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2. Group actions

In the previous section we reviewed basic properties of permutation groups.
In this section we will focus on a slightly more general notion, which is that of
group actions. Informally speaking, group actions are a tool that allows us to treat
any group as a permutation group. Formally speaking:

De�nition 2.1. Given a groupGwith neutral element 1 and a setX a (left) group
action of G on X is a function φ : G × X → X that satis�es

(a) φ : (1, x) 7→ x for every x ∈ X
(b) φ

(
gh, x

)
= φ

(
g, φ(h, x)

)
for every g, h ∈ G and x ∈ X .

We usually omit φ and think of a group action as a way to “evaluate” a group
element onto an element ofX . In fact, if φ is a left group action, then we usually
denote by gx the element φ(g, x) ∈ X . With this notation, the element φ

(
gh, x

)
should be denoted by (gh)x (we �rst multiply the elements in the group and then
evaluate), whereas the element φ

(
g, φ(h, x)

)
should be written as g(hx) (we �rst

evaluate h on x and then evaluate g on the resulting element). Thanks to Item (b)
of De�nition 2.1, we can write ghx without the need of parentheses. IfG acts on
a set X we say that X is a G-set.

Words of caution: Some authors use right group actions, which can be de-
�ned in a similar way (see Exercise 2.1). The main di�erence is the order in which
we evaluate the elements, if we take g, h ∈ G and we and evaluate it (on the left)
in an element x we �rst evaluate h and then we evaluate g. While if we evalu-
ate the same group element on a right action we �rst consider the action of g on
x and then the action of h on the resulting element. This two operations does
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not need to be the same. The choice of one side or another is related to the fact
that we evaluate permutations on the left. As before, this choice has usually little
theoretical consequences, but one needs to be careful (see Exercise 2.1).

We list several examples of group actions below.

Example 2.2. Naturally, ifX is any set then the symmetric group SX acts on the
set X in the obvious way:

φ (σ, x) = σ(x).

Example 2.3. Both the dihedral group and the cyclic group acts on the set [n]
by restricting of Sn to the Dn and Cn, respectively. However, both group also
act on the set of edges of a n-cycle (equivalently, a regular n-gon) when they are
interpreted as symmetries.

Example 2.4. In fact, the previous examples show a obvious but important way
to �nd actions. If G is a permutation group of Sn then G acts naturally on the
set [n].

IfG is a permutation group, we say thatG is of degree n if it acts on [n]. Some
authors also require that there is no k ∈ {1, . . . , n} such that σ(k) = k for ever
σ ∈ G, so that S3 when interpreted as the subgroup of permutations in S4 that
�x 4 is a group of degree 3 but not of degree 4. We shall make that assumption
whenever we refer to a group of degree n.

Example 2.4 suggest a way to �nd group actions. In fact, it is not hard to see
that every group action is essentially given as in this example.

Proposition 2.5. Let G be a group acting on a set X with the action φ : G×X →
X. The mapping ρφ : G → SX given by ρφ(g) : x 7→ gx defines a group homomor-
phism. Conversely, every group homomorphism ρ : G → SX induces an action of
G on X by gx = ρ(g)(x).

Proof. See Exercise 2.2. �

Example 2.6. Another natural way of �nding examples of group actions is by
consider the symmetry group of geometric �gures. That is, the set of symmetries
of the space that preserve a given �gure. For example, the symmetry group of the
cube acts on the set{1, 2, 3, 4, 5, 6, 7, 8}of vertices, the set{a, b, c, d, e, f, g, h, i, j, k, l}
of edges and the set{A, B, C, D, E, F}of faces (just to mention some). The 3-fold
rotationR on the line that connects the vertices 1 and 7 induce the following per-
mutations the sets of vertices, edges and faces:

(2 5 4)(3 6 8) on vertices,
(a d e)(i b h)(f c l)(j g k) on edges,

(A B C)(D E F ) on faces.
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Figure 1. A rotation of the cube

Example 2.7. Every group G acts on itself by left multiplication. That is, the
action is given by (g, x) 7→ gx for every g, x ∈ G. If G is �nite, say |G| = n the
representation µl : G → Sn de�ned by µl(g) = γg where γg : G → G is given by
γg(x) = gx. Yet again, observe that the side for which we multiply is relevant so
that µl is actually a group-homorphism, i.e.

γhg = µl(hg) = µl(h)µl(g) = γhγg.

The left-most permutation ofG in the equation above maps x to (hg)x while the
right-most maps x to γh(gx) = h(gx).

Observe that µl is injective. In fact if µl(g) = ε, then gx = γg(x) = x for every
x, which implies that g = 1.

The G acts on a set X , the kernel of the action is the kernel of the induced
representation of G in SX We say that an action is faithful whenever the its ker-
nel is the trivial subgroup. Equivalently, when the associated representation is
injective.

The group homomorphism µl in Example 2.7 is often called the (left) Cayley
representation of G. This homomorphism proves the following theorem.

Theorem 2.8 (Cayley, 1854). Every finite group with n elements is isomorphic to
a subgroup of Sn.

Even though Theorem 2.8 is more than one hundred years old, it has cur-
rent relevance. Permutation groups are concrete objects compared to an abstract
group. In particular, permutation groups can be understood by a programming
language. Unfortunately, the theorem as it is has little practical applications. If
a group G is relatively large, the symmetric group on |G| symbols is extremely
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complicated. However, the truth is that every faithful action induces an injec-
tive homomorphism, so in order to �nd a representation of an abstract group
as a permutation group we only need to �nd a faithful action. For example, the
group G of symmetries of the cube has 48 elements, Theorem 2.8 says that G is
isomorphic to a subgroup of S48, which has size 48!. Yet, the action of G on the
set of vertices is faithful so G has a representation in S8. Moreover, the action
on the set of faces is also faithful, which implies that G has a representation of
degree 6. It is an active research area to �nd small (minimal) permutation repre-
sentations of relevant families of �nite groups.

Unfortunately, most actions are not faithful. Let us show a example of it.

Example 2.9. LetG be a group andH a subgroup ofG. The setX of left cosets
of H is a G-set. The action is given by

g(xH) = gxH.

This action is generally not faithful. IfK is a normal subgroup ofH then x−1kx ∈
K ⊆ H for every k ∈ K , which implies that

kxH = xH for every k ∈ K
De�nition 2.10. IfH 6 G are groups, then the normal core (or simply, the core)
of H in G is the largest normal subgroup of G contained in H , that is

CoreG(H) =
⋂
g∈G

g−1Hg

Example 2.11. If G is a group, then G is itself a G-set where the action is given
by (left) conjugation, that is, the action of a given element g on x is given by

g : x 7→ gxg−1.

The kernel of this action is the centre Z(G).

Example 2.12. Similarly, G acts on the set X = {H : H is subgroup of G} by
g : H 7→ gHg−1.

The intuitive idea of a group G acting on a set X is that every element of G
move the elements of X . It makes sense to consider the following important
concepts.

De�nition 2.13. Assume that G acts on a set X . Given x ∈ X , the orbit of x is
the set

Gx = {gx : g ∈ G} .
The stabiliser of x is the subgroup (see Exercise 2.5)

StabG(x) = {g ∈ G : gx = x} .
For a given g ∈ G the set of fixed points is the set

Fix(g) = {x ∈ X : gx = x} .



DISCRETE MATHEMATICS 2 5

The set of fixed points of G is the set

Fix(G) = {x ∈ X : gx = x for all g ∈ G} =
⋂
g∈G

Fix(g)

It is important to remark that some authors denote these sets di�erently. A
common notation for the orbit of x is O(x) and the stabiliser is sometimes de-
noted Gx (see [Rot96], for example). The set of �xed points of an element g and
of the group G are sometimes denoted Xg and XG, respectively.

Observe that the relation ∼ in X given by x ∼ y if and only if Gx = Gy is
an equivalence relation (Exercise 2.4). Therefore this relation de�nes a partition
of X in equivalence classes given by the orbits. The latter implies the following
straightforward result.

Proposition 2.14. The set of orbits induces a partition of X. If R ⊆ X is a set of
representatives containing exactly one element for each non-trivial orbit, then

X = Fix(G) ∪

(⋃
x∈R

Gx

)
In particular, if X is finite, then

|X | = |Fix(G)| +

(∑
x∈R

|Gx|

)
.

LetX and Y be twoG sets with actions φX and φY , respetively. We say thatX
and Y are equivalent (as G-sets) if there exists a bijection η : X → Y such that
the following diagram commutes:

G × X G × Y

X Y

(ε,η)

φX φY

η

That is, if
η
(
φX (g, x)

)
= φY (g, η(x))

Observe that if X is a G-set and Z ⊆ X is such that gz ∈ Z for ever g ∈ G,
then Z is a G-set. In particular, the orbit of every element of a G-set X is a G-set
itself.

Now we present a straightforward but very useful result, sometimes even called
the fundamental theorem of group actions.

Theorem 2.15 (Orbit-Stabiliser Theorem). Let G be a group acting on a set X
and let x ∈ G. The orbit Gx of x and the set of left cosets of StabG(x) are equivalent
as G-sets. In particular,

|Gx| = [G : StabG(x)].
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If G is finite, then

|Gx| = |G|
|StabG(x)|

Proof. Let S denote the subgroup StabG(x). Consider the mapping ϕ : G/S →
Gx given by ϕ(gS) = gx. First notice that ϕ is well-de�ned. Indeed if gS = hS
then h−1g ∈ S, that is h−1gx = x, which implies that gx = hx.

Similarly, if g and h are elements in G such that gx = hx, then gS = hS. In
other words, ϕ is injective. Clearly ϕ is surjective. The bijection ϕ de�nes an
equivalence of G-sets. �

We �nish this section with some important de�nitions.
De�nition 2.16. Let G be a group acting on a set X . We say that the action is
transitive if there is only one orbit. That is, if for every two elements x, y ∈ X
there exists a group element g such that gx = y.

We say that the action is free or semiregular if the stabiliser of every element
is the trivial group. Finally, we say that an action is regular if it is both transitive
and semiregular.
Exercises.
2.1 A right action of a group G on a set X is mapping ψ : X × G → X such

that
• ψ : (x, 1) 7→ x for every x ∈ X
• ψ

(
x, gh

)
= ψ

(
ψ(x, g), h

)
.

We usually denote ψ(x, g) by xg.
(a) Prove that if φ : G × X → X is a left action, then the mapping

ψ : X × G → X de�ned by ψ(x, g) = φ(g−1, x) de�nes a right
action.

(b) Conversely, if ψ : X × G → X is a right action, the mapping φ :
G × X → X given by φ(g, x) = ψ(x, g−1) de�nes a left action.

(c) Give an example of a left action φ such that the mapping ψ : X ×
G → X given by ψ(x, g) = φ(g, x) is not a right action.

2.2 Proof that every action of a groupG on a setX induces a group homomor-
phism G → SX and conversely, that every such homomorphism induces
an action of G on X .

2.3 LetG andH be groups. A group antimorphism is a function ϕ : G → H
that satis�es that

ϕ(g1g2) = ϕ(g2)ϕ(g1),
for every g1, g2 ∈ G.
(a) Prove that if ϕ1 : G → H and ϕ2 : H → K are group antimor-

phisms, then ϕ2 ◦ ϕ1 : G → K is a group homomorphism.
(b) Show that ( )−1 : G → G given by g 7→ g−1 is a group antimor-

phism.
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(c) Conclude that right actions of G to X are incorrespondence with
group antimorphisms G → SX .

2.4 If G is a set acting on a set X , then the relation on X de�ned by x ∼ y if
and only if Gx = Gy de�nes an equivalence relation on X .

2.5 Prove that the stabiliser of a point is a subgroup of G
2.6 Let X and Y two G-sets. Prove that X × Y is a G set with the action

g(x, y) = (gx, gy). Prove that the stabiliser of (x, y) is StabG(x) ∩ StabG(y).
Show an example where X and Y are transitive but X × Y is not.

2.7 Show that if x, y ∈ X belong to the same orbit, thenStabG(x) andStabG(y)
are conjugate.

2.8 LetX be a transitiveG-set. Let S denote the subgroup StabG(x) of a point
x. Prove that the core of S onG is precisely the kernel of the action. Prove
that this is not necessairly true if X is not transitive.

2.9 IfG is a group, a core-free subgroup ofG is a subgroupH such thatCoreG(H)
is trivial. Show that every transitive faithful action of G is equivalent to
the left-coset action of a core-free subgroup of G.

2.10 Let H and K subgroup of G, then G is a union of disjoint double cosets

HgK = {hgk ∈ G : h ∈ H, k ∈ K} .

IfG is �nite, then the size of a double cosetHgK is |K |×
[
H : (gKg−1 ∩H)

]
.

2.11 Let G be a group acting transitively on a set X . Let H be a subgroup
of G and let S denote the subgroup StabG(x). Prove that the following
statements are equivalent
(a) G = SH ,
(b) G = HS,
(c) H is transitive.

In particular, the only transitive subgroup of G containing S is G itself.
2.12 If G contains a subgroup H of index n, then it contains a normal sub-

group K 6 H such that [G : K] is �nite and divides n!.
2.13 ifG is a �nite group or orderm, and p is the smallest prime which divides

m, then any group of index p is normal in G.
2.14 Let n > 5, then the only proper subgroup of index less than n in the

symmetric group Sn is the alternating group An of index 2.
2.15 Prove that there is no simple group of order 56.
2.16 Prove that ther is no simple noncyclic group of order 2mpn where m ∈

{1, 2, 3} and p an is odd prime.
2.17 For n > 2, n − 2 transposition cannnot generate a transitive group of

degree n (Compare with Exercise 1.8)
2.18 Let G be a group acting faithfully on a set X . Assume that G has �nitely

many orbits X1, . . . , Xk. Notice that G acts transitively on each subset Xi

(i ∈ {1, . . . k}). Prove that G is isomorphic to a subgroup of SX1 × · · · ×
SXk .
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2.19 Let G be a group of order pk with p prime and k ∈ N. Assume that
G acts faithfully on a set X with |X | = n where n 6 p2. Prove that
G ∼= Zp × · · · × Zp.

2.20 Let G be an abelian group. Prove that if G acts transitively on a set X ,
then then the action is regular.

2.21 Find the order of the symmetry group of the cube and the order of the
symmetry group of a regular icosahedron.

2.22 If G is a �nite non-trivial p-group (that is, a group such that |G| = pk

for some k ∈ N), then Z(G) is not trivial. Hint: consider the action in
Example 2.11.

2.23 Let p be a prime such that p ≡ 1 (mod 4). Consider the set
X =

{
(x, y, z) ∈ N3 : x + 4yz = p

}
.

Consider the mapping

ϕ : (x, y, z) 7→


(x + 2z, z, y− x − z) if x < y− z

(2y− x, y, x − y + z) if y− z < x < 2y
(x − 2y, x − y + z, y) if x > 2y

(a) Prove that ϕ is a permutation of order 2 on X with exactly one �xed
point.

(b) Prove that the permutation ψ : (x, y, z) 7→ (x, z, y) must also have at
least one �xed point.

(c) Prove a famous theorem in number theory: An odd prime p is a sum
of two squares if and only if p ≡ 1 (mod 4).
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