
DISCRETE MATHEMATICS 2

ANTONIO MONTERO

Office 5.17
FMF - University of Ljubljana

1. Permutation groups

Informally speaking, a permutation of a collection of objects is just a way of
(linearly) order the objects. Permutations are often thought either as purely com-
binatorial objects, usually in counting problems, or as one of the �rst examples
in a �rst class of group theory. In these �rst sections we will look at the interplay
between these two approaches. We will use permutations to understand combi-
natorial problems and the other way around, we will use counting techniques to
understand group theoretical properties of permutations. In this section we �rst
review some basic properties of permutations.

Let X be a set, a permutation of X is a bijection σ : X → X . Observe that the
identity εX : X → X , de�ned by εX (x) = x for every x ∈ X , is a permutation
(if there is no ambiguity we often write ε instead of εX ). Moreover, if σ and τ
are permutations of X , then so σ−1 and τ ◦ σ are. That implies that the set of
permutations of X , denoted SX , is a group with the composition as operation.
This group is called the symmetric group onX . We usually omit the symbol ◦ and
simply write τσ .

In this course we will mostly work with �nite sets. If |X | = n we will think
of X either as the set [n] := {1, . . . , n} or as the set Zn of integers modulo n, as
convenient. In either situation we write Sn instead of SX (see Exercise 1.1).

If σ ∈ Sn, then it is convenient (particularly for small values of n) to represent
σ with a 2 × n matrix where the entries of the �rst row are the elements of [n]
and we write σ(x) below every element x. For example the equation

σ =
[

1 2 3 4 5
3 1 5 4 2

]
E-mail address: antonio.montero@fmf.uni-lj.si.
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means that σ is such that σ(1) = 3, σ(2) = 1, σ(3) = 5, σ(4) = 4 and σ(5) =
2. Observe that this representation is not unique, the following matrices also
represent the permutation σ described above.

σ =
[

3 1 2 5 4
5 3 1 2 4

]
=
[

5 4 3 2 1
2 4 5 1 3

]
.

Matrix representation of permutations allows us to �nd inverses and operate
permutations easily. The inverse of a permutation σ is just the permutation given
by swapping the rows of any representation of σ . For the example above:

σ−1 =
[

3 1 5 4 2
1 2 3 4 5

]
=
[

1 2 3 4 5
2 5 1 4 3

]
We can �nd a matrix representation for τσ by considering the �rst and third

row of a 3× n matrix M where the �rst two rows come from a matrix represen-
tation of σ and the third one is given by writing τ(y) below every element y in the
second row. For example, if

(1.1) σ =
[

1 2 3 4 5
3 1 5 4 2

]
, τ =

[
1 2 3 4 5
4 3 1 2 5

]
,

then

M =

1 2 3 4 5
3 1 5 4 2
1 4 5 2 3

 , τσ =
[

1 2 3 4 5
1 4 5 2 3

]
Keep in mid that since we are thinking of permutations as functions, our con-

vention is to evaluate them from right to left, that is τσ means we apply �rst σ
and then τ. Other authors (notably, those of [DM96]) use the other convention.
Usually the choice of one or another has little to none theoretical implications
but one has to be careful when doing explicit computations. For example, ob-
serve that for the permutations used above

στ =
[

1 2 3 4 5
4 5 3 1 2

]
6= τσ.

Another common way of represent a permutation is as a product of disjoint
cycles. We say that a permutation τ ∈ Sn is a k-cycle if there are k di�erent ele-
ments x1, . . . , xk ∈ [n] such that τ(xi) = xi+1 for 1 6 i 6 k − 1 and τ(xk) = x1
and τ(y) = y for every other element y ∈ X . In this case we write

τ = (x1 x2 · · · xk)

A 2-cycle is called a transposition. Notice that there is not a unique way of writing
a cycle (see Exercise 1.3)
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Example 1.1. The permutation

γ =
[

1 2 3 4 5
2 3 1 4 5

]
is the 3-cycle (1 2 3). The permutations σ and τ de�ned in Equation (1.1) can be
written as

σ = (1 3 5 2) , τ = (1 4 2 3 ) .

Proposition 1.2. Every permutation σ ∈ Sn can be written as a product of disjoint
cycles. Moreover, this way of writing a permutation is unique up to the order in
which the cycles appear and the inclusion or not of 1-cycles, which represent fixed
points of σ.

Proof. See Exercises 1.3 to 1.5. �

Proposition 1.2 is also true when we consider permutations of a in�nite set X
but there might be in�nite cycles (see Exercise 1.7) and possibly in�nitely many
of them. In this case the de�nition of product is just formal and should be rein-
terpreted suitably.

If γ = (x1 · · · xk) is a cycle, then we can convince ourselves that γ−1 is the cycle
(xx · · · x1). Recall that if γ1, . . . , γr are elements of a group, then (γ1 · · · γr)−1 =
γ−1
r · · · γ−1

1 . These two observations give us a way of �nding the inverse of a per-
mutation written as a product of cycles: just write each cycle in reverse order and
then write the product of the reversed cycles also in reverse order. The example
below should show the idea

((2 4 5 7)(1 3 6))−1 = (1 3 6)−1(2 4 5 7)−1 = (6 3 1)(7 5 4 2)

If we have two permutations written as product of cycles we can compute its
product is just the permutation given by concatenating the corresponding cycles.
Observe that in general, this is not an expression as disjoint cycles, but we can
compute one as follows. First, pick a random element and trace its image along
the cycles. Keep in mind that we evaluate permutation form right to left. For
example, consider the expression (1 2)(4 5)(1 5 3)(2 4) and pick the number 1, by
tracking its image along the cycle we see that 1 goes to 4:

←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
4→4

(4 5)︸︷︷︸
5→4

(1 5 3)︸ ︷︷ ︸
1→5

(2 4)︸︷︷︸
1→1︸ ︷︷ ︸

1→4

= (1 4 · · ·

Then we need to track the image of 4, which we see that it is 1 and hence, the �rst
cycle is complete.

←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
2→1

(4 5)︸︷︷︸
2→2

(1 5 3)︸ ︷︷ ︸
2→2

(2 4)︸︷︷︸
4→2︸ ︷︷ ︸

4→1

= (1 4) · · ·
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Now pick another symbol, say 2 and proceed similarly:
←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
5→5

(4 5)︸︷︷︸
4→5

(1 5 3)︸ ︷︷ ︸
4→4

(2 4)︸︷︷︸
2→4︸ ︷︷ ︸

2→5

= (1 4)(2 5 · · ·

If we continue this way, we can see that

(1 2)(4 5)(1 5 3)(2 4) = (1 4)(2 5 3).

Observe that the fact that we omit �xed points when writing a permutation
as product of cycles disjoint cycle allow us to abuse notation a do not specify on
which set a given permutation acts. For example, the permutation (2 3)(4 7 5)
can be regarded as a permutation in S7, in S8 or in S2022. In fact, with no further
information, this could even be a permutation on the set of natural numbers or
even a permutation on the set {2, 3, 4, 5, 7}. For these reason we should adopt
some conventions. We always assume that a permutation act on a set [n] for some
n ∈ N, that is, we shall avoid thinking of a permutation such as (2 3)(4 7 5) acting
on a smaller set than [7]. Moreover, if k 6 n we might regard the group Sk as
the subgroup of Sn consisting of the permutations that �x every numbermwith
k < m 6 n. Unless it is explicitly speci�ed, we should keep symmetric groups
on in�nite sets out of the game.

If σ = γ1 · · · γk is a permutation written as a product of disjoint cycles (in-
cluding 1-cycles), the cycle-type of σ is the tuple [a1, . . . , ak] where the number ai
is the length of the cycle γk. Observe that if σ ∈ Sn, then a1 + · · · + ak = n. Of
course, we might safely omit the entries with value 1 from the cycle type and say,
for example, that the permutation (2 3)(3 7 5) has cycle-type [2, 3].

The following is a straight forward observation:

Proposition 1.3. Let σ ∈ Sn and assume that σ has cycle type [a1, . . . , ak], then
the order of σ is lcm(a1, . . . , ak).

Proof. Just observe that if σ = γ1 · · · γk is written as a product of disjoint cycles
then

σ r = γr1 · · · γrk = ε⇔ ai|r for all i ∈ {1, . . . , k} . �

These �rst results describe some tools to work with permutations. Now we
turn our attention to some group-theoretical properties of permutations.

Two elements σ ,τ in a group Γ are conjugate if there exists µ ∈ Γ such that
σ = µτµ−1. Observe that this notion de�nes an equivalence relation in Γ. The
equivalence classes are called conjugacy classes of Γ.

Proposition 1.4. Let n ∈ N and let σ and τ two permutations in Sn. Then σ and
τ are conjugate if and only if σ and τ have the same cycle-type.

Proof. See Exercise 1.6. �
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De�nition 1.5. A permutation group is a subgroup of a symmetric group.
Let us now show a more group-theoretical property.

Theorem 1.6. Let n ∈ N. The group Sn can be generated by the set of transposi-
tions. This is

Sn = 〈(x y) : x, y ∈ [n]〉
Proof. Just observe that if (x1 · · · xk) is a k-cycle, then

(x1 · · · xk) = (x1 x2)(x2 x3) · · · (xk−2 xk−1)(xk−1 xk).
�

Theorem 1.6 shows that every permutation can be written as a product of
transpositions. However, there is no a unique way of writting a permutation
as product of transposition, for example:

(2 1)(2 4)(2 3) = (2 3 4 1) = (1 2)(2 4)(4 3)(2 4)(4 3).
As shown in the example above, not even the number of transpositions re-

quired is constant. However we shall prove that parity of the number of trans-
positions depends only on the given permutation and not on a particular way of
writing it as a product of transpositions. First we prove the following lemma.
Lemma 1.7. Let n ∈ N and assume that γ1, . . . , γr is a family of transpositions
such that

γr · · · γ1 = ε.

Then r is even.

Proof. We will prove this by induction over r. First observe that r > 2, otherwise
we would have ε = (x y) for some pair {x, y} ⊆ [n], which is impossible. If r = 2
there is nothing to prove. Assume that if 2 6 k < r and that δ1, . . . , δk is a family
of transpositions with δk · · · δ1 = ε, then k is even. Let γ1, . . . , γr be a family of r
transpositions that satisfy γr · · · γ1 = ε.

De�ne α1 = γ1 and consider the product γ2α1 = γ2γ1. Observe that there must
be 4 elements x, y, w, z ∈ [n] such that one of the following holds:

γ2α1 =


(x y)(x y),
(x z)(x y),
(w z)(x y).

In the �rst case, γ2α1 = γ2γ1ε, which implies that γ3, · · · , γr satisfy the induc-
tive hypothesis. In other words, r − 2 is even and so it is r,

If γ2α1 = (x z)(x y) = (x y z) = (x y)(y z). In this case de�ne α2 = (x y) and
β1 = (y z). If γ2γ1 = (w z)(x y) = (x y)(w z) then take α2 = (x y) and β1 = (w z).
Notice that in any case

ε = γr · · · γ2γ1 = γr · · · γ3α2β1.
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Observe also that α2 moves x but β1 does not.
Proceed again but now with the product γ3α2. If γ3 = α2 then we apply the

inductive hypothesis to the family β1, γ4 · · · , γr−1, γr and we are done. If not,
then proceed as before to build a new pair of transpositions α3, β2 that satisfy
γ3α2 = α3β2, the permutation α3 moves x but β2 does not.

Keep going this way. In the i-th iteration of this process we have constructed
(i − 1) permutations β1, . . . βi−1 such that all of them �x x and a permutation αi
such that αi moves x. These permutations satisfy that

ε = γr · · · γ1 = γr · · · γi+1αiβi−1 · · · β1.

We have to analyse the possibilities for the product γi+1αi. If γi+1 = αi we apply
the inductive hypothesis to the family of transpositions β1, . . . , βi−1, γi+2, . . . , γr.

If the previous condition is never satis�ed after r iterations of the process we
have a family of transpositions β1, · · · , βr−1, αr such that βi(x) = x for every 1 6
i 6 r − 1 and αr(x) 6= x. However, these transpositions satisfy that

ε = γr · · · γ1 = αrβr−1 · · · β1,

which is obviously a contradiction. It follows that at some point αi = γi+1, and
by the inductive hypothesis r − 2 is even and so it is r. �

An immediate consequence of the previous result is the next theorem.

Theorem 1.8. Let n ∈ N and σ ∈ Sn. Assume that σ is written as a product of
transpositions, say σ = γr · · · γ1. Then the parity of r depends only on σ and not on
the particular choice of the transpositions.

Proof. Assume that
βs · · · β1 = σ = γr · · · γ1

are two ways of writing σ with β1, . . . , βs, γ1, . . . , γr transpositions. Observe that

ε =
(
βs · · · β1

) (
γr · · · γ1

)−1

= βs · · · β1γ1 · · · γr .

Lemma 1.7 implies that r + s is even or equivalently, that r and s have the same
parity. �

A permutation σ is called even if whenever σ is written as a product of trans-
positions, then number of transposition is even. Otherwise σ is called odd.

The setAn consisting of all the even permutations in Sn is a subgroup (see Ex-
ercise 1.12) of Sn and it is called the alternating group on n symbols. Theorem 1.8
allows us to de�ne a group homomorphism sgn : Sn → {1,−1}where

sgn(σ) = (−1)r

whenever σ can be written as a product of r transpositions.
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Figure 1. The action of Dn

As usuall, two subgroups Γ and ∆ of Sn are conjugate if there exists a permu-
tation µ ∈ Sn such that

Γ = µ∆µ−1 {µδµ−1 : δ ∈ ∆}
There are two important subgroups of Sn that we should introduce now. The

cyclic group Cn is a group generated by a permutation of order n. Usually we
think of Cn as the permutation group generated by the n-cycle (1 2 . . . n) (cf.
Exercise 1.16 ) The dihedral group on n symbols Dn is the subgroup of Sn gener-
ated by the permutations σ and ρ where

(1.2)

σ = (1 · · · n)

ρ =

{
(1 n− 1) (2 n− 2) · · ·

(
n
2 − 1 n

2 + 1
)

if n is even,
(1 n− 1) (2 · · · n− 2) · · ·

(
n−1

2
n+1

2

)
if n is odd.

The groupDn can be seen as the permutations of the vertices of a n-cycle that
preserve neighbours (see Figure 1)

Example 1.9 (The 15-puzzle1). The 15-puzzle consist of a set of squared tiles such
that the tiles �t in a box arranged in a 4 × 4 grid leaving a blank space (see Fig-
ure 2a). A valid movement of the puzzle is given by sliding one adjacent tile to
the blank space or, equivalently, moving the blank space to an adjacent tile.

A position P of the puzzle is solvable if the blank space is at the bottom-right
corner of the box, and it can be taken to the solved position S (Figure 2a) by a
sequence of valid movements. Obviously, if we can go from a position P to the
position S by a sequence of movements, by applying the same movements in re-
versed order we can go from S toP, so we can think of the set of solvable position
as those that blank space is in the bottom-right corner and can be reached from
the position S. Moreover, if P1 and P2 are solvable positions then so it is the
position P1P2, which is de�ned as the position given by applying a sequence of

1Pictures and historical notes were taken from Wikipedia

https://en.wikipedia.org/wiki/15_puzzle
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movements that take S toP2 to the positionP1. Observe that this is only possible
because P1 has the blank space at the bottom-right corner. By de�nition, we can
take S to P1P2 and since P2 also has the blank space at the bottom-right corner,
thenP1P2 has the blank space at the bottom-right cornet. It follows that ifP1 and
P2 are solvable position, then so it is P1P2.

If you want to play, you can do it here2.
The 15-puzzle is often associated with the puzzle inventor and problem com-

poser Sam Loyd (1841-1911), who claimed his entire life that he had invented the
puzzle. Loyd should be credited with the original challenge: to take the puzzle
from the position in Figure 2b to the solved position. It is believe that Loyd of-
fered a prize of $1,000 USD to that who could solve the problem. In 1879 Johnson
and Story proved that this was in fact impossible. We will prove a slightly more
general result.

First, observe that we can associate a permutation σ to any position of the puz-
zle. We can label the spaces of the grid at the bottom of the box, as in Figure 2c.

A given position of the puzzle can be associated with the permutation σ ∈ S16
de�ned by

σ(x) = y⇔ the tile x is over the space y.
Here the blank space is thought as a tile with number 16.

For example the position in Figure 2d is given by the permutation

σ =
[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 13 9 6 7 12 5 10 11 8 4 15 14 1 16

]
Of course, we can also write

σ = (1 3 13 15)(4 9 10 11 8 5 6 7 12)(14)(16).

A valid move in the puzzle consists in swapping the blank space with an adja-
cent tile. Assume that P1 is the position associated to the permutation σ and let
P2 the position resulting from P1 after applying a valid movement. An natural
question is: can we obtain the permutation τ associated to P2 in terms of σ . The
answer is yes, we claim that

τ = σ(16 y),
where y is the tile that we swap with the blank space.

To see, this observe that any tile that is not 16 or the one on the space y in P1
remains in the same place. In other words, if x /∈ {16, y}, then

τ(x) = σ(x) = σ(16 y)(x).

In P2, the blank space is where the tile y used to be in P1, that is τ(16) = σ(y).
Meanwhile, in P2 the tile y is in the space where 16 used to be in P1, that is τ(y) =
σ(16). This proves that τ and σ(16 y) are exactly the same permutation.

2Applet obtained from ©Jamie Mulholand’s website (SFU Math)

https://www.sfu.ca/~jtmulhol/math302/applets/fifteen-puzzle/15-puzzle.html
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In our example, let us slide the tile with 7 to de blank space. Our claim is that
we obtain the permutation τ = σ(16 7). In fact, this is obvious if we look at the
matrix representation of (16 7), which is[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 16 8 9 10 11 12 13 14 15 7

]
,

and the matrix representation of σ :[
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 13 9 6 7 12 5 10 11 8 4 15 14 1 16

]
=
[

1 2 3 4 5 6 16 8 9 10 11 12 13 14 15 7
3 2 13 9 6 7 16 5 10 11 8 4 15 14 1 12

]
.

It follows that

σ(16 7) =
[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2 13 9 6 7 16 5 10 11 8 4 15 14 1 12

]
.

Claim. If σ is a permutation associated to a solvable position of the 15-puzzle, then

(a) σ fixes 16.
(b) σ ∈ A16, that is, σ is an even permutation.

Proof. The �rst condition is obvious, since it is equivalent to the fact that the
blank tile is on the space 16, which was part of the de�nition of a solvable po-
sition. To see that the second condition must hold, just consider a checkboard
colouring of the bottom of the box. Observe that every movement changes the
color below the blank space. Since the blank space starts and ends over the space
labelled with 16, we need an even number of movements. By our analysis above,
this is equivalent to the associated permutation being a product of an even num-
ber of transpositions. �

Corollary. It is impossible to solve the 15-puzzle from the position in Figure 2b.

We will prove that the conditions in our previous claim are not only necessary
but also su�cient. More precisely:

Proposition 1.10. If σ ∈ A16 is a permutation such that σ(16) = 16, then the
associated position of the 15-puzzle is solvable. In particular, there are exactly 15!

2
solvable positions of the this puzzle.

Before proving this proposition observe that

Remark 1.11. The set of permutation associated with solvable positions of the
15-puzzle is a subgroup of the symmetric group S15.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) Solved position

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

(b) Impossible position

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 

(c) Empty box of 15 puzzle

15 2 1 12

8 5 6 11

4 9 10 7

3 14 13

(d) An arbitrary position.

Figure 2. The 15-puzzle

Proof. The trivial permutation is associated to the solved position.
Let σ and τ be the permutation associated to the (solvable positions Pσ and

Pτ , respectively. Let P = PσPτ , that is, the position obtained after applying to Pσ
the same sequence of movements that takes the solved position to Pτ . We claim
that the permutation associated with P is precisely τσ . To see this just observe
that a given tile x is on the space σ(x) in Pσ . If we ignore the numbers on the tiles
and apply a sequence of movements that takes the solved position to Pτ to any
position (whenever this is possible) the tile on the space y will end up in on τ(y).
In particular, forPσ that means that the tile x is at τ(σ(x)) = τσ(x) in the position
P.
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A very similar argument can be used to prove that if σ is associated with Pσ
then the sequence of movements that takes Pσ to S takes S to Pσ−1 , the position
associated with σ−1.

Finally observe that all the permutation associated to solvable positions �x the
tile 16, hence the associated subgroup is not only a subgroup of S16, but a sub-
group of S15. �

Proof (of Proposition 1.10). We will show that the group G associated to the set
of solvable position is in fact the alternating group A15. First, observe that by
moving the blank tile to the following spaces

16 −→ 12 −→ 11 −→ 15 −→ 16

We end up with the position associated to the 3-cycle γ = (11 12 15) (see Fig-
ure 3a). This proves that γ ∈ G. From the solved position move the tiles 12 and
11 (in that order) so that the resulting position is as shown in Figure 3b. Consider
the drawn by the arrows in Figure 3c. For every x ∈ [15] \ {11, 12}we can move
the blank space along that cycle as many time as needed so that x ends on the
space 15 and the blank tile on the space 11. For example, if x = 7, after moving
the blank tile along the cycle once, we obtain the position in Figure 3d. Then we
can move the tiles 11 and 12 to its original position.

Notice the �nal position is a solvable one: it was constructed by a sequence of
valid movements and the blank tile is at the bottom-right corner. It follows that
the induced permutation µx ∈ G. Observe that µx satis�es that

µx(x) = 15
µx(11) = 11
µx(12) = 12.

The latter imply that µ−1γµ = (11 12 x). It follows that (11 12 x) ∈ G and since
we have proved that G 6 A15, Exercise 1.14 implies that G is indeed A15 �

Exercises.
1.1 Show that ifX and Y are (not necessarily �nite) sets with |X | = |Y |, then

SX ∼= SY .
1.2 Let X be a set.

(a) If |X | = n, how many elements does the set SX have?
(b) LetX be a countably in�nite set, that is, |X | = |N|. Prove that |SX | 

|N| (that is, strictly greater than |N|). Can you determine |SX |?

1.3 Prove that a k-cycle σ = (x1 · · · xk) and an ℓ -cycle τ =
(
y1 · · · yℓ

)
, both

elements of Sn, are equal if and only if k = ℓ and for some h ∈ Z, xi+h = yi
or every 1 6 i 6 r (the indices are taken modulo r).

1.4 Prove that every permutation σ can be written as a product of disjoint
cycles. Hint: two symbols x, y ∈ X lie in the same cycle of σ if some
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 15 11

13 14 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 15 11

13 14 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

(b)

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

(c)

5 1 2 3

6 10 8 4

13 9 11

14 15 7 12

(d)

5 1 2 3

6 10 8 4

13 9 11 12

14 15 7

(e)

Figure 3

power of σ maps x to y. Prove that this condition de�nes an equivalence
relation and hence a partition of X .

1.5 Prove that disjoint cycles commute.
1.6 Let n ∈ N.

(a) Prove that if σ = (x1 · · · xk) is a k-cycle and µ ∈ Sn then µσµ−1 =(
µ(x1) · · · µ(xk)

)
.

(b) Show that for every k 6 n every two k-cycles are conjugate.
(c) Conclude that two permutations in Sn are conjugate if and only if

they have the same cycle-type.
1.7 LetX be a in�nite set. An infinite cycle in SX is a permutation γ such that

there exists a family Z = {xi : i ∈ Z} of elements of X with γ(xi) = xi+1
for every i ∈ Z and γ(y) = y for every y ∈ X \Z. Find two in�nite cycles
in SZ that are not conjugate.

1.8 Let n ∈ N. Show that the set of involutions I = {(1 k) : 2 6 k 6 n} is a
minimal generating set of Sn. That is, show that

Sn = 〈(1 k) : 2 6 k 6 n〉 ,

and that no proper subset of I generates Sn.
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1.9 Let n ∈ N. Show that The involution (1 n) and the n-cycle (1 2 · · · n)
generate Sn.

1.10 Let n ∈ N, �nd necessary and su�cient conditions for i, j ∈ [n] so that
〈(i j), (1 2 · · · n)〉 = Sn

1.11 Show that the group SN cannot be generated by a �nite number of per-
mutations.

1.12 Prove that the set An is a subgroup of Sn.
1.13 Prove that an r-cycle in Sn is even if and only if r is odd. Conclude that

a permutation σ is even if and only if the number of even entries in its
cycle-type is even.

1.14 Let n > 3 and let An denote the alternating group.
• Show that

An =
〈(
x y z

)
: x, y, z ∈ [n]

〉
.

• Show that
An = 〈(1 2 z) : z ∈ [n]〉 .

• Show that if x and y are �xed elements in [n] then
An =

〈(
x y z

)
: z ∈ [n]

〉
.

1.15 Prove that if Γ is a permutation group, then either Γ consists of only even
permutations or half of the permutations in Γ are even. Conclude that
An is normal in Sn and that every permutation group that contains an
odd permutation has a normal subgroup of index 2.

1.16 Show that if n is prime, then any two cyclic of order n in Sn are conjugate.
Find two cyclic groups of order 6 in S6 that are not conjugate.

1.17 Let n ∈ N and Dn = 〈ρ, σ〉 the dihedral group de�ned in Equation (1.2).
(a) Show that these permutations satisfy the following relations:

ρ2 = ε

σn = ε

ρσρ = σ−1

(b) De�ne τ = σρ. Show that the relations above are quivalent to
τ2 = ρ2 = (τρ)n = ε

We will prove later that any group generated by two involutions is isomor-
phic to a dihedral group.

1.18 Prove that |Dn| = 2n. Hint: work the cases where n is even and n is odd
separately.

1.19 Find the conjugacy clases of the symmetric groupS5 and of the alternating
group A5. Hence, show that A5 is the only normal subgroup of S5 (apart
from 1 and S5, and that A5 is simple.)
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1.20 If H 6 G are groups, the normaliser of H in G is the largest subgroup
of G in which H is normal. Find the nomaliser in Sn of the cyclic group
Cn = 〈(1 2 . . . n)〉.
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2. Group actions

In the previous section we reviewed basic properties of permutation groups.
In this section we will focus on a slightly more general notion, which is that of
group actions. Informally speaking, group actions are a tool that allows us to treat
any group as a permutation group. Formally speaking:

De�nition 2.1. Given a groupGwith neutral element 1 and a setX a (left) group
action of G on X is a function φ : G × X → X that satis�es

(a) φ : (1, x) 7→ x for every x ∈ X
(b) φ

(
gh, x

)
= φ

(
g, φ(h, x)

)
for every g, h ∈ G and x ∈ X .

We usually omit φ and think of a group action as a way to “evaluate” a group
element onto an element ofX . In fact, if φ is a left group action, then we usually
denote by gx the element φ(g, x) ∈ X . With this notation, the element φ

(
gh, x

)
should be denoted by (gh)x (we �rst multiply the elements in the group and then
evaluate), whereas the element φ

(
g, φ(h, x)

)
should be written as g(hx) (we �rst

evaluate h on x and then evaluate g on the resulting element). Thanks to Item (b)
of De�nition 2.1, we can write ghx without the need of parentheses. IfG acts on
a set X we say that X is a G-set.

Words of caution: Some authors use right group actions, which can be de-
�ned in a similar way (see Exercise 2.1). The main di�erence is the order in which
we evaluate the elements, if we take g, h ∈ G and we and evaluate it (on the left)
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https://www.springer.com/gp/book/9780387966755
https://www.springer.com/gp/book/9780387966755
https://doi.org/10.1017/cbo9780511600739
https://doi.org/10.1017/cbo9780511623677
https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1007/978-1-4612-0731-3
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in an element x we �rst evaluate h and then we evaluate g. While if we evalu-
ate the same group element on a right action we �rst consider the action of g on
x and then the action of h on the resulting element. This two operations does
not need to be the same. The choice of one side or another is related to the fact
that we evaluate permutations on the left. As before, this choice has usually little
theoretical consequences, but one needs to be careful (see Exercise 2.1).

We list several examples of group actions below.
Example 2.2. Naturally, ifX is any set then the symmetric group SX acts on the
set X in the obvious way:

φ (σ, x) = σ(x).
Example 2.3. Both the dihedral group and the cyclic group acts on the set [n]
by restricting of Sn to the Dn and Cn, respectively. However, both group also
act on the set of edges of a n-cycle (equivalently, a regular n-gon) when they are
interpreted as symmetries.
Example 2.4. In fact, the previous examples show a obvious but important way
to �nd actions. If G is a permutation group of Sn then G acts naturally on the
set [n].

IfG is a permutation group, we say thatG is of degree n if it acts on [n]. Some
authors also require that there is no k ∈ {1, . . . , n} such that σ(k) = k for ever
σ ∈ G, so that S3 when interpreted as the subgroup of permutations in S4 that
�x 4 is a group of degree 3 but not of degree 4. We shall make that assumption
whenever we refer to a group of degree n.

Example 2.4 suggest a way to �nd group actions. In fact, it is not hard to see
that every group action is essentially given as in this example.
Proposition 2.5. Let G be a group acting on a set X with the action φ : G×X →
X. The mapping ρφ : G → SX given by ρφ(g) : x 7→ gx defines a group homomor-
phism. Conversely, every group homomorphism ρ : G → SX induces an action of
G on X by gx = ρ(g)(x).

Proof. See Exercise 2.2. �

Example 2.6. Another natural way of �nding examples of group actions is by
consider the symmetry group of geometric �gures. That is, the set of symmetries
of the space that preserve a given �gure. For example, the symmetry group of the
cube acts on the set{1, 2, 3, 4, 5, 6, 7, 8}of vertices, the set{a, b, c, d, e, f, g, h, i, j, k, l}
of edges and the set{A, B, C, D, E, F}of faces (just to mention some). The 3-fold
rotationR on the line that connects the vertices 1 and 7 induce the following per-
mutations the sets of vertices, edges and faces:

(2 5 4)(3 6 8) on vertices,
(a d e)(i b h)(f c l)(j g k) on edges,

(A B C)(D E F ) on faces.
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Figure 4. A rotation of the cube

Example 2.7. Every group G acts on itself by left multiplication. That is, the
action is given by (g, x) 7→ gx for every g, x ∈ G. If G is �nite, say |G| = n the
representation µl : G → Sn de�ned by µl(g) = γg where γg : G → G is given by
γg(x) = gx. Yet again, observe that the side for which we multiply is relevant so
that µl is actually a group-homorphism, i.e.

γhg = µl(hg) = µl(h)µl(g) = γhγg.

The left-most permutation ofG in the equation above maps x to (hg)x while the
right-most maps x to γh(gx) = h(gx).

Observe that µl is injective. In fact if µl(g) = ε, then gx = γg(x) = x for every
x, which implies that g = 1.

The G acts on a set X , the kernel of the action is the kernel of the induced
representation of G in SX We say that an action is faithful whenever the its ker-
nel is the trivial subgroup. Equivalently, when the associated representation is
injective.

The group homomorphism µl in Example 2.7 is often called the (left) Cayley
representation of G. This homomorphism proves the following theorem.

Theorem 2.8 (Cayley, 1854). Every finite group with n elements is isomorphic to
a subgroup of Sn.

Even though Theorem 2.8 is more than one hundred years old, it has cur-
rent relevance. Permutation groups are concrete objects compared to an abstract
group. In particular, permutation groups can be understood by a programming
language. Unfortunately, the theorem as it is has little practical applications. If
a group G is relatively large, the symmetric group on |G| symbols is extremely



DISCRETE MATHEMATICS 2 17

complicated. However, the truth is that every faithful action induces an injec-
tive homomorphism, so in order to �nd a representation of an abstract group
as a permutation group we only need to �nd a faithful action. For example, the
group G of symmetries of the cube has 48 elements, Theorem 2.8 says that G is
isomorphic to a subgroup of S48, which has size 48!. Yet, the action of G on the
set of vertices is faithful so G has a representation in S8. Moreover, the action
on the set of faces is also faithful, which implies that G has a representation of
degree 6. It is an active research area to �nd small (minimal) permutation repre-
sentations of relevant families of �nite groups.

Unfortunately, most actions are not faithful. Let us show a example of it.

Example 2.9. LetG be a group andH a subgroup ofG. The setX of left cosets
of H is a G-set. The action is given by

g(xH) = gxH.

This action is generally not faithful. IfK is a normal subgroup ofH then x−1kx ∈
K ⊆ H for every k ∈ K , which implies that

kxH = xH for every k ∈ K
De�nition 2.10. IfH 6 G are groups, then the normal core (or simply, the core)
of H in G is the largest normal subgroup of G contained in H , that is

CoreG(H) =
⋂
g∈G

g−1Hg

Example 2.11. If G is a group, then G is itself a G-set where the action is given
by (left) conjugation, that is, the action of a given element g on x is given by

g : x 7→ gxg−1.

The kernel of this action is the centre Z(G).

Example 2.12. Similarly, G acts on the set X = {H : H is subgroup of G} by
g : H 7→ gHg−1.

The intuitive idea of a group G acting on a set X is that every element of G
move the elements of X . It makes sense to consider the following important
concepts.

De�nition 2.13. Assume that G acts on a set X . Given x ∈ X , the orbit of x is
the set

Gx = {gx : g ∈ G} .
The stabiliser of x is the subgroup (see Exercise 2.5)

StabG(x) = {g ∈ G : gx = x} .
For a given g ∈ G the set of fixed points is the set

Fix(g) = {x ∈ X : gx = x} .
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The set of fixed points of G is the set

Fix(G) = {x ∈ X : gx = x for all g ∈ G} =
⋂
g∈G

Fix(g)

It is important to remark that some authors denote these sets di�erently. A
common notation for the orbit of x is O(x) and the stabiliser is sometimes de-
noted Gx (see [Rot96], for example). The set of �xed points of an element g and
of the group G are sometimes denoted Xg and XG, respectively.

Observe that the relation ∼ in X given by x ∼ y if and only if Gx = Gy is
an equivalence relation (Exercise 2.4). Therefore this relation de�nes a partition
of X in equivalence classes given by the orbits. The latter implies the following
straightforward result.

Proposition 2.14. The set of orbits induces a partition of X. If R ⊆ X is a set of
representatives containing exactly one element for each non-trivial orbit, then

X = Fix(G) ∪

(⋃
x∈R

Gx

)
In particular, if X is finite, then

|X | = |Fix(G)| +

(∑
x∈R

|Gx|

)
.

LetX and Y be twoG sets with actions φX and φY , respetively. We say thatX
and Y are equivalent (as G-sets) if there exists a bijection η : X → Y such that
the following diagram commutes:

G × X G × Y

X Y

(ε,η)

φX φY

η

That is, if
η
(
φX (g, x)

)
= φY (g, η(x))

Observe that if X is a G-set and Z ⊆ X is such that gz ∈ Z for ever g ∈ G,
then Z is a G-set. In particular, the orbit of every element of a G-set X is a G-set
itself.

Now we present a straightforward but very useful result, sometimes even called
the fundamental theorem of group actions.

Theorem 2.15 (Orbit-Stabiliser Theorem). Let G be a group acting on a set X
and let x ∈ G. The orbit Gx of x and the set of left cosets of StabG(x) are equivalent
as G-sets. In particular,

|Gx| = [G : StabG(x)].
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If G is finite, then

|Gx| =
|G|

|StabG(x)|
Proof. Let S denote the subgroup StabG(x). Consider the mapping ϕ : G/S →
Gx given by ϕ(gS) = gx. First notice that ϕ is well-de�ned. Indeed if gS = hS
then h−1g ∈ S, that is h−1gx = x, which implies that gx = hx.

Similarly, if g and h are elements in G such that gx = hx, then gS = hS. In
other words, ϕ is injective. Clearly ϕ is surjective. The bijection ϕ de�nes an
equivalence of G-sets. �

We �nish this section with some important de�nitions.
De�nition 2.16. Let G be a group acting on a set X . We say that the action is
transitive if there is only one orbit. That is, if for every two elements x, y ∈ X
there exists a group element g such that gx = y.

We say that the action is free or semiregular if the stabiliser of every element
is the trivial group. Finally, we say that an action is regular if it is both transitive
and semiregular.
Exercises.
2.1 A right action of a group G on a set X is mapping ψ : X × G → X such

that
• ψ : (x, 1) 7→ x for every x ∈ X
• ψ

(
x, gh

)
= ψ

(
ψ(x, g), h

)
.

We usually denote ψ(x, g) by xg.
(a) Prove that if φ : G × X → X is a left action, then the mapping

ψ : X × G → X de�ned by ψ(x, g) = φ(g−1, x) de�nes a right
action.

(b) Conversely, if ψ : X × G → X is a right action, the mapping φ :
G × X → X given by φ(g, x) = ψ(x, g−1) de�nes a left action.

(c) Give an example of a left action φ such that the mapping ψ : X ×
G → X given by ψ(x, g) = φ(g, x) is not a right action.

2.2 Proof that every action of a groupG on a setX induces a group homomor-
phism G → SX and conversely, that every such homomorphism induces
an action of G on X .

2.3 LetG andH be groups. A group antimorphism is a function ϕ : G → H
that satis�es that

ϕ(g1g2) = ϕ(g2)ϕ(g1),
for every g1, g2 ∈ G.
(a) Prove that if ϕ1 : G → H and ϕ2 : H → K are group antimor-

phisms, then ϕ2 ◦ ϕ1 : G → K is a group homomorphism.
(b) Show that ( )−1 : G → G given by g 7→ g−1 is a group antimor-

phism.
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(c) Conclude that right actions of G to X are incorrespondence with
group antimorphisms G → SX .

2.4 If G is a set acting on a set X , then the relation on X de�ned by x ∼ y if
and only if Gx = Gy de�nes an equivalence relation on X .

2.5 Prove that the stabiliser of a point is a subgroup of G
2.6 Let X and Y two G-sets. Prove that X × Y is a G set with the action

g(x, y) = (gx, gy). Prove that the stabiliser of (x, y) is StabG(x) ∩ StabG(y).
Show an example where X and Y are transitive but X × Y is not.

2.7 Show that if x, y ∈ X belong to the same orbit, then StabG(x) and StabG(y)
are conjugate.

2.8 LetX be a transitiveG-set. Let S denote the subgroup StabG(x) of a point
x. Prove that the core of S onG is precisely the kernel of the action. Prove
that this is not necessairly true if X is not transitive.

2.9 IfG is a group, a core-free subgroup ofG is a subgroupH such that CoreG(H)
is trivial. Show that every transitive faithful action of G is equivalent to
the left-coset action of a core-free subgroup of G.

2.10 Let H and K subgroup of G, then G is a union of disjoint double cosets

HgK = {hgk ∈ G : h ∈ H, k ∈ K} .

IfG is �nite, then the size of a double cosetHgK is |K |×
[
H : (gKg−1 ∩H)

]
.

2.11 Let G be a group acting transitively on a set X . Let H be a subgroup
of G and let S denote the subgroup StabG(x). Prove that the following
statements are equivalent
(a) G = SH ,
(b) G = HS,
(c) H is transitive.

In particular, the only transitive subgroup of G containing S is G itself.
2.12 If G contains a subgroup H of index n, then it contains a normal sub-

group K 6 H such that [G : K] is �nite and divides n!.
2.13 ifG is a �nite group or orderm, and p is the smallest prime which divides

m, then any group of index p is normal in G.
2.14 Let n > 5, then the only proper subgroup of index less than n in the

symmetric group Sn is the alternating group An of index 2.
2.15 Prove that there is no simple group of order 56.
2.16 Prove that ther is no simple noncyclic group of order 2mpn where m ∈

{1, 2, 3} and p an is odd prime.
2.17 For n > 2, n − 2 transposition cannnot generate a transitive group of

degree n (Compare with Exercise 1.8)
2.18 Let G be a group acting faithfully on a set X . Assume that G has �nitely

many orbits X1, . . . , Xk. Notice that G acts transitively on each subset Xi

(i ∈ {1, . . . k}). Prove that G is isomorphic to a subgroup of SX1 × · · · ×
SXk .
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2.19 Let G be a group of order pk with p prime and k ∈ N. Assume that
G acts faithfully on a set X with |X | = n where n 6 p2. Prove that
G ∼= Zp × · · · × Zp.

2.20 Let G be an abelian group. Prove that if G acts transitively on a set X ,
then then the action is regular.

2.21 Find the order of the symmetry group of the cube and the order of the
symmetry group of a regular icosahedron.

2.22 If G is a �nite non-trivial p-group (that is, a group such that |G| = pk

for some k ∈ N), then Z(G) is not trivial. Hint: consider the action in
Example 2.11.

2.23 Let p be a prime such that p ≡ 1 (mod 4). Consider the set
X =

{
(x, y, z) ∈ N3 : x + 4yz = p

}
.

Consider the mapping

ϕ : (x, y, z) 7→


(x + 2z, z, y− x − z) if x < y− z

(2y− x, y, x − y + z) if y− z < x < 2y
(x − 2y, x − y + z, y) if x > 2y

(a) Prove that ϕ is a permutation of order 2 on X with exactly one �xed
point.

(b) Prove that the permutation ψ : (x, y, z) 7→ (x, z, y) must also have at
least one �xed point.

(c) Prove a famous theorem in number theory: An odd prime p is a sum
of two squares if and only if p ≡ 1 (mod 4).
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Figure 5. 2-colour necklaces of length 6.
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3. Pólya theory

Now we turn our attention to a family of counting problems. These are all
part of what today is known as Pólya theory of counting but they arise from very
basic execercises.

Example 3.1. Assume that we have a broomstick and several cloth pieces of 5
di�erent colours. How many di�erent �ags can be constructed using the broom-
stick as �agpole and two pieces of di�erent colour.

Solution. We have 5 possibilities for the colour that goes next to the �agpole and 4
possibilities for the other colour, therefore we have 5×4 = 20 di�erent �ags. �

Example 3.2. If we have the same pieces of cloth as in the previous example, how
many �ags (with no �agpole) can be built using two pieces of cloth of di�erent
colour?

Solution. �

Example 3.3. We have the same piece of cloth and the broomstick, how many
�ags with �agpole can we build if the two colours do not need to be di�erent.

Solution. �

Example 3.4. The same question as above but without the �agpole.

Example 3.5. We want to sit n knights in a round table. Two con�gurations are
the same if one can rotate the table to obtain one from the other. In how many
ways can the knights be sit?

Solution. �

Example 3.6. What is the number of essentially di�erent necklaces wich can be
made with with n beads of two di�erent colours?

This is not an easy question, for n = 6 the number is 13. See Figure 5.

Question 3.7. What is the number of non-isomorphic graphs on n vertices?.
For n = 4 there are 11.
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Question 3.8. What is the number of essentially di�erent ways to paint the faces
(or edges, or vertices) of the cube with n colors?

We begin with with the following theorem, which was originally published by
Burnside (1897) but was originally prove by Frobenius (1987).

Theorem 3.9 (Burnside’s Lemma). Let G be a group acting on a set X, the num-
ber n(G, X ) of orbits of G on X is given by

m(G, X ) =
1
|G|
∑
g∈G

Fix(g)

Proof. Count the pairs (g, x) ∈ G×X such that gx = x. A given element g ∈ G
appears in |Fix(g)| of those pairs. On the other hand, given x ∈ X , there are
|StabG(x)| pairs with x as second coordinate. It follows that∑

g∈G

|Fix(g)| =
∑
x∈X

|StabG(x)| .

Now assume that Y = {y1, . . . , ym} ⊆ X is a set of elements, one for each orbit
(so that m(G, X ) = m).

m(G, X ) =
∑
y∈Y

1

=
∑
x∈Gy1|

1
|Gy1|

+ · · · +
∑
x∈Gym

1
|Gym|

=
∑
x∈Gy1

1
|Gx|

+ · · · +
∑
x∈Gym

1
|Gx|

=
∑
x∈X

1
|Gx|

=
∑
x∈X

| StabG(x)|
|G|

=
1
|G|
∑
x∈X

| StabG(x)|

=
1
|G|
∑
g∈X

| Fix(g)|.

�

Let us apply Burnside’s Lemma to solve Example 3.5. Clearly, the cyclic group
Cn acts mapping one arrangement of the table to another. Two arrangements
are essentially di�erent if and only if they are not in the same orbit. This means
that we want to count orbits under the action of Cn of all the possible ways of
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sitting the knights. The amount of possible arrangements isn!. The permutation
id ∈ Cn �xes every arrangement while every non-trivial element has no �xed
arrangements. By Burnside lemma the number of orbits is

1
n
| Fix(id)| =

n!
n
.

Let us now formalise this notion of conting colouring con�gurations of ob-
jects. Let K = {1, . . . , k} be a set, which we call the set of colours. Assume that
X is a set. A colouring of X is a function c : X → K , that is, a function that
assigns the colour c(x) to each element x ∈ X . The set of colourings of X (with
colour-set K) is the set

KX = {c : X → K} .

Observe that if |X | = n, then |KX | = kn, as expected.
Let G be a a permutation group of X , then the group G acts on KX by

σc = c(σ−1),

that is, for every x ∈ X , the colouring σc is given by

(σc)(x) = c(σ−1(x)).

The inverse is necessary to guarantee that the previous mapping is actually a
left action.

Now we use Burnside Lemma to compute the number of orbits of colourings
of a set X with respect a permutation group G of X .

Proposition 3.10. Let X be a set with n elements and G a permutation group of
SX . Let K be a set of colours with |K | = k. Let m denote the number of orbits of G
on KX , the set of colourings of X. Then

m =
1
|G|
∑
ℓ

cℓ (G)kℓ ,

where cℓ (G) denotes the number of elements of G that have ℓ cicles.

Proof. Let σ ∈ G. Assume that c is colouring �xed by σ , that is, for every x ∈ X

c(σ−1x) = σ(c)(x) = c(x).

If follows that if any two elements of X in the same cycle of σ must have the
same colour. Clearly, if σ has ℓ cycles, there are kℓ colourings of X satisfying that
any two elements in the same cycle have the same colour. Any such colouring is
�xed by σ . The result follows from Burnside’s Lemma. �
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We can now solve Example 3.6. We need to compute the number cℓ (D6) for
the dihedral group D6. The elements of D6 are listed below:

(1)(2)(3)(4)(5)(6) (1 2 3 4 5 6) (1 3 5)(2 4 6)
(1 4)(2 5)(3 6) (1 5 3)(2 6 4) (1 6 5 4 3 2)
(1)(4)(2 6)(3 5) (2)(5)(1 3)(4 6) (3)(6)(2 4)(1 5)
(1 2)(3 6)(4 5) (2 3)(1 4)(5 6) (3 4)(2 5)(1 6)

It follows that c1(D6) = 2, c2(D6) = 2, c3(D6) = 4, c4(D6) = 3, c5(D6) = 0 and
c6(D6) = 1.

The 6 permutations in the �rst two rows above are precisely the elements of
the cycle groupC6. We can compute the numbers c1(C6) = c2(C6) = 2, c3(C6) = 1
and c6(C6) = 1.

We can now compute the number of necklaces of legth 6 with two colors with
respect to rotations (using C6) or with respect to rotation and �ips (using D6).

m(D6) =
1

12
(

2× 2 + 2× 22 + 4× 23 + 3× 24 + 1× 26) =
156
12

= 13

m(C6) =
1
6
(

2× 2 + 2× 22 + 1× 23 + 1× 26) =
84
6

= 14

The fact that we get one extra orbit with the cyclic group is that all but one of
the orbits with respect to the dihedral group have mirror re�ection (see Figure 5).
The rightmost necklace in the �rst row does not admit mirror re�ection, hence
its orbit with respecct to the dihedral group has to be split into two di�erent
orbits of the cyclic group.

Proposition 3.10 allows us to count colored objects that are essentially di�erent
with respect to the symmetires of the group G. That number depends only on
the cycle structure of the elements on G, more precisely on the numbers cℓ (G).
In the following paragraph we will introduce the cycle index of a permutation
group G, which generalise in some sense the numbers cℓ (G).

LetG be a permutation group of a setX , with |X | = n and let σ ∈ G, the cycle
monomial of σ is de�ned as

Mσ (t1, . . . , tn) =
k∏
i=1

tℓi

if σ has k cycles and the i-th cycle is of length tℓi . In other words, the exponent of
ti, i ∈ {1, . . . , n} in Mσ (t1, . . . , tn) is k whenever σ has k cycle of lenth i.

The cycle index of G is the polynomial

ZG(t1, . . . , tn) =
1
|G|
∑
σ∈G

Mσ (t1, . . . , tn).
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Observe that the cycle index actually generalises the numbers cℓ (G) discussed be-
fore. In fact, the sum of the coe�cients of the terms of degree ℓ in ZG(t1, . . . , tn)
is precisely the number the cℓ (G)

|G| .
From the previous discussion the following proposition is obvious.

Proposition 3.11. Let X be a set with n elements and G a permutation group of
SX . Let K be a set of colours with |K | = k. Let m denote the number of orbits of G
on KX , the set of colourings of X. Then

m = ZG(k, . . . , k).

We will compute some cycle index as excercises (see Exercises 3.1 to 3.4). We
shall use them just to show how they work.

According to Exercise 3.2, the cycle index of the cyclic group is

ZCn(t1, . . . tn) =
1
n

∑
d|n

ϕ(d)tn/dd .

For n = 6 we have

ZC6 (t1, . . . , t6) =
1
6
(
t6

1 + t3
2 + 2t2

3 + 2t6
)

Similaryly for the dihedral group D6,

ZD6 (t1, . . . , t6) =
1

12
(
t6

1 + t3
2 + 2t2

3 + 2t6 + 3t2
1 t

2
2 + 3t3

2
)

Then we can use Proposition 3.11 to solve the 2-colour necklace problem:

ZC6 (2, . . . , 2) =
1
6
(

26 + 23 + 2 · 22 + 2 · 2
)

=
84
6

= 14

ZD6 (2, . . . , 2) =
1

12
(

26 + 23 + 2 · 22 + 2 · 2 + 3 · 22 · 22 + 3 · 23) =
156
12

= 13

Proposition 3.11 allows us to compute the number of orbits of coloured ob-
jects whith no restrictions, but say that we are interested in �nding 2-coloured
necklaces of length 6 such that only 2 white bead are used.

From now on we will modify slightly our notation, and we shall denote K =
{y1, . . . , yk} the set of colours.

De�nition 3.12. Let X be a set with n elements and let G 6 Sn a permutation
group acting on X . Let K = {y1, . . . , yk} a set of colours. Let v = (n1, . . . , nk)
a vector of k integers such that ni > 0 for every i and n1 + · · · nk = n. Let av
denote the number of non-equivalent colourings (with respect to G) such that
the colour yi is used ni times. The pattern inventory of G is the polynomial

PG(y1, . . . , yk) =
∑

v

avy
n1
1 . . . ynkk .
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Clearly, if we know an explicit expression forPG then we how many colourings
of a given type we have. Our task now is to �nd a way to compute PG. Before
doing that let us compute a very simple to show how the pattern inventory works.

Example 3.13. Let X be a set with n elements. How many colourings with 2
colours exists if we do not mind symmetry?.

Proof. Solution Let say tha the colour-set is K = {x, y} For this problem the
vectors v are of length 2 and since both entries must sum n they are of the form
(i, n−i). Obiously, the number of colourings using the colour x i times, when no
symmetry is considered is determined by which of the elements ofX are coloured
with the given colour. In other words

a(i,n−i) =
(
n

i

)
,

hence the pattern inventoy is just

P{id}(x, y) =
n∑
i=0

(
n

i

)
xiyn−1

�

The expression on the right side of prevoious equations should be familiar for
the reader. A well-known theorem claims that Pid(x, y) = (x+ y)n, and this is not
a coincidence; let us explore this example further.

If we express the product (x + y)n as

(x + y)(x + y) · · · (x + y)︸ ︷︷ ︸
n times

one can see that every term of the product, before reducing similar terms, is given
by chosing either x or y on each of the monomials. This explains the fact tha the
coe�cient of xiyn−i is precisely

(
n
i

)
, the number of ways of chossing i times the

letter x. We shall see that this coincides with the ways of chossing one colour for
each cyclie of the (unique) element on the group {id}. More precisely,

Theorem 3.14 (Polya counting formula). LetX be a set of n elements andG 6 Sn
a group acting onX. LetK = {y1, · · · , yk}be a colour-set. Denote byePG(y1, . . . , yk)
the pattern inventory and by ZG(t1, . . . , tn) the cycle index of G, then

PG(y1, . . . , yk) = ZG

 k∑
j=1

yj ,

k∑
j=1

y2
j , . . . ,

k∑
j=1

ynj

 .

Proof. Let v = (n1, . . . , nk) be a vector such that ni > 0 for every i and n1 + · · ·+
nk = n. Let Cv ⊆ KX the set of colourings of X such that there are exactly ni
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elements of colour yi. For σ ∈ G, let Cv,σ ⊆ Cv the set of colourings in Cv that
are preserved by σ .

For v as above, let yv denote the term yn1
1 · · · y

nk
k . If c ∈ Cv,σ then every two ele-

ments on a cycle have the same colour, because the colouring must be preserved
by σ . Moreover, the lengths of the cycles coloured with a given colour yi must
add ni. Obivously every colouring satisfying those two conditions is in Cv,σ .

Consider the monomialMσ

(∑k
j=1 yj ,

∑k
j=1 y

2
j , . . . ,

∑k
j=1 y

n
j

)
. This monomial

is just

Mσ

 k∑
j=1

yj ,

k∑
j=1

y2
j , . . . ,

k∑
j=1

ynj

 =
∏
ℓ

(
yℓ1 + · · · + yℓk

)
where ℓ runs over the lengths of the cycles of σ . Observe that the the term yv

appears in
∏

ℓ

(
yℓ1 + · · · + yℓk

)
as many times as the ways of choosing one letter

(of{y1, . . . , yk}) per cycle of σ such that the sum of the lengths of the cycles where
we choose yi is ni.

When comparing the two previous analysis it is easy to see that the coe�cient
of yv in Mσ

(∑k
j=1 yj ,

∑k
j=1 y

2
j , . . . ,

∑k
j=1 y

n
j

)
is precisely |Cv,σ |. When we sum

over all possible v we have

Mσ

 k∑
j=1

yj ,

k∑
j=1

y2
j , . . . ,

k∑
j=1

ynj

 =
∑

v

|Cv,σ | yv.

Now we sum over all possible elements σ ∈ G and divide by |G| and we have:

ZG

 k∑
j=1

yj ,

k∑
j=1

y2
j , . . . ,

k∑
j=1

ynj

 =
1
|G|
∑
σ∈G

Mσ

 k∑
j=1

yj ,

k∑
j=1

y2
j , . . . ,

k∑
j=1

ynj


=

1
|G|
∑
σ∈G

∑
v

|Cv,σ | yv

=
∑

v

(
1
|G|
∑
σ∈G

|Cv,σ |

)
yv

=
∑

v

avyv

= PG(y1, . . . , yk)

where the second to last equality follows from Burnside Lemma. �

As an example let us compute the pattern inventory of possible colouring of
necklaces of length 4 using colours red (r) �rst with respect to the dihedral group
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and then with respecto to the cyclic group.

ZD4 (t1, t2, t3, t4) =
1
8
(
t4

1 + 3t2
2 + 2t4 + 2t2

1 t2
)

ZC4 (t1, t2, t3, t4) =
1
4
(
t4

1 + t2
2 + 2t4

)
Using Polya counting formula we can see that

PD4 (r, g, b) = ZD4 (r + g + b, r2 + g2 + b2, r3 + g3 + b3, r4 + g4 + b4)

=
1
8
(

(r + g + b)4 + 3(r2 + g2 + b2)2 + 2(r4 + g4 + b4)+

2(r + g + b)2(r2 + g2 + b2)
)

= r4 + r3g + 2r2g2 + rg3 + g4 + r3b + 2r2gb + 2rg2b + g3b+
+ 2r2b2 + 2rgb2 + 2g2b2 + rb3 + gb3 + b4

and
PC4 (r, g, b) = ZC4 (r + g + b, r2 + g2 + b2, r3 + g3 + b3, r4 + g4 + b4)

=
1
4
(

(r + g + b)4 + (r2 + g2 + b2)2 + 2(r4 + g4 + b4)
)

= r4 + r3g + 2r2g2 + rg3 + g4 + r3b + 3r2gb + 3rg2b + g3b+
+ 2r2b2 + 3rgb2 + 2g2b2 + rb3 + gb3 + b4

Observe that there are two non-equivalent colouring with two red beads, one
green and one blue under D4 wheareas there are three of them under C4. This
is essentially because the necklaces (r, r, g, b) and (r, r, b, g) are di�erent with re-
specto to the cyclic group but equivalent with resepct to the dihedral group.

Consider now the following example:

Example 3.15. Suppose a jewelry company plans to market a new line of unisex
bracelets. The bracelets are sold in pairs, for a couple to share. Each bracelet
consists of n beads, some gold and some silver, and the two bracelets in a pair are
opposites, in the sense that one can be obtained from the other by changing each
silver bead to a gold one and each gold to a silver. For example, if one bracelet has
two adjacent gold beads and n − 2 silver beads, then its mate has two adjacent
silver beads and n− 2 gold beads.

Using the cycle index of D4 computed before we can see that there are 6 non
equivalent bracelets with two colours. Moreover, using Polya counting formula
we can easily see that the pattern inventory is

PD4 (g, s) = s4 + s3g + 2s2g2 + sg3 + g4

Meaning that bracelets can be represented as (s, s, s, s), (s, s, s, g), (s, g, s, g) (s, s, g, g),
(s, g, g, g) and (g, g, g, g). However, when we consider the change of colours we
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only have three di�erent pairs, namelly

{(s, s, s, s), (g, g, g, g)}
{(s, g, s, g), (g, s, g, s)}
{(s, s, g, g), (g, g, s, s)}
{(g, g, g, s), (s, s, s, g)}

Notice that the pair of the bracelet (s, g, s, g) is (g, s, g, s), which is equivalent to
the former under the action ofD4. In other words, that pair of bracelets consists
of two identical bracelets.

We can take a step back and count unfasten bracelets (that is, linear {g, s}-
sequences) and then consider two of them equivalet if we can obtain one from
the other by either the action of a dihedral group or by a swich of colours. We
can see that we obtain precisely the same equivalence classes as before:

{(s, s, s, s), (g, g, g, g)}
{(s, g, s, g), (g, s, g, s)}
{(s, s, g, g), (g, g, s, s), (s, g, g, s), (g, s, s, g)}
{(g, g, g, s), (g, g, s, g), (g, s, g, g), (s, g, g, g), (s, s, s, g), (s, s, g, s), (s, g, s, s), (g, s, s, s)}

Observe that in these consists of the orbits of linear {g, s}-sequences under the
action of two groups. On the one hand we have the group D4 acting as symme-
tries of the necklaces and on the other hand we have a cyclic group C2 swapping
the colours. Let us formalise these ideas for the general case.

LetX be a set with n elements andG 6 Sn a permutation group acting onX .
Let K be a set with k colours and H 6 Sk a permutation group acting on K . If
σ ∈ G, τ ∈ H and c ∈ KX the mapping (σ, τ)c 7→ c where c is the colouring
de�ned by

c(x) = τ
(
c(σ−1x)

)
de�nes a left action of G ×H on KX (see Exercise 3.14).

The following result tells us how to count the number of orbits for this action.

Proposition 3.16. Let X be a set with |X | = n and G 6 Sn a permutation group
acting on X. Let K be a set of colours with |K | = k and H 6 Sk a permutation
group acting on K. The number of orbits N of KX under the action on G × H
defined above is:

N =
1
|H |

∑
τ∈H

ZG(m1(τ), . . . , mn(τ))

where mi(τ) =
∑

j|i j · zj(τ) and zj(τ) denotes the number of cycles of length j in τ.
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Proof. Let σ ∈ G and τ ∈ H . Denote by ϕ(σ, τ) the number of colourings
preserved by (σ, τ). By Burnside lemma

N =
1

|G ×H |
∑

(σ,τ)∈G×H

ϕ(σ, τ) =
1
|H |

∑
τ∈H

(
1
|G|
∑
σ∈G

ϕ(σ, τ)

)
It remains to show that

1
|G|
∑
σ∈G

ϕ(σ, τ) = ZG(m1(τ), . . . , mn(τ)).

Let γ1, . . . , γd be the cycle of σ and let us denoteVi = supp(γi) ⊆ X the support
of γi, that is Vi = X \ Fix(γi). Clearly a colouring c is preserved by (σ, τ) if and
only if each of its restriction ci : Vi → K is preserved by (γi, τ). Letϕi(σ, τ) be the
number of colourings of Vi preserved by (γi, τ). From the previous observation
we have that ϕ(σ, τ) =

∏d
i=1 ϕi(γi, τ). Observe that if ci : Vi → X is a colouring

�xed by (γi, τ) then

ci(x) = (γi, τ)ci(x) = τ(ci(γ−1
i x)) = τ(ci(σ−1x)) for all x ∈ Vi,

or equivalently
ci(σy) = τ(ci(y)) = for all y ∈ Vi

Assume that γi has length ℓi (that is |Vi| = ℓi), pick x0 ∈ Vi and let k := ci(x0).
Observe that the colour of every other element inVi depends only on k and τ. In
fact, if y = σ r(x0) then ci(y) = ci(σ rx0) = τr(ci(x0)) = τr(k). In particular, since
this is true for r = ℓi, we have that the cycle of τ containing k must divide ℓi.

Conversely, if we pick any element k ∈ K such that the cycle of τ containing
k has length a divisor of ℓi, then the mapping ci : Vi → X de�ned by ci(γri x0) =
τr(k) is a well-de�ned colouring that is preserved by (γi, τ).

In other words the number ϕi(σ, τ) is equal to the number of ways of picking
a colour k lying on a cycle of τ of length a divisor of ℓi. Obviously this number is

ϕi(σ, τ) =
∑
j|ℓi

jzj(τ) = mℓi (τ)

Finally, observe that

ϕ(σ, τ) =
d∏
i

ϕi(σ, τ) =
d∏
i

mℓi (τ) = Mσ (m1(τ), . . . , mn(τ)).

The result follows from taking the sum over the elements of G and dividing
by |G| �

We �nish the section of the notes by remarking that the previous result solves
the problem of �nding the number of non-equivalent colourings under the ac-
tion of the groupG on the set of elements and the groupH on the set of colours.
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The notion of a patter inventory can be also extended to this context and an anal-
ogous result to Theorem 3.14 was proved by De Brujin in 1964. We leave this
result out of these notes but is the reader is interested a proof can be found on
[Bru67]

Exercises.
3.1 Find the cycle index of the group of rotations of the cube.
3.2 Prove that the cycle index if the cyclic group is

ZCn(t1, . . . tn) =
1
n

∑
d|n

ϕ(d)tn/dd .

3.3 Prove that the cycle index of the dihedral group Dnis

ZDn(t1, . . . , tn) =


1

2n

(∑
d|n ϕ(d)tn/dd + nt1t

n−1
2

2

)
for n odd,

1
2n

(∑
d|n ϕ(d)tn/dd + n

2 t
2
1 t

n
2−1

2 + n
2 t

n
2

2

)
for n even

3.4 We say that a partition P of [n] is of type (k1, k2, . . . kn) if P has k1 subsets
of size 1, k2 of size 2, etc.
(a) Find the number of partitions of [n] of a given type (k1, . . . kn).
(b) Use the previous item to prove that

ZSn(t1, . . . , tn) =
∑

(k1,...kn)

1
1k1 2k2 · · · nknk1!k2! · · · kn!

tk1
1 · · · tknn .

(c) Compute explicitly the cycle index of Sn for n 6 5.
3.5 Find the number of essentially di�erent colourings of the vertices of K5

(the complete graph with 5 vertices) with at most 5 colours.
3.6 Let X1 and X2 be two disjoint sets of size n1 and n2, respectivelly. Let

Gi a permutation group of the set Xi (i ∈ {1, 2}). Consider the group
G = G1 × G2.
(a) Prove that G acts faithfully on X = X1 ∪ X2.
(b) Prove that

ZG(t1, . . . , tn1 , s1, . . . , sn1 ) = ZG1 (t1, . . . , tn1 ) · ZG2 (s1, . . . , sn2 )

(c) Compute the cycle index of the largest subgroup of S5 that preserves
the partition {{1, 2, 3} , {4, 5}}.

3.7 The commander of a space cruiser wishes to post four sentry ships arrayed
around the cruiser at the vertices of a tetrahedron for defensive purposes,
since an attack can come from any direction.
(a) How many ways are there to deploy the ships if there are two di�er-

ent kinds of sentry ships available, and we discount all symmetries of
the tetrahedral formation?
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(b) How many ways are there if there are three di�erent kinds of sentry
ships available?

3.8 Consider the natural action of the dihedral group D4 on the tiles of an
unpainted 4 × 4 chekerboard. Let G denote the induced permutation
group of the 16 tiles.
(a) Find the cycle index of G.
(b) In how many ways can we paint the board if we use colours black

and white.
(c) In how many ways can we paint the checkerboard if 8 tiles must be

black and 8 must be white?
(d) What if we paint exactly 4 tiles black and there must be exactly one

black tile on each row and each column?
3.9 Consider the symmetric group S4 acting on the 6 edges of a complete

graph K4. Let G denote the induced permutation group, that is G 6 S6.
(a) Compute the cycle index of G.
(b) Use this to compute the number of non-isomorphic graphs on 4 ver-

tices.
3.10 How many 0, 1-sequences of lenght 12 exists if two sequences are consid-

ered to be the same if one can be obtained from the other by a cyclic shift.
How many are there if each consists of exactly 6 ones and 6 zeros.

3.11 What is the pattern inventory for coloring n objects using the m colours
y1, . . . , ym if the group of symmetries is Sn?

3.12 Two identical cubes are glued to two oposite faces of a third cube to form
a 3 × 1 prism. The prism has 14 squares exposed (4 of the cube in the
middle 5 of each of the other two cubes).
(a) Find the permutation group G on the 14 squares induced by all the

possible ways of rotating the prism.
(b) Compute the cycle index of G.
(c) In how many ways can the squares be painted using at most three

colours: black, white and blue.
(d) Whay if exactly two of the squares must be blue?

3.13 What is the number of essentially di�erent ways to paint the faces of a
cube such that one face is red, two are blue, and the remaining three are
green?

3.14 LetX be a set withn elements andG 6 Sn a permutation group acting on
X . Let K be a set with k colours and H 6 Sk a permutation group acting
on K . Prove that if σ ∈ G, τ ∈ H and c ∈ KX the mapping (σ, τ)c 7→ c
where c is the colouring de�ned by

c(x) = τ
(
c(σ−1x)

)
de�nes a left action of G ×H on KX .
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3.15 The hydrocarbon naphthalene has ten carbon atoms arranged in a double
hexagon as in Figure 6, and eight hydrogen atoms attached at each of the
positions labeled 1 through 8.

Figure 6. Naphthalene

(a) Naphthol is obtained by replacing one of the hydrogen atoms of
naphthalene with a hydroxyl group (OH). How many isomers of
naphtholare there?

(b) Tetramethylnaphthalene is obtained by replacing four of the hydro-
gen atoms of naphthalene with methyl groups (CH3). How many
isomers of tetramethylnaphthalene are there?

(c) How many isomers may be constructed by replacing three of the hy-
drogen molecules of naphthalene with hydroxyl groups, and another
three with methyl groups?

(d) How many isomers may be constructed by replacing two of the hy-
drogen molecules of naphthalene with hydroxyl groups, two with
methyl groups, and two with carboxyl groups (COOH)?

3.16 Determine the number of ways to color the faces of a cube using the three
colors red, blue, and green, if two colorings are considered to be equiva-
lent if one can be obtained from the other by rotating the cube in some
way in three-dimensional space, and possibly exchanging green and red.
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