
Swing (2. del)
Mouse listeners



public class NKotnik extends Lik {

private int n; // število stranic

private double stranica; // dolžina stranice

private double[] robiX, robiY; // Koordinate robov

public NKotnik(int n, double x, double y, double theta,

Color barva, double stranica) {

super(x, y, theta, barva);

this.stranica = stranica;

this.n = n;

robiX = new double[n]; robiY = new double[n];

izracunajRobe();

}

private void izracunajRobe () {

double doRoba = stranica / (2 * Math.sin(Math.PI/n));

for (int i = 0; i < n ; i++) {

robiX[i] = x + doRoba * Math.cos(theta + i * 2 * Math.PI / n);

robiY[i] = y + doRoba * Math.sin(theta + i * 2 * Math.PI / n);

} }

@Override

public void premakni(double dx, double dy) {

super.premakni(dx, dy);

izracunajRobe();

}

@Override

public void zavrti (double dtheta) {

super.zavrti(dtheta);

izracunajRobe();

}



@Override

public boolean vsebujeTocko(double x, double y) {

for (int i = 0; i < n ; i++) {

double x0 = robiX[i] ; double x1 = robiX[(i+1)%n];

double y0 = robiY[i] ; double y1 = robiY[(i+1)%n];

if ((y0-y1) * (x-x0) + (x1-x0) * (y-y0) < 0) return false;

}

return true;

}

@Override

public void narisiSe(Graphics g) {

g.setColor(this.barva);

int[] xPoints = new int[n];

int[] yPoints = new int[n];

for (int i = 0; i < n ; i++) {

xPoints[i] = (int) Math.round(robiX[i]);

yPoints[i] = (int) Math.round(robiY[i]);

}

g.fillPolygon(xPoints, yPoints, n);

}

}



Metode vmesnika MouseListener iz API

void mouseEntered(MouseEvent e)

Invoked when the mouse enters a component.

void mouseExited(MouseEvent e)

Invoked when the mouse exits a component.

void mousePressed(MouseEvent e)

Invoked when a mouse button has been pressed on a component.

void mouseReleased(MouseEvent e)

Invoked when a mouse button has been released on a component.

void mouseClicked(MouseEvent e)

Invoked when the mouse button has been clicked (pressed and released)
on a component.



public class Platno extends JPanel implements MouseListener {

private LinkedList<Lik> liki;

public Platno () {

this.setPreferredSize(new Dimension(750,750));

this.setBackground(Color.white);

this.addMouseListener(this);

this.liki = new LinkedList<Lik>();

}

public void addLik(Lik l) { liki.addLast(l); }

public boolean removeLik(Lik l) { return liki.remove(l); }

@Override

protected void paintComponent(Graphics g) {

for (Lik l : this.liki) {

l.narisiSe(g);

}

this.repaint();

}



@Override

public void mouseClicked(MouseEvent e) {

System.out.println("Mouse clicked"); }

@Override

public void mousePressed(MouseEvent e) {

System.out.println("Mouse pressed"); }

@Override

public void mouseReleased(MouseEvent e) {

System.out.println("Mouse released"); }

@Override

public void mouseEntered(MouseEvent e) {

System.out.println("Mouse entered"); }

@Override

public void mouseExited(MouseEvent e) {

System.out.println("Mouse exited"); }

}



@Override

public void mouseClicked(MouseEvent e) {

int x = e.getX(); int y = e.getY();

Lik izbraniLik = null;

for (Lik l: this.liki) {

if (l.vsebujeTocko(x, y)) izbraniLik = l;

}

if (izbraniLik != null) this.removeLik(izbraniLik);

}

@Override

public void mousePressed(MouseEvent e) { }

@Override

public void mouseReleased(MouseEvent e) { }

@Override

public void mouseEntered(MouseEvent e) { }

@Override

public void mouseExited(MouseEvent e) { }



Metode vmesnika MouseMotionListener iz API

void mouseDragged(MouseEvent e)

Invoked when a mouse button is pressed on a component and then
dragged.

void mouseMoved(MouseEvent e)

Invoked when the mouse cursor has been moved on a component but no
buttons have been pushed.



public class Platno extends JPanel

implements MouseListener, MouseMotionListener {

...

public Platno () {

this.setPreferredSize(new Dimension(750,750));

this.setBackground(Color.white);

this.addMouseListener(this);

this.addMouseMotionListener(this);

this.liki = new LinkedList<Lik>();

}

...

@Override

public void mouseDragged(MouseEvent e) {

System.out.println("Mouse dragged"); }

@Override

public void mouseMoved(MouseEvent e) {

System.out.println("Mouse moved"); }

}



private int prejsnjiX, prejsnjiY;

private Lik premikajociLik;

@Override

public void mousePressed(MouseEvent e) {

int x = e.getX(); int y = e.getY();

Lik izbraniLik = null;

for (Lik l: this.liki) {

if (l.vsebujeTocko(x, y)) izbraniLik = l; }

if (izbraniLik != null) {

this.removeLik (izbraniLik);

this.addLik (izbraniLik);

premikajociLik = izbraniLik;

prejsnjiX = x; prejsnjiY = y; }

}

@Override

public void mouseReleased(MouseEvent e) { premikajociLik = null; }

@Override

public void mouseDragged(MouseEvent e) {

if (premikajociLik != null) {

int x = e.getX(); int y = e.getY();

premikajociLik.premakni(x - prejsnjiX, y - prejsnjiY);

prejsnjiX = x; prejsnjiY = y; }

}



Aplikacija Tabla



public class Tabla {

public static void main(String[] args) {

Okno glavnoOkno = new Okno(500, 500);

glavnoOkno.pack();

glavnoOkno.setVisible(true);

}

}

public class Okno extends JFrame {

private Platno platno;

public Okno(int width, int height) {

setTitle("Tabla");

// Platno, na katero rišemo

platno = new Platno(width, height);

this.add(platno);

}

}



public class Platno extends JPanel

implements MouseListener, MouseMotionListener {

private List<Poteza> poteze;

private Poteza aktivnaPoteza;

public Platno(int sirina, int visina) {

this.setBackground(Color.white);

this.setPreferredSize(new Dimension(sirina, visina));

this.addMouseListener(this);

this.addMouseMotionListener(this);

this.poteze = new LinkedList<Poteza>();

}

@Override

protected void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;

for (Poteza p : poteze) {

p.narisi(g2);

}

if (aktivnaPoteza != null) {

aktivnaPoteza.narisi(g2);

}

}



@Override

public void mousePressed(MouseEvent e) {

aktivnaPoteza = new Poteza(Color.BLACK,5,e.getX(),e.getY());

this.repaint();

}

@Override

public void mouseReleased(MouseEvent e) {

aktivnaPoteza.dodajTocko(e.getX(), e.getY());

poteze.add(aktivnaPoteza);

aktivnaPoteza = null;

this.repaint();

}

@Override

public void mouseDragged(MouseEvent e) {

aktivnaPoteza.dodajTocko(e.getX(), e.getY());

this.repaint();

}

@Override

public void mouseClicked(MouseEvent e) { }

@Override

public void mouseMoved(MouseEvent e) { }

@Override

public void mouseEntered(MouseEvent e) { }

@Override

public void mouseExited(MouseEvent e) { }

}



public class Poteza {

private Color barva;

private int sirina; // Širina, s katero rišemo potezo

private Path2D pot;

public Poteza(Color barva, int sirina, int x, int y) {

this.barva = barva;

this.sirina = sirina;

this.pot = new Path2D.Float();

pot.moveTo(x, y);

}

public void dodajTocko(int x, int y) {

pot.lineTo(x, y);

}

public void narisi(Graphics2D g) {

g.setColor(barva);

g.setStroke(new BasicStroke(sirina,

BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND));

g.draw(pot);

}

}



Potrebno iz AWT (Abstract Windows Toolkit):

import java.awt.Color;

import java.awt.geom.Path2D;

import java.awt.Graphics2D;

import java.awt.BasicStroke;

Iz BasicStroke:

static int CAP ROUND

Ends unclosed subpaths and dash segments with a round decoration that
has a radius equal to half of the width of the pen.

static int JOIN ROUND

Joins path segments by rounding off the corner at a radius of half the line
width.

Statike metode in polja so direktno povezani z radredom ni z objekti v razredu. Na
primer, za dostop do vrednosti polja CAP ROUND napǐsemo BasicStroke.CAP ROUND.


