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1. PERMUTATION GROUPS

Informally speaking, a permutation of a collection of objects is just a way of
(linearly) order the objects. Permutations are often thought either as purely com-
binatorial objects, usually in counting problems, or as one of the first examples
in a first class of group theory. In these first sections we will look at the interplay
between these two approaches. We will use permutations to understand combi-
natorial problems and the other way around, we will use counting techniques to
understand group theoretical properties of permutations. In this section we first
review some basic properties of permutations.

Let X be a set, a permutation of X is a bijection o : X — X. Observe that the
identity ey : X — X, defined by ex(x) = x for every x € X, is a permutation
(if there is no ambiguity we often write ¢ instead of ex). Moreover, if & and 7
are permutations of X, then so o 'and 7 o o are. That implies that the set of
permutations of X, denoted Sy, is a group with the composition as operation.
This group is called the symmetric group on X . We usually omit the symbol o and
simply write 7o .

In this course we will mostly work with finite sets. If |X| = » we will think
of X either as the set [z] := {L,..., n} or as the set Z, of integers modulo 7, as
convenient. In either situation we write S, instead of Sy (see Exercise r.1).

If 7 € S, then itis convenient (particularly for small values of #) to represent
o with a 2 X 7 matrix where the entries of the first row are the elements of [7]
and we write o(x) below every element x. For example the equation

[t 23 45
1315 4 2
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means that o is such that (1) = 3,(2) = 1,5(3) = 5, 7(4) = 4and #(5) =
2. Observe that this representation is not unique, the following matrices also
represent the permutation ¢ described above.

3125 4] [543 21
7715 31 2 4" |2 45 1 3|
Matrix representation of permutations allows us to find inverses and operate

permutations easily. The inverse of a permutation ¢ is just the permutation given
by swapping the rows of any representation of ¢. For the example above:

L 31 s 4 2] [1 2345
7 711 2 3 4 5 251 4 3

We can find a matrix representation for zo by considering the first and third
row of a 3 X » matrix M where the first two rows come from a matrix represen-
tation of ¢ and the third one is given by writing 7(y) below every element y in the
second row. For example, if

) 123 45 123 45
II 315 421”7 "7 l431 25|
then
123 45
T N N R
1 452 3

Keep in mid that since we are thinking of permutations as functions, our con-
vention is to evaluate them from right to left, that is 7o means we apply first &
and then 7. Other authors (notably, those of [DM96]) use the other convention.
Usually the choice of one or another has little to none theoretical implications
but one has to be careful when doing explicit computations. For example, ob-
serve that for the permutations used above

_[r234s],
T4 5 31 2|7

Another common way of represent a permutation is as a product of disjoint
cycles. We say that a permutation 7 € S, is a k-cycle if there are £ different ele-
ments xy, ..., % € [#7] such that 7(x;) = x4 forl <7 < bk —land 7(x;) = x
and 7(y) = y for every other element y € X. In this case we write

7= (2120, -+ x)

A 2-cycle s called a transposition. Notice that there is not a unique way of writing
a cycle (see Exercise 1.3)
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Example 1.1. The permutation

123 45
1231 45

is the 3-cycle (1 2 3). The permutations ¢ and 7 defined in Equation (1.1) can be
written as
s=(1352), z=(1423).

Proposition 1.2. Every permutationo € S, can be written asa product of disjoint
cycles. Moreover, this way of writing a permutation is unique up to the order in
which the cycles appear and the inclusion or not of 1-cycles, which represent fixed

points of 7.
Proof. See Exercises 1.3 to 1.5. O

Proposition 1.2 is also true when we consider permutations of a infinite set X
but there might be infinite cycles (see Exercise 1.7) and possibly infinitely many
of them. In this case the definition of product is just formal and should be rein-
terpreted suitably.

Ify = (x - - x)isacycle, then we can convince ourselves that ' is the cycle
(¢ -+ x1). Recall thatif y, ..., . are elements of a group, then (y; - - - y,) ' =
¥4+ -y . These two observations give us a way of finding the inverse of a per-

mutation written as a product of cycles: just write each cycle in reverse order and
then write the product of the reversed cycles also in reverse order. The example
below should show the idea

((2457)136) ' =(136)1(2457) = (631)(7542)

If we have two permutations written as product of cycles we can compute its
productis just the permutation given by concatenating the corresponding cycles.
Observe that in general, this is not an expression as disjoint cycles, but we can
compute one as follows. First, pick a random element and trace its image along
the cycles. Keep in mind that we evaluate permutation form right to left. For
example, consider the expression (12)(4 5)(15 3)(2 4) and pick the number 1, by
tracking its image along the cycle we see that 1 goes to 4:

(12)(45)(153)(24) = (14
NN

4—4 S—4 1S5 11
A >y

14
Then we need to track the image of 4, which we see thatitis 1 and hence, the first
cycle is complete.

(12)(45)(153) (24) = (14) -
Dt e et ted

2—1 2—=2 22 42

J/

~~
4—1
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Now pick another symbol, say 2 and proceed similarly:

(12) (45)(153)(24) = (14)(25 - --
NGNS

S5—S 4—S  4—4 2—4

N

255
If we continue this way, we can see that
(12)(45)(153)(24)=(14)2523)

Observe that the fact that we omit fixed points when writing a permutation
as product of cycles disjoint cycle allow us to abuse notation a do not specify on
which set a given permutation acts. For example, the permutation (2 3)(4 7 5)
can be regarded as a permutation in S, in S or in S50,. In fact, with no further
information, this could even be a permutation on the set of natural numbers or
even a permutation on the set {2,3,4,5,7}. For these reason we should adopt
some conventions. We always assume thata permutation act on a set [#] for some
n € N, thatis, we shall avoid thinking of a permutation such as (2 3)(4 7 5) acting
on a smaller set than [7]. Moreover, if ¥ < 7 we might regard the group S}, as
the subgroup of S, consisting of the permutations that fix every number 7 with
k < m < n. Unless it is explicitly specified, we should keep symmetric groups
on infinite sets out of the game.

If & = y -y is a permutation written as a product of disjoint cycles (in-
cluding 1-cycles), the cycle-type of o is the tuple [y, . . ., 4;] where the number 4,
is the length of the cycle ;. Observe thatif o € S, thenay + -+ - + 23 = n. Of
course, we might safely omit the entries with value 1 from the cycle type and say,
for example, that the permutation (2 3)(3 7 5) has cycle-type [2, 3].

The following is a straight forward observation:

Proposition 1.3. Let o € S, and assume that o has cycle type |ay, . . ., ai], then
the order of 7 islem(ay, . . ., ay).

Proof. Just observe that if o = y; - - - y is written as a product of disjoint cycles
then
o=y =ee alrforalli € {1,... k}. O

These first results describe some tools to work with permutations. Now we
turn our attention to some group-theoretical properties of permutations.

Two elements o ,7 in a group I are conjugate if there exists ¢ € I such that
o = uru'. Observe that this notion defines an equivalence relation in I'. The
equivalence classes are called conjugacy classes of T.

Proposition 1.4. Letn € Nand let o and v two permutations in S,. Then o and
T are conjugate if and only if ¢ and T bave the same cycle-type.

Proof. See Exercise 1.6. O
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Definition 1.5. A permutation group is a subgroup of a symmetric group.
Let us now show a more group-theoretical property.

Theorem 1.6. Let n € N. The group S, can be generated by the set of transposi-
tions. This is

S, =((xy):x%y € [n])
Proof. Just observe thatif (x; - - - xy) is a k-cycle, then

(21 -+ 2) = (o0 02)(202 263) -+ - (Wp—2 Xp—1)(26p—1 X%)-

0

Theorem 1.6 shows that every permutation can be written as a product of
transpositions. However, there is no a unique way of writting a permutation
as product of transposition, for example:

(21)(24)(23) = (2341) = (12)(2 4)(4 3)(2 4)(4 3).

As shown in the example above, not even the number of transpositions re-
quired is constant. However we shall prove that parity of the number of trans-
positions depends only on the given permutation and not on a particular way of
writing it as a product of transpositions. First we prove the following lemma.

Lemma v.7. Let n € N and assume that y,, ..., y, is a_family of transpositions
such that
7/}" “ e 7/1 = &.

Then r is even.

Proof. We will prove this by induction over 7. First observe that » > 2, otherwise
we would have ¢ = (x y) for some pair {x, y} C [#], which is impossible. If » = 2
there is nothing to prove. Assume thatif 2 < k# < 7and thatdy, ..., J; is a family
of transpositions with dy - - - 9 = ¢, then £is even. Let 3, ..., 7, be a family of »
transpositions that satisfy y,. - - - 94 = &

Define ; = ; and consider the product y,2; = 7,71. Observe that there must
be 4 elements x, y, w, z € [7] such that one of the following holds:

(x7)(x 7)
7201 = { (¥ 2)(x ),
(wz)(x y).
In the first case, y,21 = y2y1¢, which implies that y, - - - , ¥, satisty the induc-
tive hypothesis. In other words, » — 2 is even and so it is 7,
If yo21 = (x 2)(x y) = (xy2) = (x y)(y2). In this case define 2, = (x y) and
Bi = (yz2). f yoy1 = (w2)(xy) = (x y)(w2) then take @, = (xy) and By = (w 2).

Notice that in any case

E=Yr V2N :7r"'73“2181-
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Observe also that 2, moves x but 8; does not.

Proceed again but now with the product y3a,. If 3 = «, then we apply the
inductive hypothesis to the family £, ¥4 - - -, %,—1, - and we are done. If not,
then proceed as before to build a new pair of transpositions a3, 3, that satisfy
y30t, = asf3,, the permutation 3 moves x but 8, does not.

Keep going this way. In the 7-th iteration of this process we have constructed
(7 — 1) permutations A, . . . 5,1 such that all of them fix x and a permutation «;
such that 2; moves x. These permutations satisfy that

£ = }/r. . .}/1 = 7V . .}/H_I“Z.[gl._l . 'ﬂl'

We have to analyse the possibilities for the product y,.1a;. If 7,41 = a; we apply
the inductive hypothesis to the family of transpositions By, ..., i1, Yis2 - o> ¥

If the previous condition is never satisfied after » iterations of the process we
have a family of transpositions &y, - - - , £,_1, @, such that £;(x) = x for every 1 <
{ < r — land a,(x) # x. However, these transpositions satisfy that

E=Yr N zﬂr‘gr—l e '(817
which is obviously a contradiction. It follows that at some point &; = 7,1, and
by the inductive hypothesis » — 2 is even and so it is 7. O

An immediate consequence of the previous result is the next theorem.

Theorem 1.8. Letn € Nand o € S,. Assume that o is written as a product of
transpositions, say o =y, - - - v1. Then the parity of r depends only on o and not on
the particular choice of the transpositions.

Proof. Assume that
B bi=c=ym

are two ways of writing o with 4y,..., 8, 1, ..., 7, transpositions. Observe that

8.---4) (%...71)*1
=B By

Lemma 1.7 implies that 7 + s is even or equivalently, that 7 and s have the same

parity. O

£

A permutation ¢ is called even if whenever 7 is written as a product of trans-
positions, then number of transposition is even. Otherwise ¢ is called odd.

The set 4, consisting of all the even permutations in S, is a subgroup (see Ex-
ercise 1.12) of S, and it is called the alternating group on n symbols. Theorem 1.8
allows us to define a group homomorphism sgn : S, — {1, —1} where

sgn(o) = (—1)°

whenever 7 can be written as a product of 7 transpositions.
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TS
n— 2 2
n—2 2
n n _
n+1 n—1 2 1 > 2 1
2 2 5

FIGURE 1. The action of D,

As usuall, two subgroups I'and A of S, are conjugate if there exists a permu-
tation ¢ € S, such that

[=ply " {udp:0 €A}
There are two important subgroups of S, that we should introduce now. The
cyclic group C, is a group generated by a permutation of order z. Usually we
think of C, as the permutation group generated by the z-cycle (12 ... ) (cf.

Exercise 1.16 ) The dibedral group on n symbols D, is the subgroup of S, gener-
ated by the permutations ¢ and p where

c=(1---n)

(12) ﬁ:{(l n—1)(2 n—2)---(2—1 2+1) ifniseven,

1 n=1)@2 - n-2)-- (%5 =)  ifnisodd

The group D, can be seen as the permutations of the vertices of a #-cycle that
preserve neighbours (see Figure 1)

Example 1.9 (The 15-puzzle’). The z5-puzzle consist of a set of squared tiles such
that the tiles fit in a box arranged in a 4 X 4 grid leaving a blank space (see Fig-
ure 2a). A valid movement of the puzzle is given by sliding one adjacent tile to
the blank space or, equivalently, moving the blank space to an adjacent tile.

A position P of the puzzle is solvable if the blank space is at the bottom-right
corner of the box, and it can be taken to the solved position S (Figure 2a) by a
sequence of valid movements. Obviously, if we can go from a position P to the
position S by a sequence of movements, by applying the same movements in re-
versed order we can go from S to P, so we can think of the set of solvable position
as those that blank space is in the bottom-right corner and can be reached from
the position S. Moreover, if P; and P, are solvable positions then so it is the
position P P,, which is defined as the position given by applying a sequence of

"Pictures and historical notes were taken from Wikipedia
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movements that take S to P to the position P;. Observe that this is only possible
because P; has the blank space at the bottom-right corner. By definition, we can
take S to PP, and since P, also has the blank space at the bottom-right corner,
then P, P, has the blank space at the bottom-right cornet. It follows that if P and
P, are solvable position, then so it is P P;.

If you want to play, you can do it here*.

The 15-puzzle is often associated with the puzzle inventor and problem com-
poser Sam Loyd (1841-1911), who claimed his entire life that he had invented the
puzzle. Loyd should be credited with the original challenge: to take the puzzle
from the position in Figure 2b to the solved position. It is believe that Loyd of-
fered a prize of $1,000 USD to that who could solve the problem. In 1879 Johnson
and Story proved that this was in fact impossible. We will prove a slightly more
general result.

First, observe that we can associate a permutation ¢ to any position of the puz-
zle. We can label the spaces of the grid at the bottom of the box, as in Figure 2c.

A given position of the puzzle can be associated with the permutation & € Sig
defined by

o(x) = y & thetile x is over the space y.

Here the blank space is thought as a tile with number 16.
For example the position in Figure 2d is given by the permutation

123 456 7 8 9 1011 1213 14 15 16
7713 213 9 6 7125 10 11 8 4 15 14 1 16

Of course, we can also write
7= (131315)(4 9101185 67 12)(14)(16).

A valid move in the puzzle consists in swapping the blank space with an adja-
cent tile. Assume that P is the position associated to the permutation ¢ and let
P, the position resulting from P after applying a valid movement. An natural
question is: can we obtain the permutation 7 associated to P, in terms of 7. The
answer is yes, we claim that

7 =0(16y),
where y is the tile that we swap with the blank space.

To see, this observe that any tile that is not 16 or the one on the space y in P,
remains in the same place. In other words, if x & {16, y}, then

7(x) = o(x) = 7(16 y)(x).
In P,, the blank space is where the tile y used to be in P, that is 7(16) = o(y).

Meanwhile, in P, the tile y is in the space where 16 used to be in P, thatis 7(y) =
7(16). This proves that 7 and (16 y) are exactly the same permutation.

*Applet obtained from ©Jamie Mulholand’s website (SFU Math)
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In our example, let us slide the tile with 7 to de blank space. Our claim is that
we obtain the permutation 7 = (16 7). In fact, this is obvious if we look at the
matrix representation of (16 7), which is

123 45 6 7 89 10 11 12 13 14 15 16
1 23 45 6 16 8 9 10 11 12 13 14 15 7}’

and the matrix representation of ¢

1 2 3 4 7 8 9 10 11 12 13 14 15 16
3213 9 125 10 11 8 4 15 14 1 16

6

7
112 3 45 6 16 8 9 10 11 12 13 14 15 7
B 9 6 716 5 10 11 8 4 15 14 1 12|°

It follows that

7 8 9 10 11 12 13 14 15 16
"(167)‘[3 2 13 5 }

10 11 8 4 1S 14 1 12

Claim. [f7 is a permutation associated to a solvable position of the 15-puzzle, then

(a) 7 fixes 16.

(b) o € A, that is, 7 is an even permutation.

Proof. The first condition is obvious, since it is equivalent to the fact that the
blank tile is on the space 16, which was part of the definition of a solvable po-
sition. To see that the second condition must hold, just consider a checkboard
colouring of the bottom of the box. Observe that every movement changes the
color below the blank space. Since the blank space starts and ends over the space
labelled with 16, we need an even number of movements. By our analysis above,
this is equivalent to the associated permutation being a product of an even num-
ber of transpositions. ]

Corollary. It is impossible to solve the 15-puzzle from the position in Figure 2b.

We will prove that the conditions in our previous claim are not only necessary
but also sufficient. More precisely:

Proposition 1.10. [f'oc € Ay is a permutation such that o(16) = 16, then the
associated position of the 1s-puzzle is solvable. In particular, there are exactly 175'
solvable positions of the this puzzle.

Before proving this proposition observe that

Remark 1.11. The set of permutation associated with solvable positions of the
15-puzzle is a subgroup of the symmetric group Sis.
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1 a2 3 lnd

13|14 | 15

1315 | 14

(a) Solved position
| |

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

(B) Impossible position

45 2 Il 12

8 > b |yl

4 9 W10 e/

3 (14|13

(c) Empty box of 15 puzzle

(D) An arbitrary position.

FIGURE 2. The 15-puzzle

Proof. The trivial permutation is associated to the solved position.

Let o and 7 be the permutation associated to the (solvable positions P, and
P,, respectively. Let P = P,P,, that is, the position obtained after applying to P,
the same sequence of movements that takes the solved position to 2,. We claim
that the permutation associated with P is precisely zo. To see this just observe
that a given tile x is on the space o(x) in ;. If we ignore the numbers on the tiles
and apply a sequence of movements that takes the solved position to P, to any
position (whenever this is possible) the tile on the space y will end up in on z(y).
In particular, for P, that means that the tile x is at 7(o(x)) = 7o(x) in the position

P.
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A very similar argument can be used to prove that if ¢ is associated with P,
then the sequence of movements that takes 2, to S takes S to P,-1, the position
associated with o1,

Finally observe that all the permutation associated to solvable positions fix the
tile 16, hence the associated subgroup is not only a subgroup of Sje, but a sub-

group of Sjs. O

Proof (of Proposition 1.10). We will show that the group G associated to the set
of solvable position is in fact the alternating group A;s. First, observe that by
moving the blank tile to the following spaces

16 —12 — 11 — 15 — 16

We end up with the position associated to the 3-cycle y = (11 12 15) (see Fig-
ure 3a). This proves that y € G. From the solved position move the tiles 12 and
11 (in that order) so that the resulting position is as shown in Figure 3b. Consider
the drawn by the arrows in Figure 3c. For every x € [15] \ {11, 12} we can move
the blank space along that cycle as many time as needed so that x ends on the
space 15 and the blank tile on the space 11. For example, if x = 7, after moving
the blank tile along the cycle once, we obtain the position in Figure 3d. Then we
can move the tiles 11 and 12 to its original position.

Notice the final position is a solvable one: it was constructed by a sequence of
valid movements and the blank tile is at the bottom-right corner. It follows that
the induced permutation z, € G. Observe that g, satisfies that

Ux(x) =15
w1 = 11
1:(12) = 12.
The latter imply that ¢ 'y = (1112 x). It follows that (1112 x) € G and since
we have proved that G < 45, Exercise 1.14 implies that G is indeed 45 O
Exercises.

1 Show thatif X and Y are (not necessarily finite) sets with [ X| = | Y|, then
Sy = Sy.

2 Let X beaset.

(a) If |X| = n, how many elements does the set Sy have?
(b) LetX beacountably infinite set, thatis, | X| = |N|. Prove that [Sy| >
IN| (that is, strictly greater than |NJ). Can you determine [Sy|?

L3 Prove thata k-cycle s = (x; - - - x3) and an C-cycle 7 = ()/1 ce yg), both
elements of S, are equal if and only if £ = ¢ and forsome b € Z, x4, = y;
orevery 1 < 7 < 7 (the indices are taken modulo 7).

1.4  Prove that every permutation ¢ can be written as a product of disjoint
cycles. Hint: two symbols x, y € X lie in the same cycle of ¢ if some
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12|34 1 a2 I3 lad 213 1[1
5s|e[7]8 56|78 56 | 8
911011511 9 (10 11 0 11
| T
1314 | 12 1314 | 15| 12 3445 | 12
S ———
(A) (B) (©)
T Ay T Ty
6 (10| 8 | 4 6 (10| 8 | 4
13| 9 T 11 13| 9 |11 |12
1415 7 | 12 14|15 7
_— |
(D) (E)
FIGURE 3
power of ¢ maps x to y. Prove that this condition defines an equivalence
relation and hence a partition of X.
LS Prove that disjoint cycles commute.
.6 Letn e N
(a) Prove thatif o = (x; -+ x;) is a k-cycleand ¢ € S, then pou™" =
(1) -+~ ).
(b) Show that for every £ < 7 every two k-cycles are conjugate.
(c) Conclude that two permutations in S, are conjugate if and only if
they have the same cycle-type.

1.7 Let X beainfinite set. An infinite cycle in Sy is a permutation y such that
there exists a family Z = {x; : 7 € Z} of elements of X with y(x;) = x;41
forevery7 € Zand y(y) = y forevery y € X \ Z. Find two infinite cycles
in §7 that are not conjugate.

1.8 Let » € N. Show that the set of involutions 7 = {(1£) : 2 < k < n}isa

minimal generating set of S,,. That is, show that
S, ={((1k):2< k< n),

and that no proper subset of 7 generates S,,.
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Let » € N. Show that The involution (1 #) and the z-cycle (12 --- »)
generate S,.
Let » € N, find necessary and sufficient conditions for 7 j € [#] so that

(/)12 n) =S,

Show that the group Sy cannot be generated by a finite number of per-
mutations.
Prove that the set 4,, is a subgroup of S,.
Prove that an 7-cycle in S, is even if and only if 7 is odd. Conclude that
a permutation ¢ is even if and only if the number of even entries in its
cycle-type is even.
Let » > 3 and let 4, denote the alternating group.

e Show that

A, = <(xyz) DX 0,2 € [n]>
e Show that
A,={(12z): 2z € [n]).

e Show that if x and y are fixed elements in [7] then

A, = <(xyz) 12 € [n]>

Prove that if T'is a permutation group, then either I' consists of only even
permutations or half of the permutations in I' are even. Conclude that
A, is normal in S, and that every permutation group that contains an
odd permutation has a normal subgroup of index 2.

Show that if 7 is prime, then any two cyclic of order 7 in S, are conjugate.
Find two cyclic groups of order 6 in Sy that are not conjugate.

Letn € Nand D, = (p, o) the dihedral group defined in Equation (1.2).

(a) Show that these permutations satisfy the following relations:
2

P TE
o’ =¢
pop=a

(b) Define 7 = gp. Show that the relations above are quivalent to

Tzzﬁzz(rﬁ)nzg

We will prove later that any group generated by two involutions is isomor-

phic to a dihedral group.
Prove that | D,| = 2x. Hint: work the cases where 7 is even and 7 is odd
separately.

Find the conjugacy clases of the symmetric group Ss and of the alternating
group As. Hence, show that 45 is the only normal subgroup of Ss (apart
from 1 and Ss, and that A4s is simple.)
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120 If H < G are groups, the normaliser of H in G is the largest subgroup
of G in which A is normal. Find the nomaliser in S, of the cyclic group

C,={(12... n)).
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2. GROUP ACTIONS

In the previous section we reviewed basic properties of permutation groups.
In this section we will focus on a slightly more general notion, which is that of
group actions. Informally speaking, group actions are a tool that allows us to treat
any group as a permutation group. Formally speaking:

Definition 2.1. Given agroup G with neutral element1and aset X a (lefz) group
action of G on X is a function @: G X X — X that satisfies

(a) @: (1 x) — xforeveryx € X
(b) ¢ (¢h x) = ¢ (¢ @(h, x)) foreveryg, b € Gandx € X.

We usually omit @ and think of a group action as a way to “evaluate” a group
element onto an element of X. In fact, if ¢ is a left group action, then we usually
denote by gx the element (g, x) € X. With this notation, the element ¢ (gb, x)
should be denoted by (gh)x (we first multiply the elements in the group and then
evaluate), whereas the element @ ( , p(b, x)) should be written as g(hx) (we first
evaluate » on x and then evaluate g on the resulting element). Thanks to Item (b)
of Definition 2.1, we can write ghx without the need of parentheses. If G acts on
a set X we say that X is a G-set.

Words of caution: Some authors use 7Zght group actions, which can be de-
fined in a similar way (see Exercise 2.1). The main difference is the order in which
we evaluate the elements, if we take g, » € G and we and evaluate it (on the left)
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in an element x we first evaluate » and then we evaluate g. While if we evalu-
ate the same group element on a right action we first consider the action of g on
x and then the action of » on the resulting element. This two operations does
not need to be the same. The choice of one side or another is related to the fact
that we evaluate permutations on the left. As before, this choice has usually little
theoretical consequences, but one needs to be careful (see Exercise 2.1).

We list several examples of group actions below.

Example 2.2. Naturally, if X is any set then the symmetric group Sy acts on the
set X in the obvious way:

@ (g x) = o(x).
Example 2.3. Both the dihedral group and the cyclic group acts on the set [#]
by restricting of S, to the D, and C,, respectively. However, both group also
act on the set of edges of a z-cycle (equivalently, a regular #z-gon) when they are
interpreted as symmetries.

Example 2.4. In fact, the previous examples show a obvious but important way
to find actions. If G is a permutation group of S, then G acts naturally on the
set [7].

If G is a permutation group, we say that G is of degree n if it acts on [#]. Some
authors also require that thereisno # € {1,..., n} such that o(k) = & for ever
o € G, so that S5 when interpreted as the subgroup of permutations in S that
fix 4 is a group of degree 3 but not of degree 4. We shall make that assumption
whenever we refer to a group of degree 7.

Example 2.4 suggest a way to find group actions. In fact, it is not hard to see
that every group action is essentially given as in this example.

Proposition 2.5. Let G be a group acting on a set X with the action ¢: G x X —
X. The mapping p,: G — Sx given by p,(g): x — gx defines a group homomor-
phism. Conversely, every group homomorphism p: G — Sy induces an action of
G on X by gx = p(g)(x).

Proof. See Exercise 2.2. O

Example 2.6. Another natural way of finding examples of group actions is by
consider the symmetry group ot geometric figures. That is, the set of symmetries

of the space that preserve a given figure. For example, the symmetry group of the
cubeactsontheset{1,2, 3, 4,5, 6,7, 8} of vertices, theset{a, b, d, ¢, f, &, b, 1, j, k, I}
of edgesand theset {4, B, C, D, E, F'} of faces (just to mention some). The 3-fold
rotation R on the line that connects the vertices 1 and 7 induce the following per-
mutations the sets of vertices, edges and faces:

(254)(368) on vertices,
(ade)ibhb)(f cl)jgk) onedges,
(ABC)DEF) on faces.
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FIGURE 4. A rotation of the cube

Example 2.7. Every group G acts on itself by left multiplication. That is, the
action is given by (g, x) — gx for every g, x € G. If G is finite, say |G| = n the
representation y;: G — S, defined by p/(g) = y, where y, : G — G is given by
7,(x) = gx. Yet again, observe that the side for which we multiply is relevant so
that g, is actually a group-homorphism, i.c.

Vig = p(hg) = p(P)eg) = i7e
The left-most permutation of G in the equation above maps x to (hg)x while the
right-most maps x to y(gx) = h(gx).

Observe that g, is injective. In fact if u)(g) = ¢, then gx = y,(x) = x for every
x, which implies that ¢ = 1.

The G acts on a set X, the kernel of the action is the kernel of the induced
representation of G in Sy We say that an action is fasthful whenever the its ker-
nel is the trivial subgroup. Equivalently, when the associated representation is
injective.

The group homomorphism y; in Example 2.7 is often called the (left) Cayley
representation of G. This homomorphism proves the following theorem.

Theorem 2.8 (Cayley, 1854). Every finite group with n elements is isomorphic to
a subgroup of S,

Even though Theorem 2.8 is more than one hundred years old, it has cur-
rent relevance. Permutation groups are concrete objects compared to an abstract
group. In particular, permutation groups can be understood by a programming
language. Unfortunately, the theorem as it is has little practical applications. If
a group G is relatively large, the symmetric group on |G| symbols is extremely
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complicated. However, the truth is that every faithful action induces an injec-
tive homomorphism, so in order to find a representation of an abstract group
as a permutation group we only need to find a faithful action. For example, the
group G of symmetries of the cube has 48 elements, Theorem 2.8 says that G is
isomorphic to a subgroup of Sys, which has size 48!. Yet, the action of G on the
set of vertices is faithful so G has a representation in Ss. Moreover, the action
on the set of faces is also faithful, which implies that G has a representation of
degree 6. It is an active research area to find small (minimal) permutation repre-
sentations of relevant families of finite groups.
Unfortunately, most actions are not faithful. Let us show a example of it.

Example 2.9. Let G be a group and A a subgroup of G. The set X of left cosets
of H is a G-set. The action is given by

g(xH) = gxH.

This action is generally not faithful. If K is a normal subgroup of A then xVkx €
K C H forevery k € K, which implies that

kxH = xH forevery k € K

Definition 2.10. If ' < G are groups, then the zormal core (or simply, the core)
of H in G is the largest normal subgroup of G contained in /, that is

Coreg(H) = mg_ng
g€G
Example 2.01. If G is a group, then G is itself a G-set where the action is given
by (left) conjugation, that is, the action of a given element g on x is given by
g:ix+— gxg_l.
The kernel of this action is the centre Z(G).

Example 2.12. Similarly, G acts on the set X = {H : His subgroup of G} by
g:Hw— gHg ™.

The intuitive idea of a group G acting on a set X is that every element of G
move the elements of X. It makes sense to consider the following important
concepts.

Definition 2.13. Assume that G acts on a set X. Given x € X, the orb:t of x is
the set
Gx = {gx:g € G}.
The stabiliser of x is the subgroup (see Exercise 2.5)
Stabg(x) = {g € G : gx = x}.
For a given ¢ € G the set of fxed points is the set
Fix(g) = {x € X : gx = x}.
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The set of fixed points of G is the set
Fix(G) ={x € X : gx =xforallg € G} = ﬂ Fix(¢)

g€G

It is important to remark that some authors denote these sets differently. A
common notation for the orbit of x is O(x) and the stabiliser is sometimes de-
noted G, (see [Rotg6], for example). The set of fixed points of an element g and
of the group G are sometimes denoted X, and X, respectively.

Observe that the relation ~ in X given by x ~ yif'and only if Gx = Gy is
an equivalence relation (Exercise 2.4). Therefore this relation defines a partition
of X in equivalence classes given by the orbits. The latter implies the following
straightforward result.

Proposition 2.14. The set of orbits induces a partition of X. If R C X is a set of
representatives containing exactly one element for each non-trivial orbit, then

X=HA@U<LM%>

XER
In particular, if X is finite, then

1X| = |Fix(G)| + (Z ycxy>.

XER

Let X and Y be two G sets with actions @y and @y, respetively. We say that X
and Y are equivalent (as G-sets) if there exists a bijection 7 : X — Y such that
the following diagram commutes:

GxX -y 6xyY

[
x—1 v
That is, if
7 (px(g %)) = pr(g 7(x))

Observe that if X is a G-setand Z C X is such that gz € Zforeverg € G,
then Z is a G-set. In particular, the orbit of every element of a G-set X is a G-set
itself.

Now we presenta straightforward but very useful result, sometimes even called
the fundamental theorem of group actions.

Theorem 2.15 (Orbit-Stabiliser Theorem). Let G be a group acting on a set X
and let x € G. The orbit Gx of x and the set of left cosets of Stab(x) are equivalent
as G-sets. In particular,

|Gx| = [G : Stabg(x)].
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If G is finite, then
|G|
|Stabg ()|

Proof. Let S denote the subgroup Stabg(x). Consider the mapping ¢ : G/S —
Gx given by ¢(gS) = gw. First notice that ¢ is well-defined. Indeed if g§ = hS
then h~! ¢ € S, thatis b1 gx = x, which implies that gx = hx.

Similarly, if ¢ and b are elements in G such that gx = hx, then g§ = AS. In
other words, ¢ is injective. Clearly ¢ is surjective. The bijection ¢ defines an
equivalence of G-sets. O

|Gx| =

We finish this section with some important definitions.

Definition 2.16. Let G be a group acting on a set X. We say that the action is
transitive if there is only one orbit. That is, if for every two elements x, y € X
there exists a group element g such that g = .

We say that the action is free or semiregular if the stabiliser of every element
is the trivial group. Finally, we say that an action is regular if it is both transitive
and semiregular.

Exercises.

2.1 Avright action of a group G on aset X is mapping ¢ : X X G — X such
that
® y:(x1)— xforeveryx € X
o ¥ (5gh) =y (¥(x2) h).
We usually denote y(x, ¢) by xg.

(a) Prove thatif @ : G x X — X is a left action, then the mapping
¥ : X x G — X defined by ¥(x,¢) = (g™, x) defines a right
action.

(b) Conversely, if ¥ : X X G — X is a right action, the mapping ¢ :
G x X — X given by (g, x) = ¥(x, ¢~ ') defines a left action.

(c) Give an example of a left action ¢ such that the mapping ¢ : X X
G — X given by ¥(x, ¢) = @(g, x) is not a right action.

2.2 Proofthateveryaction of agroup G onaset.X induces agroup homomor-
phism G — Sy and conversely, that every such homomorphism induces
an action of Gon X.

23 Let Gand H be groups. A group antimorphism is afunction ¢ : G — H

that satisfies that
#(122) = $(g2)$(g1),
for every g1, &> € G.

(a) Prove thatif ¢, : G — Hand ¢, : H — K are group antimor-
phisms, then ¢, o ¢ : G — K is a group homomorphism.

(b) Show that ()™ : G — G given by ¢ — ¢~ is a group antimor-
phism.
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(c) Conclude that right actions of G to X are incorrespondence with
group antimorphisms G — Sy.

If G is a set acting on a set X, then the relation on X defined by x ~ y if
and only if Gx = Gy defines an equivalence relation on X.
Prove that the stabiliser of a point is a subgroup of G
Let X and Y two G-sets. Prove that X X Y is a G set with the action
2(x% 7) = (g%, g7). Prove that the stabiliser of (x; y) is Stabg(x) N Stabg(y).
Show an example where X and Y are transitive but X x Y is not.
Show thatif, y € X belong to the same orbit, then Stab(x) and Stabg(y)
are conjugate.
Let X be a transitive G-set. Let S denote the subgroup Stabg(x) of a point
x. Prove that the core of § on G is precisely the kernel of the action. Prove
that this is not necessairly true if X is not transitive.
If Gisagroup, acore-free subgroup of G is a subgroup H such that Core(H)
is trivial. Show that every transitive faithful action of G is equivalent to
the left-coset action of a core-free subgroup of G.
Let H and K subgroup of G, then G is a union of disjoint double cosets

HgK = {bhgk € G:hec HkecK}.

If Gis finite, then the size of adouble coset HgK is |K | x [H : (¢Kg™' N H)].
Let G be a group acting transitively on a set X. Let A be a subgroup
of G and let § denote the subgroup Stabg(x). Prove that the following
statements are equivalent

(a) G=SH,

(b) G = HS,

(c) H is transitive.
In particular, the only transitive subgroup of G containing S'is G itself.
If G contains a subgroup A of index 7, then it contains a normal sub-
group K < H such that [G : K] is finite and divides 7!.
if G is a finite group or order 72, and p is the smallest prime which divides
m, then any group of index p is normal in G.
Let n > S, then the only proper subgroup of index less than 7 in the
symmetric group S, is the alternating group 4,, of index 2.
Prove that there is no simple group of order 56.
Prove that ther is no simple noncyclic group of order 2”p”" where m €
{1, 2,3} and p an is 0odd prime.
Forn > 2, n — 2 transposition cannnot generate a transitive group of
degree #n (Compare with Exercise 1.8)
Let G be a group acting faithfully on a set X. Assume that G has finitely
many orbits Xj, ..., X;. Notice that G acts transitively on each subset X;
(z € {L,... k}). Prove that G is isomorphic to a subgroup of Sy, X - - - X
Sx,-
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219 Let G be a group of order p* with p prime and # € N. Assume that
G acts faithfully on a set X with |[X| = n where n < p*. Prove that
G =2y X X Ly

2.20 Let G be an abelian group. Prove that if G acts transitively on a set X,
then then the action is regular.

221 Find the order of the symmetry group of the cube and the order of the
symmetry group of a regular icosahedron.

222 If G is a finite non-trivial p-group (that is, a group such that |G| = p*
for some £ € N), then Z(G) is not trivial. Hint: consider the action in
Example 2.11.

2.23  Letp be a prime such that p =1 (mod 4). Consider the set

X = {(x,y,z) e N :x+4yz=p}.
Consider the mapping

(x+2z2y—x—2) ifx<y—z
p: (%)~ (2y—xypx—y+z) ify—z<x<2y
(x—=2px—y+zy) ifx>2y
(a) Prove that ¢ is a permutation of order 2 on X with exactly one fixed
point.
(b) Prove that the permutation ¢ : (; ¥, 2) — (, 2, y) must also have at
least one fixed point.
(c) Prove afamous theorem in number theory: An odd prime pis a sum
of two squares if and only if p = 1 (mod 4).
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3. POLYA THEORY

Now we turn our attention to a family of counting problems. These are all
part of what today is known as Pélya theory of counting but they arise from very
basic execercises.

Example 3.1. Assume that we have a broomstick and several cloth pieces of 5
different colours. How many different flags can be constructed using the broom-
stick as flagpole and two pieces of different colour.

Solution. Wehave 5 possibilities for the colour that goes next to the flagpole and 4
possibilities for the other colour, therefore we have 5 x4 = 20 different flags.  [J

Example 3.2. If we have the same pieces of cloth as in the previous example, how
many flags (with no flagpole) can be built using two pieces of cloth of different
colour?

Solution. O

Example 3.3. We have the same piece of cloth and the broomstick, how many
flags with flagpole can we build if the two colours do not need to be different.

Solution. O
Example 3.4. The same question as above but without the flagpole.

Example 3.5. We want to sit 7 knights in a round table. Two configurations are
the same if one can rotate the table to obtain one from the other. In how many
ways can the knights be sit?

Solution. O

Example 3.6. What is the number of essentially different necklaces wich can be
made with with 7 beads of two different colours?

This is not an easy question, for z = 6 the number is 13. See Figure s.

Question 3.7. What is the number of non-isomorphic graphs on 7 vertices?.
For n = 4 there are 11.
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Question 3.8. Whatis the number of essentially different ways to paint the faces
(or edges, or vertices) of the cube with 7 colors?

We begin with with the following theorem, which was originally published by
Burnside (1897) but was originally prove by Frobenius (1987).

Theorem 3.9 (Burnside’s Lemma). Let G be a group acting on a set X, the num-
ber n(G, X) of orbits of G on X is given by

m(G, X) = 1 > " Fix(g)
Gl =

Proof. Count the pairs (g, x) € G X X such that gx = x. A given elementg € G
appears in |Fix(¢)| of those pairs. On the other hand, given x € X, there are
|Stab(x)| pairs with x as second coordinate. It follows that

> " [Fix(g)| = ) _ [Stabg(x)].
g€G xeX

Now assume that ¥ = {y;,..., 7, } C X isaset of elements, one for each orbit
(so that m(G, X) = m).

m(GX) =) 1

yeY
1 1
DI
1 1
=S e Y
xeG_}’l |Gx| XEG}/M |Gx|
Y i
| G
x€EX

O

Let us apply Burnside’s Lemma to solve Example 3.5. Clearly, the cyclic group
C, acts mapping one arrangement of the table to another. Two arrangements
are essentially different if and only if they are not in the same orbit. This means
that we want to count orbits under the action of C, of all the possible ways of
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sitting the knights. The amount of possible arrangements s 72!. The permutation
id € C, fixes every arrangement while every non-trivial element has no fixed
arrangements. By Burnside lemma the number of orbits is

n!

! | Fix(id)| =
n n

Let us now formalise this notion of conting colouring configurations of ob-
jects. Let K = {1,..., k} be a set, which we call the set of colours. Assume that
X is aset. A colouring of X is a function ¢ : X — K, thatis, a function that
assigns the colour ¢(x) to each elementx € X. The set of colourings of X (with
colour-set K) is the set

K¥={c:X > K}.

Observe that if | X| = 7, then |[K*| = £”, as expected.
Let G be a a permutation group of X, then the group G acts on KX by

oc = c(o ),
that is, for every x € X, the colouring ot is given by
(e0)(x) = (o (x)).

The inverse is necessary to guarantee that the previous mapping is actually a
left action.

Now we use Burnside Lemma to compute the number of orbits of colourings
of a set X with respect a permutation group G of X.

Proposition 3.00. Let X be a set with n elements and G a permutation group of
Sx. Let K be a set of colours with |K| = k. Let m denote the number of orbits of G
on KX, the set of colourings of X. Then

m = IIEI zg: (G,
where ci(G) denotes the number of elements of G that have € cicles.
Proof. Leto € G. Assume that ¢ is colouring fixed by ¢, that is, for every x € X
c(o'%) = o(e)(x) = c(x).

If follows that if any two elements of X in the same cycle of ¢ must have the
same colour. Clearly, if o has € cycles, there are Kt colourings of X satisfying that
any two elements in the same cycle have the same colour. Any such colouring is
fixed by . The result follows from Burnside’s Lemma. ]
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We can now solve Example 3.6. We need to compute the number ¢,(Dy) for
the dihedral group Dg. The elements of Dy are listed below:

M2)(3)(4)(5)(6) (123456)  (135)(246)
(14)25)36)  (153)(264) (165432)
1(4)(26)35)  (2)(5)13)(46) (3)(6)(24)(15)
(12)(36)(45) (23)(14)(56) (34)(25)(16)
It follows that ¢;(Dg) = 2, c2(Dg) = 2, c3(Dg) = 4, c4(Dg) = 3, ¢5(Dg) = 0 and

(D) = 1.

The 6 permutations in the first two rows above are precisely the elements of
the cycle group Cs. We can compute the numbers ¢;(Ce) = 2(C) = 2,5(Cs) = 1
and ¢5(Cg) = 1.

We can now compute the number of necklaces of legth 6 with two colors with
respect to rotations (using Cs) or with respect to rotation and flips (using Dg).

! 156
mDeg)=— (2x2+2x2%+4x2°+3x2"+1x2) = — =13

12 o

L 84

m(Ce)—g(2><2+2><22+1><23+1><26)— o=l

The fact that we get one extra orbit with the cyclic group is that all but one of
the orbits with respect to the dihedral group have mirror reflection (see Figure ).
The rightmost necklace in the first row does not admit mirror reflection, hence
its orbit with respecct to the dihedral group has to be split into two different
orbits of the cyclic group.

Proposition 3.10 allows us to count colored objects that are essentially different
with respect to the symmetires of the group G. That number depends only on
the cycle structure of the elements on G, more precisely on the numbers ¢/(G).
In the following paragraph we will introduce the cycle index of a permutation
group G, which generalise in some sense the numbers ¢¢(G).

Let G be a permutation group of aset X, with [ X| = zandleto € G, the cycde
monomial of 7 is defined as

M (t,...,t,) = H tp.

if 7 has & cycles and the 7-th cycle is of length #;,. In other words, the exponent of
thi € {L,...,n}in M,(t,...,t,)is k whenever ¢ has & cycle of lenth 7.
The cycle index of G is the polynomial

Zo(ty, ..., t,) |G|ZM tyooos by

e
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Observe that the cycle index actually generalises the numbers ¢,(G) discussed be-
fore. In fact, the sum of the coefficients of the terms of degree € in Zs(t, . . ., £,,)
c(G)

|G| *
From the previous discussion the following proposition is obvious.

is precisely the number the

Proposition 3.ax. Let X be a set with n elements and G a permutation group of
Sx. Let K be a set of colours with |K| = k. Let m denote the number of orbits of G
on K, the set of colourings of X. Then

m=Zk... k).

We will compute some cycle index as excercises (see Exercises 3.1 to 3.4). We
shall use them just to show how they work.
According to Exercise 3.2, the cycle index of the cyclic group is

ch .. Z ¢ d) ”/d.

For n = 6 we have

1
Ze(ty ... ts) = c (£ + 8 +26 +2¢)

Similaryly for the dihedral group Ds,

1
Zp(ty, ... 1) = 5 (£ + 85 + 26 + 2t + 3671, + 38;)

Then we can use Proposition 3.11 to solve the 2-colour necklace problem:

1 84
ZCG(Z,---,2)=8(26+23+2-22+2-2)=Z=14

L6 o3 2 2 A2 3 156
Zp(2,...,2) = 2(2 +2° 4227 42-2+3-27-2 +3-2)=E:13

Proposition 3.11 allows us to compute the number of orbits of coloured ob-
jects whith no restrictions, but say that we are interested in finding 2-coloured
necklaces of length 6 such that only 2 white bead are used.

From now on we will modify slightly our notation, and we shall denote K =

{91 ..., 7} the set of colours.

Definition 3.12. Let X be a set with 7 elements and let G < §, a permutation
group acting on X. Let K = {y;,..., 9} a set of colours. Let vV = (ny,...,7;)
a vector of £ integers such that #; > 0 for every 7 and 7y + - - -, = n. Leta,
denote the number of non-equivalent colourings (with respect to G) such that
the colour y; is used 7, times. The pattern inventory of G is the polynomial

Pe(yis -5 ) = Zavyfl...yzk.

v
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Clearly, if we know an explicit expression for P then we how many colourings
of a given type we have. Our task now is to find a way to compute Pg. Before
doing thatlet us compute a very simple to show how the pattern inventory works.

Example 3.13. Let X be a set with 7 elements. How many colourings with 2
colours exists if we do not mind symmetry?.

Proof. Solution Let say tha the colour-set is K = {x, y} For this problem the
vectors V are of length 2 and since both entries must sum 7 they are of the form
(¢, n—1). Obiously, the number of colourings using the colour x 7 times, when no
symmetry is considered is determined by which of the elements of X are coloured
with the given colour. In other words

n
A(in—i) = / >

hence the pattern inventoy is just

n " o
P{[d}(x,'y) = Z <l.>xlyn 1

=0

O

The expression on the right side of prevoious equations should be familiar for
the reader. A well-known theorem claims that P,(x, y) = (x +y)”, and this is not
a coincidence; let us explore this example further.

If we express the product (x + y)” as

(x+x+y)---(x+y)

>

v
7 times

one can see that every term of the product, before reducing similar terms, is given
by chosing either x or y on each of the monomials. This explains the fact tha the
coefficient of x'y" " is precisely (Z‘) , the number of ways of chossing 7 times the
letter . We shall see that this coincides with the ways of chossing one colour for
each cyclie of the (unique) element on the group {7d}. More precisely,

Theorem 3.14 (Polya counting formula). Lez X be a set of n elements and G < S,
agroup actingonX. Let K = {y1, - - - , y } be a colour-set. Denote bye Pg(y, . . . , yi)
the pattern inventory and by Zg(ty, . . ., t,,) the cycle index of G, then

k k k
PG()’D---:}%)ZZG Z-y]’zy]z”zyfn
Jj=1 7=

J=1

Proof. LetV = (ny,..., n;) beavector such that z;, > 0 forevery 7and 7z, + - - - +
n, = n. Let GG C K¥ the set of colourings of X such that there are exactly #;
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elements of colour y;. Foro € G, let G5, C Gy the set of colourings in Cy that
are preserved by o.

For v as above, let " denote the term »{" - - - y*. If ¢ € G5, then every two ele-
ments on a cycle have the same colour, because the colouring must be preserved
by o. Moreover, the lengths of the cycles coloured with a given colour y, must
add 7,. Obivously every colouring satisfying those two conditions is in Cy,,.

Consider the monomial M, <Zf=1 Yp Zjil y]?, e, 21/11 yj”> . This monomial

is just
k k k
DD I 2 H(f -+9f)
7=1 7=1 7=1

where ¢ runs over the lengths of the cycles of o. Observe that the the term §*
appears in [[, (0 + - - - + »;) as many times as the ways of choosing one letter
(of {y1, ...,y }) per cycle of 7 such that the sum of the lengths of the cycles where
we choose y; is 7.

When comparing the two previous analysis it is easy to see that the coefficient

of y" in M, (Zjil Vp Zj/.ezl yf, e Zle y}’) is precisely |C;,|. When we sum

over all possible v we have

k
Z»Z»---’Zﬁ =2 1GIy"
7=1 7=1 v

Now we sum over all possible elements o € G and divide by |G| and we have:

k k
3035370 3] BE R Pars 3 3
J =1 J= J J=

ceG

|ZZ!CW!

ceG v

—z(|G|z| )y

ce€G
=2 ar
- PG()’L' .. )y/e
where the second to last equality follows from Burnside Lemma. O

As an example let us compute the pattern inventory of possible colouring of
necklaces of length 4 using colours red () first with respect to the dihedral group
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and then with respecto to the cyclic group.
1
Zp,(ty by, ts, 1) = S (8 +385 + 215 + 26(1,)

1
Zety try 13, 1) = y (8 +5 +2t,)
Using Polya counting formula we can see that
Pp(rngb)=Zp(r+g+b, r? +g2 + 057 +g3 + 03t +g4 + b4)
1
=3 (r+g+) +3(7 + &+ 0 +2(r* +¢* + b*)+
2r+g+ 0y (7 +g°+6%)
=+ P+ 2770 + g + g+ b+ 27°gh + 2rg7b + b+
+ 270 + Zngz + Zgzbz + b +gb3 + b
and
Pe(ngb)=Zc(r+g+br* +g + 57 + & + 0, r* + ¢ + b%)
1
=3 ((V+g+b)4+(r2 +g> + b)Y+ 2(r* + ¢ +b4))
=t + g+ 270" + g + g+ 7Pb+ 3r7gh + g + b+
+ 2770 + 3rgb2 + Zgzbz + b’ +gb3 + b
Observe that there are two non-equivalent colouring with two red beads, one
green and one blue under D, wheareas there are three of them under C,. This
is essentially because the necklaces (7, 7, g, &) and (7, 7, b, g) are different with re-

specto to the cyclic group but equivalent with resepct to the dihedral group.
Consider now the following example:

Example 3.15. Suppose a jewelry company plans to market a new line of unisex
bracelets. The bracelets are sold in pairs, for a couple to share. Each bracelet
consists of # beads, some gold and some silver, and the two bracelets in a pair are
opposites, in the sense that one can be obtained from the other by changing each
silver bead to a gold one and each gold to assilver. For example, if one bracelet has
two adjacent gold beads and # — 2 silver beads, then its mate has two adjacent

silver beads and # — 2 gold beads.

Using the cycle index of Dy computed before we can see that there are 6 non
equivalent bracelets with two colours. Moreover, using Polya counting formula
we can easily see that the pattern inventory is

4,3 2 2 3, 4
Pp(gs)=s"+5g+25g +35¢ +g

Meaning thatbracelets can be represented as (s, 5, 5, ), (5, 5, 5, £), (5 & 5 2) (5 5 & ),
(%29 ¢) and (g ¢ & g). However, when we consider the change of colours we
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only have three different pairs, namelly

{6559, (@292}
{6259 (@559}
{6529 (@859}
{889 (5559}

Notice that the pair of the bracelet (5, g, 5, ¢) is (g 5 g 5), which is equivalent to
the former under the action of Dy. In other words, that pair of bracelets consists
of two identical bracelets.

We can take a step back and count unfasten bracelets (that is, linear {g, s}-
sequences) and then consider two of them equivalet if we can obtain one from
the other by either the action of a dihedral group or by a swich of colours. We
can see that we obtain precisely the same equivalence classes as before:

{55590 2929}

{6259 (@529}

{529 @559 6259 (@550}

{229 (95590592 (5529 5552, (5589 (5859, (g559)}

Observe that in these consists of the orbits of linear {g, s} -sequences under the
action of two groups. On the one hand we have the group Dj acting as symme-
tries of the necklaces and on the other hand we have a cyclic group C, swapping
the colours. Let us formalise these ideas for the general case.

Let X be a set with 7 elements and G < S, a permutation group acting on X.
Let K be a set with & colours and H < S a permutation group acting on K. If

o € G,v € Handc € K* the mapping (5, 7)c — ¢ where ¢ is the colouring
defined by

tx)="7 (c(ailx))

defines a left action of G x H on K* (see Exercise 3.14).
The following result tells us how to count the number of orbits for this action.

Proposition 3.16. Ler X be a set with |X| = n and G < S, a permutation group
acting on X. Let K be a set of colours with |K| = k and H < Sy a permutation
group acting on K. The number of orbits N of K* under the action on G x H
defined above is:

N-= ﬁ TQZHZG(MT), (D)

where m(7) =

Jli

J - 2{(7) and z/(7) denotes the number of cycles of length j in 7.
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Proof. Lets € G and 7 € H. Denote by ¢(s; 7) the number of colourings
preserved by (g; 7). By Burnside lemma

S, 2,0 |H\Z< el 2% )

7)eGXH geCG

It remains to show that

‘ Z¢ 0, 7) = Zg(mi(7), ..., m,(7)).

Letyy, ..., ysbethe cycle of randletusdenote V; = supp(y;) C X the support
of y;, thatis V; = X \ Fix(y;). Clearly a colouring c is preserved by (g, 7) if and
onlyif each of its restriction¢, : V; — K is preserved by (y,, 7). Let ¢,(c; 7) be the
number of colourings of V; preserved by (y;, 7). From the previous observation
we have that ¢(g; 7) = Hil ¢y 7). Observe thatif ¢; : V; — X is a colouring
fixed by (y,, 7) then

ci(x) = (7 T)ei(x) = 2(cly; ') = 7(co™'v)) forallx € V,
or equivalently
c(oy) = 7(c(y)) = forally € V;

Assume that y; haslength ; (thatis | V7| = (), pickxy € V; and letk := ().
Observe that the colour of every other elementin V’; depends only on kand 7. In
fact, if y = o"(xo) then ¢(y) = ci(c"x0) = 77(c,(x0)) = 77 (k). In particular, since
this is true for 7 = ¢;, we have that the cycle of 7 containing £ must divide ¢;.

Conversely, if we pick any element # € K such that the cycle of 7 containing
k has length a divisor of ¢;, then the mapping ¢; : V; — X defined by ¢,(yx) =
7’ (k) is a well-defined colouring that is preserved by (y;, 7).

In other words the number ¢,(g; 7) is equal to the number of ways of picking
a colour £ lying on a cycle of 7 of length a divisor of ¢;. Obviously this number is

57)= ) ()
et

Finally, observe that

d d
= [[ ¢z 7) = [[ me(2) = M. (mi(2), .., m(2)).

The result follows from taking the sum over the elements of G and dividing

by |G| O

We finish the section of the notes by remarking that the previous result solves
the problem of finding the number of non-equivalent colourings under the ac-
tion of the group G on the set of elements and the group A on the set of colours.
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The notion of a patter inventory can be also extended to this context and an anal-
ogous result to Theorem 3.14 was proved by De Brujin in 1964. We leave this

result out of these notes but is the reader is interested a proof can be found on
[Bru67]

Exercises.

3.1
3.2

3.3

3.4

3.5

3.6

3.7

Find the cycle index of the group of rotations of the cube.
Prove that the cycle index if the cyclic group is

Zo(ty...t,) = % > gy

dln

Prove that the cycle index of the dihedral group D,,is

n—1
Zp(ty...rty) = 2n Zd\n ¢(d)tz + m‘1l‘2: 1) n for n odd,
L (S p D+ 2 + %) for n even

We say that a partition P of [#] is of type (ky, k2, . . . k,,) if P has k; subsets
of size 1, k, of size 2, etc.

(a) Find the number of partitions of [#] of a given type (&, ... k).

(b) Use the previous item to prove that

1 ke k
Zgn(l'l,...,tn)— Z 1k12k2---n/€nk1!/e2!.../e !l‘l et
(ktyonten) "

(c) Compute explicitly the cycle index of S, for z < S.
Find the number of essentially different colourings of the vertices of K
(the complete graph with 5 vertices) with at most 5 colours.
Let X; and X, be two disjoint sets of size 7#; and 7,, respectivelly. Let
G, a permutation group of the set X, ( € {1,2}). Consider the group
G =G X G,.

(a) Prove that G acts faithfully on X = X; U X,.

(b) Prove that

Zg(ll, v by S5 . .,Snl) = ZGl(tl: cees tnl) . ZGZ(Sl) .. .,.Snz)

(c) Compute the cycle index of the largest subgroup of Ss that preserves
the partition {{1, 2,3}, {4,5}}.
The commander of a space cruiser wishes to post four sentry ships arrayed
around the cruiser at the vertices of a tetrahedron for defensive purposes,
since an attack can come from any direction.
(a) How many ways are there to deploy the ships if there are two differ-
ent kinds of sentry ships available, and we discount all symmetries of
the tetrahedral formation?
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3.9

3.10

3.11

3.12

3.13

3.4
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(b) How many ways are there if there are three different kinds of sentry
ships available?
Consider the natural action of the dihedral group Dj on the tiles of an
unpainted 4 X 4 chekerboard. Let G denote the induced permutation
group of the 16 tiles.
(a) Find the cycle index of G.
(b) In how many ways can we paint the board if we use colours black
and white.
(c) In how many ways can we paint the checkerboard if 8 tiles must be
black and 8 must be white?
(d) What if we paint exactly 4 tiles black and there must be exactly one
black tile on each row and each column?
Consider the symmetric group S, acting on the 6 edges of a complete
graph K. Let G denote the induced permutation group, thatis G < Sg.
(a) Compute the cycle index of G.
(b) Use this to compute the number of non-isomorphic graphs on 4 ver-
tices.
How many 0, 1-sequences of lenght 12 exists if two sequences are consid-
ered to be the same if one can be obtained from the other by a cyclic shift.
How many are there if each consists of exactly 6 ones and 6 zeros.
What is the pattern inventory for coloring 7 objects using the 7 colours
V1> -+ > Y if the group of symmetries is S, ?
Two identical cubes are glued to two oposite faces of a third cube to form
a3 X 1 prism. The prism has 14 squares exposed (4 of the cube in the
middle 5 of each of the other two cubes).
(a) Find the permutation group G on the 14 squares induced by all the
possible ways of rotating the prism.
(b) Compute the cycle index of G.
(c) In how many ways can the squares be painted using at most three
colours: black, white and blue.
(d) Whay if exactly two of the squares must be blue?
What is the number of essentially different ways to paint the faces of a
cube such that one face is red, two are blue, and the remaining three are
green?
Let X beaset with z elementsand G < §,, a permutation group acting on
X. Let K be a set with k colonrs and H < S a permutation group acting
on K. Prove thatif o € G,7 € H and ¢ € K* the mapping (5, 7)c — ¢
where ¢ is the colouring defined by

dx) =17 (c(a’flx))

defines a left action of G X H on K¥.
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315 Thehydrocarbon naphthalene has ten carbon atoms arranged in a double
hexagon as in Figure 6, and eight hydrogen atoms attached at each of the
positions labeled 1 through 8.

8 1

7®2

6 3
5 4

F1GURE 6. Naphthalene

(a) Naphthol is obtained by replacing one of the hydrogen atoms of
naphthalene with a hydroxyl group (OH). How many isomers of
naphtholare there?

(b) Tetramethylnaphthalene is obtained by replacing four of the hydro-
gen atoms of naphthalene with methyl groups (CH3). How many
isomers of tetramethylnaphthalene are there?

(c) How many isomers may be constructed by replacing three of the hy-
drogen molecules of naphthalene with hydroxyl groups, and another
three with methyl groups?

(d) How many isomers may be constructed by replacing two of the hy-
drogen molecules of naphthalene with hydroxyl groups, two with
methyl groups, and two with carboxyl groups (COOH)?

316 Determine the number of ways to color the faces of a cube using the three
colors red, blue, and green, if two colorings are considered to be equiva-
lent if one can be obtained from the other by rotating the cube in some
way in three-dimensional space, and possibly exchanging green and red.
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