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2. GROUP ACTIONS

In the previous section we reviewed basic properties of permutation groups.
In this section we will focus on a slightly more general notion, which is that of
group actions. Informally speaking, group actions are a tool that allows us to treat
any group as a permutation group. Formally speaking:

Definition 2.1. Given agroup G with neutral element1and aset X a (lefz) group
action of G on X is afunction ¢: G x X — X that satisfies

(a) @: (L x) — xtforeveryx € X
(b) ¢ (¢h x) = ¢ (¢ @(h, x)) forevery g, b € Gandx € X.

We usually omit ¢ and think of a group action as a way to “evaluate” a group
element onto an element of X In fact, if ¢ is a left group action, then we usually
denote by g the element ¢(g, x) € X. With this notation, the element ¢ (g/o, x)
should be denoted by (gh)x (we first multiply the elements in the group and then
evaluate), whereas the element ( , o(b, x)) should be written as g(hx) (we first
evaluate » on x and then evaluate ¢ on the resulting element). Thanks to Item (b)
of Definition 2.1, we can write ghx without the need of parentheses. If G acts on
aset X we say that X is a G-set.

Words of caution: Some authors use 7Zght group actions, which can be de-
fined in a similar way (see Exercise 2.1). The main difference is the order in which
we evaluate the elements, if we take g, » € G and we and evaluate it (on the left)
in an element x we first evaluate » and then we evaluate g. While if we evalu-
ate the same group element on a right action we first consider the action of ¢ on
x and then the action of / on the resulting element. This two operations does
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not need to be the same. The choice of one side or another is related to the fact
that we evaluate permutations on the left. As before, this choice has usually little
theoretical consequences, but one needs to be careful (see Exercise 2.1).

We list several examples of group actions below.

Example 2.2. Naturally, if X is any set then the symmetric group Sy acts on the
set X in the obvious way:

@ (g, x) = o(x).

Example 2.3. Both the dihedral group and the cyclic group acts on the set [7]
by restricting of S, to the D, and C,,, respectively. However, both group also
act on the set of edges of a z-cycle (equivalently, a regular 7z-gon) when they are
interpreted as symmetries.

Example 2.4. In fact, the previous examples show a obvious but important way
to find actions. If G is a permutation group of S, then G acts naturally on the
set [7].

If G is a permutation group, we say that G is of degree n if it acts on [z]. Some
authors also require that thereisno # € {1,..., n} such that o(k) = & for ever
o € G, so that S5 when interpreted as the subgroup of permutations in S that
fix 4 is a group of degree 3 but not of degree 4. We shall make that assumption
whenever we refer to a group of degree 7.

Example 2.4 suggest a way to find group actions. In fact, it is not hard to see
that every group action is essentially given as in this example.

Proposition 2.5. Let G be a group acting on a set X with the action p: G x X —
X. The mapping po: G — Sy given by py(g): x — gx defines a group homomor-
phism. Conversely, every group homomorphism p: G — Sy induces an action of

G on X by gx = p(g)(x).
Proof. See Exercise 2.2. O

Example 2.6. Another natural way of finding examples of group actions is by
consider the symmetry group ot geometric figures. That is, the set of symmetries

of the space that preserve a given figure. For example, the symmetry group of the
cubeactsontheset{1, 2,3, 4,5, 6,7, 8} of vertices, theset {4, b, ¢, d, ¢, fohigkl }
of edges and the set {4, B, C, D, E, F } of faces (just to mention some). The 3-fold
rotation R on the line that connects the vertices 1 and 7 induce the following per-
mutations the sets of vertices, edges and faces:

(254)(368) on vertices,

(ade)ibhb)f cl)jgk) onedges,
(ABC)YDEF) on faces.
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FiGURE 1. A rotation of the cube

Example 2.7. Every group G acts on itself by left multiplication. That is, the
action is given by (g, x) — gx for every g, x € G. If G is finite, say |G| = n the
representation y;: G — S, defined by p/(g) = y, where y, : G — G is given by
7(x) = gx. Yet again, observe that the side for which we multiply is relevant so
that g, is actually a group-homorphism, i..

Vig = p(hg) = p(P)g) = ive
The left-most permutation of G in the equation above maps x to (hg)x while the
right-most maps x to y(gx) = h(gx).

Observe that g, is injective. In fact if u)(g) = ¢, then gx = y,(x) = x for every
x, which implies that ¢ = 1.

The G acts on a set X, the kernel of the action is the kernel of the induced
representation of G in Sy We say that an action is fasthful whenever the its ker-
nel is the trivial subgroup. Equivalently, when the associated representation is
injective.

The group homomorphism y; in Example 2.7 is often called the (left) Cayley
representation of G. This homomorphism proves the following theorem.

Theorem 2.8 (Cayley, 1854). Every finite group with n elements is isomorphic to
a subgroup of S,

Even though Theorem 2.8 is more than one hundred years old, it has cur-
rent relevance. Permutation groups are concrete objects compared to an abstract
group. In particular, permutation groups can be understood by a programming
language. Unfortunately, the theorem as it is has little practical applications. If
a group G is relatively large, the symmetric group on |G| symbols is extremely
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complicated. However, the truth is that every faithful action induces an injec-
tive homomorphism, so in order to find a representation of an abstract group
as a permutation group we only need to find a faithful action. For example, the
group G of symmetries of the cube has 48 elements, Theorem 2.8 says that G is
isomorphic to a subgroup of Sys, which has size 48!. Yet, the action of G on the
set of vertices is faithful so G has a representation in Ss. Moreover, the action
on the set of faces is also faithful, which implies that G has a representation of
degree 6. It is an active research area to find small (minimal) permutation repre-
sentations of relevant families of finite groups.
Unfortunately, most actions are not faithful. Let us show a example of it.

Example 2.9. Let G be a group and A a subgroup of G. The set X of left cosets
of H is a G-set. The action is given by

g(xH) = gxH.

This action is generally not faithful. If K is a normal subgroup of A then xVkx €
K C H forevery k € K, which implies that

kxH = xH forevery k € K

Definition 2.10. If ' < G are groups, then the zormal core (or simply, the core)
of H in G is the largest normal subgroup of G contained in /, that is

Coreg(H) = mg_ng
g€G
Example 2.01. If G is a group, then G is itself a G-set where the action is given
by (left) conjugation, that is, the action of a given element g on x is given by
g:ix+— gxg_l.
The kernel of this action is the centre Z(G).

Example 2.12. Similarly, G acts on the set X = {H : His subgroup of G} by
g:Hw— gHg ™.

The intuitive idea of a group G acting on a set X is that every element of G
move the elements of X. It makes sense to consider the following important
concepts.

Definition 2.13. Assume that G acts on a set X. Given x € X, the orb:t of x is
the set
Gx = {gx:g € G}.
The stabiliser of x is the subgroup (see Exercise 2.5)
Stabg(x) = {g € G : gx = x}.
For a given ¢ € G the set of fxed points is the set
Fix(g) = {x € X : gx = x}.
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The set of fixed points of G is the set
Fix(G) ={x € X : gx =xforallg € G} = ﬂ Fix(¢)

g€G

It is important to remark that some authors denote these sets differently. A
common notation for the orbit of x is O(x) and the stabiliser is sometimes de-
noted G, (see [Rotg6], for example). The set of fixed points of an element g and
of the group G are sometimes denoted X, and X, respectively.

Observe that the relation ~ in X given by x ~ yif'and only if Gx = Gy is
an equivalence relation (Exercise 2.4). Therefore this relation defines a partition
of X in equivalence classes given by the orbits. The latter implies the following
straightforward result.

Proposition 2.14. The set of orbits induces a partition of X. If R C X is a set of
representatives containing exactly one element for each non-trivial orbit, then

X=HA@U<LM%>

XER
In particular, if X is finite, then

1X| = |Fix(G)| + (Z ycxy>.

XER

Let X and Y be two G sets with actions @y and @y, respetively. We say that X
and Y are equivalent (as G-sets) if there exists a bijection 7 : X — Y such that
the following diagram commutes:

GxX -y 6xyY

[
x—1 v
That is, if
7 (px(g %)) = pr(g 7(x))

Observe that if X is a G-setand Z C X is such that gz € Zforeverg € G,
then Z is a G-set. In particular, the orbit of every element of a G-set X is a G-set
itself.

Now we presenta straightforward but very useful result, sometimes even called
the fundamental theorem of group actions.

Theorem 2.15 (Orbit-Stabiliser Theorem). Let G be a group acting on a set X
and let x € G. The orbit Gx of x and the set of left cosets of Stab(x) are equivalent
as G-sets. In particular,

|Gx| = [G : Stabg(x)].
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If G is finite, then
|G|
|Stabg ()|

Proof. Let S denote the subgroup Stabg(x). Consider the mapping ¢ : G/S —
Gx given by ¢(gS) = gw. First notice that ¢ is well-defined. Indeed if g§ = hS
then h~! ¢ € S, thatis b1 gx = x, which implies that gx = hx.

Similarly, if ¢ and b are elements in G such that gx = hx, then g§ = AS. In
other words, ¢ is injective. Clearly ¢ is surjective. The bijection ¢ defines an
equivalence of G-sets. O

|Gx| =

We finish this section with some important definitions.

Definition 2.16. Let G be a group acting on a set X. We say that the action is
transitive if there is only one orbit. That is, if for every two elements x, y € X
there exists a group element g such that g = .

We say that the action is free or semiregular if the stabiliser of every element
is the trivial group. Finally, we say that an action is regular if it is both transitive
and semiregular.

Exercises.

2.1 Avright action of a group G on aset X is mapping ¢ : X X G — X such
that
® y:(x1)— xforeveryx € X
o ¥ (5gh) =y (¥(x2) h).
We usually denote y(x, ¢) by xg.

(a) Prove thatif @ : G x X — X is a left action, then the mapping
¥ : X x G — X defined by ¥(x,¢) = (g™, x) defines a right
action.

(b) Conversely, if ¥ : X X G — X is a right action, the mapping ¢ :
G x X — X given by (g, x) = ¥(x, ¢~ ') defines a left action.

(c) Give an example of a left action ¢ such that the mapping ¢ : X X
G — X given by ¥(x, ¢) = @(g, x) is not a right action.

2.2 Proofthateveryaction of agroup G onaset.X induces agroup homomor-
phism G — Sy and conversely, that every such homomorphism induces
an action of Gon X.

23 Let Gand H be groups. A group antimorphism is afunction ¢ : G — H

that satisfies that
#(122) = $(g2)$(g1),
for every g1, &> € G.

(a) Prove thatif ¢, : G — Hand ¢, : H — K are group antimor-
phisms, then ¢, o ¢ : G — K is a group homomorphism.

(b) Show that ()™ : G — G given by ¢ — ¢~ is a group antimor-
phism.
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(c) Conclude that right actions of G to X are incorrespondence with
group antimorphisms G — Sy.

If G is a set acting on a set X, then the relation on X defined by x ~ y if
and only if Gx = Gy defines an equivalence relation on X.
Prove that the stabiliser of a point is a subgroup of G
Let X and Y two G-sets. Prove that X X Y is a G set with the action
2(x% 7) = (g%, g7). Prove that the stabiliser of (x; y) is Stabg(x) N Stabg(y).
Show an example where X and Y are transitive but X x Y is not.
Show thatif, y € X belong to the same orbit, then Stab(x) and Stabg(y)
are conjugate.
Let X be a transitive G-set. Let S denote the subgroup Stabg(x) of a point
x. Prove that the core of § on G is precisely the kernel of the action. Prove
that this is not necessairly true if X is not transitive.
If Gisagroup, acore-free subgroup of G is a subgroup H such that Core(H)
is trivial. Show that every transitive faithful action of G is equivalent to
the left-coset action of a core-free subgroup of G.
Let H and K subgroup of G, then G is a union of disjoint double cosets

HgK = {bhgk € G:hec HkecK}.

If Gis finite, then the size of adouble coset HgK is |K | x [H : (¢Kg™' N H)].
Let G be a group acting transitively on a set X. Let A be a subgroup
of G and let § denote the subgroup Stabg(x). Prove that the following
statements are equivalent

(a) G=SH,

(b) G = HS,

(c) H is transitive.
In particular, the only transitive subgroup of G containing S'is G itself.
If G contains a subgroup A of index 7, then it contains a normal sub-
group K < H such that [G : K] is finite and divides 7!.
if G is a finite group or order 72, and p is the smallest prime which divides
m, then any group of index p is normal in G.
Let n > S, then the only proper subgroup of index less than 7 in the
symmetric group S, is the alternating group 4,, of index 2.
Prove that there is no simple group of order 56.
Prove that ther is no simple noncyclic group of order 2”p”" where m €
{1, 2,3} and p an is 0odd prime.
Forn > 2, n — 2 transposition cannnot generate a transitive group of
degree #n (Compare with Exercise 1.8)
Let G be a group acting faithfully on a set X. Assume that G has finitely
many orbits Xj, ..., X;. Notice that G acts transitively on each subset X;
(z € {L,... k}). Prove that G is isomorphic to a subgroup of Sy, X - - - X
Sx,-
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219 Let G be a group of order p* with p prime and # € N. Assume that
G acts faithfully on a set X with |[X| = n where n < p*. Prove that
G =2y X X Ly

2.20 Let G be an abelian group. Prove that if G acts transitively on a set X,
then then the action is regular.

221 Find the order of the symmetry group of the cube and the order of the
symmetry group of a regular icosahedron.

222 If G is a finite non-trivial p-group (that is, a group such that |G| = p*
for some £ € N), then Z(G) is not trivial. Hint: consider the action in
Example 2.11.

2.23  Letp be a prime such that p =1 (mod 4). Consider the set

X = {(x,y,z) e N’ :x+4yz=p}.
Consider the mapping
(x+2z2y—x—2) ifx<y—z
p: (%)~ (2y—xypx—y+z) ify—z<x<2y
(x—=2px—y+zy) ifx>2y
(a) Prove that ¢ is a permutation of order 2 on X with exactly one fixed
point.
(b) Prove that the permutation ¢ : (; ¥, 2) — (, 2, y) must also have at
least one fixed point.

(c) Prove afamous theorem in number theory: An odd prime pis a sum
of two squares if and only if p = 1 (mod 4).
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