collection itself that collections are determined by their
elements. We formulate this an

The extensionality axiom (for classes)

If two classes X and Y have the same elements then they are equal. Symbolically:

∀x (x ∈ X ⇔ x ∈ Y ) ⇒ X = Y .

In the above axiom and henceforth, unbounded quantifiers like ∀x always range over the
universe U ; that is ∀x means ∀x ∈ U .

For classes X,Y , we introduce the notation

X ⊆ Y ≡ ∀x ∈ U (x ∈ X ⇒ x ∈ Y ) ,

in which case we say that X is a subclass of Y . We can use a property P (x) of elements of
U to define a subclass of any class X:

{x ∈ X | P (x)} := {x | x ∈ X ∧ P (x)} .

In mathematics, it is frequently useful to consider a basic notion of transformation (or
morphism) between mathematical structures. The appropriate notion of transformation be-
tween classes is that of a class function.

A property F (x, y) of elements x, y of U is said to define a class function from a class
X to a class Y if:

1. ∀x ∈ X ∃!y ∈ Y F (x, y), and

2. ∀x, y F (x, y)⇒ x ∈ X ∧ y ∈ Y .

Here ∃! is the unique-existence quantifier. Thus property 1 above can be equivalently formu-
lated as:

∀x ∈ X ∃y ∈ Y F (x, y) and ∀x ∈ X ∀y, z ∈ Y F (x, y) ∧ F (x, z) ⇒ y = z .

We write F : X → Y to declare that F is a class function from X to Y . We shall use standard
notation and terminology for such functions. Given x ∈ X, we write F (x) for the unique y
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such that F (x, y). Given class functions F : X → Y and G : Y → Z there is a composite class
function G ◦ F : X → Z satisfying (G ◦ F )(x) = G(F (x)).5

We say that F is injective (or one-to-one) if, for all x, x′ ∈ X, it holds that F (x) = F (x′)
implies x = x′. We say that F is surjective (or onto) if, for every y ∈ Y , there exists x ∈ X
such that F (x) = y. We say that F is bijective (or one-to-one onto, or an isomorphism)
if it is both injective and surjective. F is bijective if and only if there exists a (necessarily
unique) class function F−1 : Y → X such that F−1 ◦ F is the identity on X and F ◦ F−1 is
the identity on Y .

The image class of a class function F is defined by:

image(F ) := {y ∈ Y | ∃x ∈ X (F (x) = y)} .

1.4 Axioms for sets

In order to appreciate the axioms, it is worth having some intuition about what it should
mean for a class to be a set. There are different possible intuitions about this, all of them
reasonable, and all mutually compatible.

• A set is a class that is, in some sense, small in comparison with the universe U .

• A set is a class that is definite in scope; i.e., it is not open-ended in the way that the
universe may be considered to be.

• A set must be built up in a principled way out of elements of the universe that have
been previously defined independently of the set under construction.

Whatever intuition one prefers, the following axioms for sets should seem reasonable. All
of them have a common flavour: they assert that certain specified classes are sets.

The separation axiom

If X is a set then, for any property P (x) of elements of U , the class {x ∈ X | P (x)} is
a set.

The pairing axiom

For any x, y ∈ U , the class

{x, y} := {z | z = x ∨ z = y}

is a set.

We call the set {x, y} the unordered pair of x and y. As a special case, for any x ∈ U , we
have a singleton set {x} := {x, x}.

If X is a class of sets, that is a class all of whose elements are sets, then we define the
notation:

5Classes and class functions form a category, except that one needs to be careful about what this means.
Classes are not in general elements of U (Russell’s paradox), so cannot in general themselves be used as
elements of classes. There is therefore no class of all classes. So the collection of objects of the category of
classes does not itself form a class. One way of thinking about such a ‘superlarge’ category is that objects
and morphisms of the category can be understood individually, but one should not try to contemplate the
collection of all of them at once.
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⋃
X := {x | ∃X ∈ X (x ∈ X)} .

The union axiom

For any set X of sets, the class
⋃
X is a set.

If X is a set and X ⊆ Y , we say that X is a subset of the class Y . For any class Y ,
consider the derived class:

P(Y ) := {X | X is a set ∧ X ⊆ Y } .

That is P(Y ) is the class of all subsets of Y . We call P(Y ) the powerclass of Y .

The powerset axiom

For any set X, the class P(X) is a set.

This axiom justifies the terminology of calling P(X), for a set X, the powerset of X.
The next axiom makes use of the notion of class function.

The replacement axiom

For any class function F : X → U , whose domain X is a set, the image class image(F )
is itself a set.

1.5 Cartesian product

The main property of set theory that justifies its role as a foundation for mathematics is that
the entirety of the body of mathematics can be derived from the set-theoretic axioms. We
begin by showing one very simple case of this: the construction of cartesian products.

Standard set-theoretic texts typically proceed as follows. A concrete construction of prod-
uct sets is given using Kuratowski pairs. This construction is then used as the definition
of product, and ultimately all mathematical results about products are really, if all defini-
tions are fully expanded, results about sets of Kuratowski pairs. However, the fact that the
product was defined in this particular way (rather than using a different concrete construc-
tion) of course never plays any further role (at least not in any sensibly developed body of
mathematics).

We prefer to proceed in a different, and perhaps more modern way. We define the notion
of product by characterising it independently of any particular concrete construction. All
subsequent mathematical development that uses products will then make use of the abstract
characterisation only. This approach ensures that the mathematics developed from set theory
follows a style that is ‘kosher’. It is impossible for the mathematics we develop to depend on
accidental features of a particular chosen concrete definition of product. Under our approach,
a concrete construction is used for one thing only. It is used to prove that the existence of
products can be proved as a consequence of the set-theoretic axioms. Having thus done its
job, the concrete construction is never made use of again.

Another way in which we differ from texts on set theory is that we define, in the first
place, the notion of product for classes, from which we derive product sets as a special case.

7



A product of two classes X and Y is a class X × Y equipped with class functions
π1 : X × Y → X and π2 : X × Y → Y (the projections) that together satisfy:

∀x ∈ X ∀y ∈ Y ∃!z ∈ X × Y π1(z) = x ∧ π2(z) = y .

We write (x, y) for the unique z such that π1(z) = x and π2(z) = y.

Proposition 1.2. If (X × Y , π1, π2) is a product then, for any class Z and class functions
F : Z → X and G : Z → Y , there exists a unique class function H : Z → X × Y such that
π1 ◦H = F and π2 ◦H = G.

Proposition 1.3. If (X × Y , π1, π2) and (X ×′ Y , π′1, π′2) are two products then there exists
an isomorphism I : X × Y → X ×′ Y such that π′1 ◦ I = π1 and π′2 ◦ I = π2. (Hence also
π1 ◦ I−1 = π′1 and π2 ◦ I−1 = π′2.)

Proposition 1.4. If X × Y is a product of two sets X and Y then X × Y is itself a set.

Theorem 1.5. A product (X × Y , π1, π2) exists, for any two classes X and Y .

It is in the proof of the above theorem that we make use of Kuratowski pairs, which are
defined by a repeated application of unordered pairs:

(x, y)K := {{x}, {x, y}} ,

which is well-defined as a class, by the pairing axiom, and is furthermore itself a set, by another
application of the same axiom. Thus (x, y)K is an element of U . The crucial property of this
construction that characterises ordered pairs is:

Proposition 1.6. For all x, y, z, w ∈ U ,

(x, y)K = (z, w)K ⇒ x = z ∧ y = w . (2)

For classes X,Y , we define the Kuratowski product class

X ×K Y := {(x, y)K | x ∈ X, y ∈ Y } .

Here, the right-hand expression is a convenient abbreviation for

{z | ∃x ∈ X, y ∈ Y z = (x, y)K} .

By (2), for every z ∈ X ×K Y , there exist unique x ∈ X and y ∈ Y such that z = (x, y)K .
The mappings z 7→ x and z 7→ y the respectively define the projections π1 and π2 required to
prove Theorem 1.5.

Having proved the theorem, we henceforth put the Kuratowski product definition to one
side. Although we shall make copious use of products in this course, all we assume is that
we have an arbitrary product structure according to the boxed definition at the start of the
section. We shall never require that the product is given by any one specific construction.

Using product classes, we can define the graph of a class function F : X → Y as the
subclass of X × Y given by:

gr(F ) := {(x, y) ∈ X × Y | F (x) = y} .
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Proposition 1.7. If F : X → Y is a class function whose domain X is a set then the graph
gr(F ) is also a set.

Henceforth, we shall call class functions whose domains are sets simply functions, and we
shall typically use lower case letters for them. Since the graph of any such f : X → Y is a
set, we also omit the underlining on the graph notation, writing gr(f).

1.6 Function spaces

For any set X and class Y , the collection of all functions from X to Y itself forms a class
Y X , called an exponential (or function space). Once again, we adapt a modern style of
presentation, and define the class Y X in terms of its characterising properties, rather than by
committing ourselves to using any one particular representation of functions for the elements
of Y X .

Given a set X and class Y an exponential Y X (or X→Y ) is a class equipped with a
class function ε : Y X × X → Y (the evaluation function) satisfying: for any function
f : X → Y there exists a unique g ∈ Y X such that

∀x ∈ X ε(g, x) = f(x) .

We write pfq for the unique g satisfying the property above.

Proposition 1.8 (Currying). If (Y X , ε) is an exponential then, for any class Z and class
function f : Z ×X → Y there exists a unique class function g : Z → Y X such that

∀z ∈ Z ∀x ∈ X ε(g(z), x) = f(z, x) .

Proposition 1.9 (Currying). If (X→Y , ε) and (X→′Y , ε′) are both exponentials, then there
exists an isomorphism I : (X→Y )→ (X→′Y ) such that ε′ ◦ I = ε. (Hence also ε ◦ I−1 = ε′.)

Proposition 1.10. If Y X is an exponential of two sets X and Y then Y X is itself a set.

Theorem 1.11. An exponential (Y X , ε) exists, for any set X and class Y .

Again, the theorem is proved by giving a concrete definition of the exponential Y X , which
we define as the class of graphs of functions.

X→GY := {g ∈ P(X × Y ) | ∀x ∈ X ∃!y ∈ Y (x, y) ∈ g} ,

The corresponding evaluation function εG : (X→GY )×X → Y is given by

εG(g, x) 7→ the unique y such that (x, y) ∈ g .

It is routine to verify that this data indeed defines an exponential.
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