Cardinal Arithmetic $|x| = |y| \quad |x| \le |y| \quad |x| < |y| \quad |x| < |y|$ · If X is infinite INI < |x/ · IX | < 10X | (Last week) The powerclass operation $\overline{X} \longmapsto \theta \overline{X}$ induces a corresponding operation on class functions. Given F: 之 ->> Y We define $\mathcal{O}F : \mathcal{P}X \to \mathcal{P}X$

Proposition The operation X HOX preserves cardinalities; i.e., $|x| = |y| \implies |\theta x| = |\theta y|$ It is also Monotone $|x| \in |x| \Rightarrow |px| \in |py|$ Proof 1) follows from functoriality because:

If |x|=|y| then we have $f:X \rightarrow Y$ and $f':Y \rightarrow X$ s.t. f'of = idx and fof' = idy. Then $\beta(f^{-1}) \circ (Pf) = \beta(f^{-1}\circ f) = \beta(idx) = id_{ex}$

and

(Bt/0 b(t-1) = ... = iq bx

So indeed IOX = /OY 1.

2) We use functionality to establish: $1 \le |x| \le |y| \Rightarrow |Px| \le |Py|$

(3)

П

Lemma Suppose X is nonempty. Then $f:X \to Y$ is an injection iff it has a left inverse; i.e. there exists $g:Y \to X$ set $g \circ f = i d_X$

 \Rightarrow Suppose \times is nonempty and $f: X \rightarrow Y$ is injective. Define $g: Y \rightarrow X$ by:

 $g(y) = \begin{cases} \text{the unique } x \in X \text{ s.t. } f(\pi) = y \\ \text{if } y \in \text{image}(f) \end{cases}$ $\begin{cases} x_0 & \text{if } y \notin \text{image}(f) \end{cases}$

Where Do is an arbitrary element of X.

It is immediate that gof = idx.

To prove (2)'. Suppose 1≤ 1X | ≤ 1Y | So there is some injection f: X > Y By the lemma there exists g: Y+X with gof = idx. Then $(gg) \circ (gf) = g(gof) = g(idx) = idgx$ So Pf: PX -> PY has a left inverse. Clearly Bx is nonempty. By the lemma of is an injection. So lox | 5 (04). This places (2)'. additional For 2 we just need to consider the case X = Ø. Then $\mathcal{G} \times = \mathcal{G} = \{\emptyset\} \subseteq \mathcal{G} \times$ The inclusion function BX Epy is trivially insective. So indeed |X| = |Y|. I.e. 2 holds.

X + Y Sum

by: $\underline{X} + \underline{Y} := \left\{ (0, x) \mid x \in \underline{X} \right\} \cup \left\{ (1, y) \mid y \in \underline{Y} \right\}$ where $0 = \emptyset$ and $1 = \{\emptyset\}$ (e.g.)

Proposition If X, Y are sets then so are X+7, X×Y, X

Given
$$f: X \to X'$$
 and $g: Y \to Y'$, define

$$f+g: X+Y \to X'+Y'$$

$$\not \supseteq \longmapsto \begin{cases} (0, f(x)) & \text{if } \not \supseteq = (0, x) \\ (1, g(y)) & \text{if } \not \supseteq = (1, y) \end{cases}$$

$$f \times g: X \times Y \to X' \times Y'$$

 $(x,y) \mapsto (f(x), g(y))$

 $h \mapsto (x \mapsto g(h(f(x))))$

 $9^f : \gamma^{(\chi')} \longrightarrow (\gamma')^{\chi}$

 $(h \mapsto gohof)$ Note that g^{s} reverses the direction of f. Proposition The operations above are functorial;

(N.B. the operation of is contravariant in f.
All other cases are <u>covariant</u>)

Proposition It |X| = |X'| and |Y| = |Y'| then: |X+Y| = |X'+Y'| $|X\times Y| = |X'\times Y'|$

If |x| < |x'| and |y| < |y'| then:

· |X+7| { |X'+Y'| · |X*Y| { |X'*Y'|

 $|Y^{x}| \le |(Y')^{(x')}|$ except in the case that $x = y' = \emptyset \ne x'$

Cardinal Arithmetic (Part 2) Notation IXI+IYI Means |X+Y| IXI-IYI Means |X×Y| IYIIXI Means |YX| O Means |YX| O Means |Eds| 1 Means | {eds}|

Means

X°

INI

· |x|.|4| = |7|. |x|

 $\cdot /X | \cdot 0 = 0$

· |x | · (1/1 · |z|) = (|x| · |/|) · |z|

· |x|.(|Y|+|Z|) = |x|.|Y| + |x|.|Z|

• |x| = 1 $\cdot |X|_{|A|+|S|} = (|X|_{|A|}) \cdot (|X|_{|S|})$ $1^{|x|} = 1$ $\cdot \left(\left| \left| \left| \left| \left| \right| \right| \right| \right) \cdot \left(\left| \left| \left| \left| \right| \right| \right| \right) \right) = \left(\left| \left| \left| \left| \right| \right| \right| \right) \cdot \left(\left| \left| \left| \left| \left| \right| \right| \right| \right| \right) \right)$ $|x|^1 = |x|$ $|x|^{|\gamma|\cdot|z|} = (|x|^{|\gamma|})^{|z|}$ (X)Example proof of 8 we need to give a bijection from X to (xx) Such a bijection is A: xxxx -> (xx) = defined by: $\bigwedge_{y} \left(\begin{array}{c} g \\ y \end{array} \right) := \left(\begin{array}{ccc} z & \longmapsto (y & \longmapsto g(y, z)) \end{array} \right)$ Exercise 90 tive V, (X,) X >x5 and show it is an inverse to A Therefore $\left\{ x^{y\lambda^{\frac{1}{2}}} \right\} = \left[\left(x^{y} \right)^{\frac{1}{2}} \right]$, i.e. $\left[\left(x \right)^{\frac{|y|}{2}} \right] = \left(\left(\left(x \right)^{\frac{|y|}{2}} \right)^{\frac{1}{2}}$ (cf. "Currying" in computer science.)

The above algebraic laws say that cardinalities form an exponential seniring Proposition /8x1 = 2/x1 $|\mathcal{S} \times | = |\{\emptyset, \{\emptyset\}\}\}|$ Proof Exercise. [] ordinary The above laws are familiar from & aritmetic A Major way in which cardinal arithmetic differs From Ordinary arithmetic is that carcellation laws fail eg, in ordinary arithmetic we have: $x + z = y + z \Rightarrow x = y$

x. z = y.z => o(=y provided that z = 0

For example O + |IN| = |N| = |IN| + |IN| but $O \neq |IN|$ $1 \cdot |IN| = |IN| = |IN| \cdot |IN|$ but $1 \neq |IN|$ This relies on two important equalities |IN| = |IN| + |IN| $\aleph_0 = \aleph_0 + \aleph_0$ $|IN| = |IN| \cdot |IN|$ $\aleph_0 = \aleph_0 \cdot \aleph_0$

 $|x| = |x| \cdot |x|$ Lemma If $|x| \ge 2$ and |x| is its own square then

• |x| = |x| + |x|.

We say that |x| is its own square if

Proof Easily
$$|x| \leq |x| + |x|$$

For the converse $|x| + |x| = |x|$

By Schröder - Bernstein $|x| = |x| + |x|$

By Schröder - Bemstein |x| = |x| + |x|

Let f: X+X -> X be some bijection

The f [{(0,01) | x eX}] is a proper subset of X that is in bijection with X Hence X is infinite. II

Proposition If 25/x/ and 1x/ is its own Square then 21x1 is also its own square.

 $2^{|x|} \cdot 2^{|x|} = 2^{|x|+|x|} = 2^{|x|} \cdot \square$

Theorem If IX | is its own square and YEX is such that $|Y| \ll |x|$ then |x-Y| = |x|. Proof Consider the composite function $\lambda \xrightarrow{\xi} \times \xrightarrow{\xi} \times \times \times \xrightarrow{(x',x')\mapsto_{x'}} \times$ where $f: \times \rightarrow \times \times \times$ is a bijection. Because IY << |x| the above function is not a surjection. so there exists xo EX not in the image · (. P.) for every yet, we have fly) = (71, , x2) where x, \$ x0 We therefore have a function $\times \xrightarrow{\alpha \mapsto (x_{\sigma_i}x)} \times \times \times - f[\lambda]$ which is obviously injective. fisalijection Trivially $|x-y| \leq |x|$. So indeed |x| = |x-y| by S-B. \square