
Primitivni tipi

boolean 1-bit truth values true, false
char 16-bit characters ’a’, ’A’, ’0’, ’#’, . . .
byte 8-bit integers . . . , -1, 0, 1, . . . , 127
short 16-bit integers . . . , -1, 0, 1, . . . , 32767
int 32-bit integers . . . , -1, 0, 1, . . .
long 64-bit integers . . . , -1, 0, 1, . . .
float 32-bit floating point numbers . . . -3.14 . . . 0.0 . . . 3.14 . . .
double 64-bit floating point numbers . . . -3.14 . . . 0.0 . . . 3.14 . . .



Referenčni tipi

Ostali tipi v Javi so referenčni tipi (reference types)

Vrednost referenčnega tipa je:

I ali null

I ali referenca na objektu (object) ali na tabeli (array).
(Tabela je tudi objekt.)



Tabelni tipi

Če je t tip, je tip tudi
t[]

Tip t[] je referenčni tip.

I null je možna vrednost.

I Druge vrednosti so reference tabele z elementi tipa t.



int[] nums;

Spremenljivka nums je deklarirana kot tabela tipa int[].
Vrednosti še nima.

nums = null;

nums = new int[3];

Zdaj je nums tabela s tremi elementi: nums[0], nums[1]
in nums[2]. Vsak ima začetno vrednost 0.

Arrays.fill(nums, 7);

Izpolni nums z vrednostjo 7: nums[0]=7, nums[1]=7 in
nums[2]=7. Potrebno je import java.util.Arrays;

Random r = new Random();

for (i=0; i<3; i++) nums[i] = r.nextInt(6);

Izpolni nums z naključnimi vrednostmi od 0 do 5.
Potrebno je import java.util.Random;



Lahko definiramo tabelo istočasno kot jo deklariramo.

int[] nums = new int[3];

Spremenljivka nums je deklarirana kot tabela tipa int[].
Vrednost je referenca tabele s tremi elementi: nums[0],
nums[1] in nums[2]. Vsak ima začetno vrednost 0.

int[] nums = {2,3,5,7};
Spremenljivka nums je deklarirana kot tabela tipa int[].
Vrednost je referenca tabele s štirimi elementi:
nums[0]=2, nums[1]=3, nums[2]=5 in nums[3]=7.



public class QuickSort {

public static Random r = new Random();

public static float[] array;

public static void main(String[] args) {

final int SIZE = 7;

//Create a randomly populated array of floats

array = new float[SIZE];

for (int i = 0; i<SIZE; i++) array[i] = r.nextFloat();

System.out.println("Before sorting:");

System.out.println(Arrays.toString(array));

//Randomised quicksort the array

rqs(0,SIZE-1);

System.out.println("After sorting:");

System.out.println(Arrays.toString(array));

}

// rqs method goes here //

// partition method goes here//

}



// rqs(i,j) where i <= j+1

// randomised quicksort of region from index i to index j of array

// (if j=i-1 then the region being sorted is empty)

private static void rqs (int i, int j) {

if (i < j) {// only sort if region has 2 or more elements

//Choose a random pivot element

float pval = array[i + r.nextInt(j-i+1)];

int k = partition (i, pval, j);

rqs (array, i, k-1);

rqs (array, k+1, j);

}

}



// partition(i,pval,j) where i <= k <= j

// uses the pivot value pval to partition array[i,...,j].

// Array entries are rearranged so that entries smaller than pval lie to

// its left and entries larger than pval lie to its right.

// The method returns the new index of pval in the rearranged array.

private static int partition (int i, float pval, int j) {

while (i < j) {

if (array[i] < pval) i++; //smaller elements stay on left

else if (array[j] > pval) j--; //larger elements stay on right

else if (array[i] == pval && array[j] == pval) j--;

else { // array[i] and array[j] out of place so swap

float temp = array[j];

array[j] = array[i];

array[i] = temp;

}

}

return i;

}



double[][] aa = new double[3][5];

Spremenljivka aa je 2-dimenzionalna tabela z 3× 5
vrednostmi tipa double. Vsak ima začetno vrednost 0.0.

double d = 1/Math.sqrt(2);

double[][] rr = {{d,-d}, {d, d}};

dd je 2-dimenzionalna tabela ki reprezentira 2× 2
matrika: [

1√
2
− 1√

2
1√
2

1√
2

]



// multiply (l, aa, m, bb, n) performs matrix multiplication aa x bb

// where aa is an l x m matrix and bb is an m x n matrix

double[][] multiply (int l, double[][] aa, int m, double[][] bb, int n) {

double[][] cc = new double[l][n];

for (int i=0; i<l; i++) {

for (int k=0; k<n; k++) {

// at this point cc[i][k] is 0

for (int j=0; j<m; j++) {

cc[i][k] += aa[i][j] * bb[j][k];

}

}

}

return cc;

}



Datoteke

FileReader in = new FileReader("/Path/in.txt");

FileWriter out = new FileWriter("/Path/out.txt");

Odpri datoteki in.txt in out.txt za vzhod (input) in
izhod (output).

while ((c = in.read()) != -1) out.write(c);

Kopira datoteko in.txt do out.txt. Vrednosti
spremenljivke c so znaki iz datoteke in.txt. Ko je c

enak -1 pomeni konec datoteke (end of file) in.txt. Tip
spremenljivke c je int.

out.close(); in.close();

Zapri datoteki .

Potrebno je import java.io.*;



Operacije na datotekah lakho vrnijo izjeme (exceptions) tipa
IOException.

Kadar moramo ujeti (catch) izjeme, na splošno uporabljamo

try try-clause catch catch-clause finally finally-clause

Vsaj eden izmed catch catch-clause in finally

finally-clause je obvezen.

Kadar se ukvarjamo z datotekami je posebna konstukcija
try-with-resources bolj koristna.



Try-with-resources

try (FileReader in = new FileReader("/Path/in.txt");

FileWriter out = new FileWriter("/Path/out.txt")) {

int c;

while ((c = in.read()) != -1) out.write(c);

} catch (IOException exn) {

exn.printStackTrace();

}

Ta koda uporablja try-with-resources

try (resource-declarations ) try-clause

catch catch-clause finally finally-clause

I Niti catch catch-clause niti finally finally-clause ni
obvezen.

I Deklarirani viri (resources) (na primeru in in out) se zaprejo
avtomatično (na nasprotnem vrstnem redu kot red deklaracij)



// Reads a text file and outputs to a text file all consecutive

// sequences of letters as words separated by single spaces

try (FileReader in = new FileReader("/Path/in.txt");

FileWriter out = new FileWriter("/Path/out.txt")) {

int c;

boolean space = false;

while ((c = in.read()) != -1) {

if (Character.isLetter(c)) {

// if c is a letter write to output file

// and flag that space is needed after

out.write(c); space = true;

}

else if (space) {

// if c is not a letter then write a

// space only if space=true

out.write((int) ’ ’);

// After one space we do not need another

space = false;

}

}

} catch (IOException exn) {

exn.printStackTrace();

}


