
Razredi in objekti
(Classes and objects)

public class MyFirstUrn<E> {

private static final Random RANDOMS = new Random();

private LinkedList<E> holder;

public MyFirstUrn () {

holder = new LinkedList<E> ();

}

public void put (E val) {

holder.add(0, val);

}

public E take () {

int size = holder.size();

int index = RANDOMS.nextInt(size);

return holder.remove(index);

}

public int size () {

return holder.size ();

}

public boolean contains (E val) {

return holder.contains (val);

}

public void clear () {

holder.clear();

}

}

Testiranje MyFirstUrn

MyFirstUrn<Integer> urn = new MyFirstUrn<Integer> ();

urn.put(2); urn.put(3); urn.put(5); urn.put(7);

System.out.println (urn.take()); System.out.println (urn.take());

urn.put(11); urn.put(13);

System.out.println (urn.take()); System.out.println (urn.take());

Možen rezultat:
7

2

13

5

private LinkedList<E> holder;

public MyFirstUrn () {

holder = new LinkedList<E> ();

}

Vsak objekt razreda MyFirstUrn ima polje holder. Vrednost tega
polja je objekt knjižničnega razreda LinkedList

Polje je privatno. Samo njegov objekt ima dostop do polja.

MyFirstUrn() je konstruktor. Ko se prikličemo konstruktorja,
ustvarimo nov objekt razreda MyFirstUrn.

Konstruktorji se vedno imenujejo z imenom razreda.

E je tipski parameter (type parameter)

MyFirstUrn<Integer> urn1 = new MyFirstUrn<Integer> ();

MyFirstUrn<Integer> urn2 = new MyFirstUrn<Integer> ();

MyFirstUrn<String> jar = new MyFirstUrn<String> ();

urn1 je nov objekt razreda MyFirstUrn<Integer>, ki je boben
celnih števil.

urn2 je še en nov objekt razreda MyFirstUrn<Integer> različen
od urn1. Objekt urn2 je tudi boben celih števil.

Integer je ovojni razred (wrapper class) tipa int. Vsak primitiven
tip t ima svoj ovojni razred, ki je referenčni tip. Objekt ovojnega
razreda ima točno eno vrednost. Tip te vrednosti je t.

Ovojni razred je potrebno, ker primerek parametra tipa E mora biti
referenčni tip.

jar je nov objekt razreda MyFirstUrn<String>, ki je boben
nizov.

Ovojni razredi

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

Boxing: Če je n vrednost tipa int, je new Integer(n) njegov objekt
razreda Integer.

Unboxing: Če je o objekt razreda Integer, je o.intValue() ali
(int) o njegov vrednost tipa int.

Po navadi sta ‘boxing’ in ‘unboxing’ avtomatično narejeno.

Npr. v urn.put(2), je vrednost 2, ki ima tip int, avtomatično
pretvorjena v objekt razreda Integer (implicit boxing).

Vsak objekt razreda MyFirstUrn<E> ima naslednje metode.

public void put (E val)

public E take ()

public int size ()

public boolean contains (E val)

public void clear ()

Vse so javne (public) metode. To pomeni, da vsak razred ima
dostop do teh metod.

void put (E val) { holder.add(0, val); }

E take () {

int size = holder.size();

int index = RANDOMS.nextInt(size);

return holder.remove(index);

}

int size () {return holder.size ();}

boolean contains (E val) {return holder.contains (val);}

void clear () {holder.clear();}

Koda uporablja metode knjižničnega razreda LinkedList<E>

void add(int index,E element) Inserts the specified element at the
specified position in this list.

int size() Returns the number of elements in this list.
E get(int index) Returns the element at the

specified position in this list.
E remove(int index) Removes and returns the element at the

specified position in the list
boolean contains(Object o) Returns true if this list contains the specified element.
void clear() Removes all of the elements from this list.

The pill jar puzzle

final int NUM_PILLS = 20;

final int NUM_TRIALS = 100;

MyFirstUrn<String> jar = new MyFirstUrn<String>();

int total = 0;

for (int trial = 0; trial < NUM_TRIALS; trial++) {

jar.clear();

for (int i = 0; i < NUM_PILLS; i++) jar.put("WHOLE");

while (jar.contains ("WHOLE")) {

String pill = jar.take();

if (pill.equals("WHOLE")) jar.put("half");

}

int numHalves = jar.size();

total += numHalves;

System.out.print ("Trial " + (trial+1) + ": ");

System.out.println ("number of half pills = " + numHalves);

}

double average = (double)total/NUM_TRIALS;

System.out.println ("Expected number of half pills ~ " + average);

public class MyFirstStack<E> {

private LinkedList<E> holder;

public MyFirstStack () { // posebni konstruktor

holder = new LinkedList<E> ();

}

public void put (E val) {

holder.add(0, val);

}

public E take () { // nova koda

return holder.remove(0);

}

public int size () {

return holder.size ();

}

public boolean contains (E val) {

return holder.contains (val);

}

public void clear () {

holder.clear();

}

}

public class MyFirstQueue<E> {

private LinkedList<E> holder;

public MyFirstQueue () {// posebni konstructor

holder = new LinkedList<E> ();

}

public void put (E val) {

holder.add(0, val);

}

public E take () { // nova koda

int size = holder.size();

return holder.remove(size-1);

}

public int size () {

return holder.size ();

}

public boolean contains (E val) {

return holder.contains (val);

}

public void clear () {

holder.clear();

}

}

Abstraktni razredi
(Abstract classes)

public abstract class LinkedListHolder<E> {

protected LinkedList<E> holder;

public LinkedListHolder () {

holder = new LinkedList<E> ();

}

public void put (E val) {

holder.add(0, val);

}

abstract public E take (); // abstract method

public int size () {

return holder.size ();

}

public boolean contains (E val) {

return holder.contains (val);

}

public void clear () {

holder.clear();

}

}

public class MyUrn<E> extends LinkedListHolder<E> {

private static final Random RANDOMS = new Random();

@Override

public E take () {

int size = holder.size();

int index = RANDOMS.nextInt(size);

return holder.remove(index);

}

}

public class MyStack<E> extends LinkedListHolder<E> {

@Override

public E take () {return holder.remove(0);}

}

public class MyQueue<E> extends LinkedListHolder<E> {

@Override

public E take () {

int size = holder.size();

return holder.remove(size-1);

}

}

public abstract class LinkedListHolder

Abstraktni razred je razred, v katerem je nekaj metod
abstraktnih.

abstract public E take ();

take je abstraktna metoda. Abstraktna metoda ima
deklaracijo ampak nima kode.

protected LinkedList<E> holder;

protected pomeni, da imajo dostop do polja holder

samo razredi, ki so podrazredi (subclasses) razreda
LinkedListHolder (ali v istem paketu (package)
razreda LinkedListHolder).

public LinkedListHolder ()

Ne moremo uporabiti konstruktor abstraktnega razreda.
Ta konstruktor bodo podedovali podrazredi razreda
LinkedListHolder.

public class MyUrn<E> extends LinkedListHolder<E>

MyUrn<E> je razred, ki je podrazred (subclass) razreda
LinkedListHolder<E>.

Poleg tega je razred LinkedListHolder<E> neposredni
nadrazred (immediate superclass) razreda MyUrn<E>. To
pomeni, da razred MyUrn<E> podeduje polja in metode iz
razreda LinkedListHolder<E>.

Kadar definiramo razred, lahko deklariramo vsaj en razred
kot neposredni nadrazred.

MyUrn<Integer> urn = new MyUrn<Integer> ();

Konstruktor MyUrn<E> je podedovan od konstruktorja
LinkedListHolder<E> iz abstraktnega razreda.
(Dedovanje kontruktorjev je možno samo za
konstruktorje, ki nimajo parametrov.)

@Override

public E take () { ... }

Razred MyUrn<Integer> implementira abstraktno
metodo take iz abstraktne razrede
LinkedListHolder<E>.

@Override je pripis. Spomni pogramerja, da ta metoda
implementira metodo, ki je deklarirana v (edinem)
neposrednem nadrazredu.

Vmesniki
(Interfaces)

public interface Holder<E> {

// puts element into a holder

public void put (E val);

// takes one element out of holder

public E take ();

// returns number of elements in holder

public int size ();

// returns true if the holder contains at least one copy of val

public boolean contains (E val);

// empties the holder

public void clear ();

}

public abstract class LinkedListHolder<E> implements Holder<E> {

//

// Same code as before

//

}

I Vmesniki imajo deklaracije metod in polj, ampak metode in
polja niso implementirani.

I Razred lahko implementira vmesnik, če ima vse metode in
polja, ki so deklarirani v vmesniku.

I Razred lahko implementira mnoge vmesnike.

Type parameter constraints

public class MySmallestFirst<E extends Comparable<E>>

extends LinkedListHolder<E>{

@Override

public E take () {

E smallest = null;

for (E val: holder) { // for loop using iterator of holder

if (smallest == null ||

val.compareTo(smallest) < 0) smallest = val;

}

// Remove the first occurrence of smallest in holder

holder.remove(smallest);

return smallest;

}

}

Comparable<E> je vmesnik za razrede, ki implementirajo metodo
int compareTo(E o).

