Primitivni tipi

boolean | 1-bit truth values true, false

char 16-bit characters Ya’, PA’, 07, #, ...
byte 8-bit integers ...,-1,0,1,...,127
short 16-bit integers ...,-1,0,1, ..., 32767
int 32-bit integers ...,-1,0,1, ...

long 64-bit integers ...,-1,0,1, ...

float 32-bit floating point numbers | ...-3.14 ...0.0...3.14 ...
double 64-bit floating point numbers | ...-3.14 ...0.0...3.14 ...

Referencni tipi

Ostali tipi v Javi so referen¢ni tipi (reference types)

Vrednost referenénega tipa je:

» ali null

» ali referenca na objektu (object) ali na tabeli (array).
(Tabela je tudi objekt.)

Tabelni tipi

Ce je t tip, je tip tudi
t[]

Tip t[1 je referentni tip.
» null je moZna vrednost.

» Druge vrednosti so reference tabele z elementi tipa t.

int[] nums;
Spremenljivka nums je deklarirana kot tabela tipa int [].
Vrednosti Se nima.

nums = null;
new int[3];

nums

Zdaj je nums tabela s tremi elementi: nums [0], nums [1]
in nums [2]. Vsak ima zaletno vrednost 0.

Arrays.fill(nums, 7);

Izpolni nums z vrednostjo 7: nums[0]=7, nums[1]=7 in
nums [2]=7. Potrebno je import java.util.Arrays;

Random r = new Random();

for (i=0; i<3; i++) nums[i] = r.nextInt(6);
Izpolni nums z nakljué¢nimi vrednostmi od 0 do 5.
Potrebno je import java.util.Random;

Lahko definiramo tabelo isto€asno kot jo deklariramo.

int[] nums = new int[3];

Spremenljivka nums je deklarirana kot tabela tipa int[].
Vrednost je referenca tabele s tremi elementi: nums [0],
nums [1] in nums [2]. Vsak ima zacetno vrednost O.

int[] nums = {2,3,5,7};

Spremenljivka nums je deklarirana kot tabela tipa int [].
Vrednost je referenca tabele s Stirimi elementi:
nums [0]=2, nums [1]=3, nums [2]=5 in nums [3]=7.

public class QuickSort {
public static Random r = new Random();
public static float[] array;
public static void main(String[] args) {
final int SIZE = 7;
//Create a randomly populated array of floats
array = new float[SIZE];

for (int i = 0; i<SIZE; i++) array[i] = r.nextFloat();

System.out.println("Before sorting:");
System.out.println(Arrays.toString(array));

//Randomised quicksort the array
rqgs(0,SIZE-1);

System.out.println("After sorting:");
System.out.println(Arrays.toString(array));

// rqs method goes here //

// partition method goes here//

// rqs(i,j) where i <= j+1
// randomised quicksort of region from index i to index j of array
// (if j=i-1 then the region being sorted is empty)

private static void rqs (int i, int j) {
if (i < j) {// only sort if region has 2 or more elements

//Choose a random pivot element
float pval = array[i + r.nextInt(j-i+1)];

int k = partition (i, pval, j);
rgs (array, i, k-1);
rgs (array, k+1, j);

// partition(i,pval,j) where i <= k <= j

// uses the pivot value pval to partition arrayl[i,...,j].

// Array entries are rearranged so that entries smaller than pval lie to
// its left and entries larger than pval lie to its right.

// The method returns the new index of pval in the rearranged array.

private static int partition (int i, float pval, int j) {
while (i < j) {
if (arrayl[i] < pval) i++; //smaller elements stay on left
else if (array[jl > pval) j--; //larger elements stay on right
else if (arrayl[i] == pval && array[j] == pval) j--;
else { // arrayl[il and array[j] out of place so swap
float temp = arrayl[jl;
array[j] = arrayl[i];
array[i] = temp;
}
}

return i;

double[][] aa = new double[3][5];

Spremenljivka aa je 2-dimenzionalna tabela z 3 x 5
vrednostmi tipa double. Vsak ima zadetno vrednost 0.0.

double d = 1/Math.sqrt(2);
dOUble[] [] rr = {{d’_d}: {ds d}};

dd je 2-dimenzionalna tabela ki reprezentira 2 x 2

matrika:
1 1
1 1
V2 V2

// multiply (1, aa, m, bb, n) performs matrix multiplication aa x bb
// where aa is an 1 x m matrix and bb is an m x n matrix

double[] [] multiply (int 1, double[][] aa, int m, double[][] bb, int n) {
double[][] cc = new double[1][n];
for (int i=0; i<1; i++) {
for (int k=0; k<n; k++) {
// at this point cc[il[k] is O
for (int j=0; j<m; j++) {
cc[il [k] += aalil[j] * bb[jl[k];
}
}

return cc;

Datoteke

FileReader in = new FileReader("/Path/in.txt");
FileWriter out = new FileWriter("/Path/out.txt");

Odpri datoteki in.txt in out.txt za vzhod (input) in
izhod (output).

while ((c = in.read()) !'= -1) out.write(c);

Kopira datoteko in.txt do out.txt. Vrednosti
spremenljivke ¢ so znaki iz datoteke in.txt. Ko je ¢
enak -1 pomeni konec datoteke (end of file) in.txt. Tip
spremenljivke c je int.

out.close(); in.close();
Zapri datoteki .

Potrebno je import java.io.*;

Operacije na datotekah lakho vrnijo izjeme (exceptions) tipa
I0Exception.

Kadar moramo ujeti (catch) izjeme, na splodno uporabljamo

try try-clause catch catch-clause finally finally-clause

Vsaj eden izmed catch catch-clause in finally
finally-clause je obvezen.

Kadar se ukvarjamo z datotekami je posebna konstukcija
try-with-resources bolj koristna.

Try-with-resources

try (FileReader in = new FileReader("/Path/in.txt");
FileWriter out = new FileWriter("/Path/out.txt")) {
int c;
while ((c = in.read()) !'= -1) out.write(c);

} catch (IOException exn) {
exn.printStackTrace();

}

Ta koda uporablja try-with-resources

try (resource-declarations) try-clause
catch catch-clause finally finally-clause

> Niti catch catch-clause niti finally finally-clause ni
obvezen.

» Deklarirani viri (resources) (na primeru in in out) se zaprejo
avtomati&no (na nasprotnem vrstnem redu kot red deklaracij)

// Reads a text file and outputs to a text file all comnsecutive
// sequences of letters as words separated by single spaces
try (FileReader in = new FileReader("/Path/in.txt");

FileWriter out = new FileWriter("/Path/out.txt")) {

int c;
boolean space = false;
while ((c = in.read()) != -1) {

if (Character.isLetter(c)) {
// if c is a letter write to output file
// and flag that space is needed after
out.write(c); space = true;
}
else if (space) {
// if c is not a letter then write a
// space only if space=true
out.write((int) ’ ?);
// After one space we do not need another
space = false;
}
}
} catch (IOException exn) {
exn.printStackTrace();

}

