Lecture 6: Well-orders

Functions between partially ordered sets (recap) Suppose X, Y are partially ordered sets and f: X > Y is a function · We say f is monotone (increasing, order preserving) if asa, => tla) & tla) · We say f is strictly monotone (strictly increasing, etc.) If $x < x' \Rightarrow f(x) < f(x')$. · If fis strictly monotone then it is monotone. "If f is Monotone and injective then it is strictly monotone. · If X is a linear order then f is strictly monotone iff it is an order entedding: · fis an (order) empedding if xxx' (=) fla/ xfla!) (. Every embedding is injective)

(side) it is mand-une and

fis an hisomorphism if there exists a (necessarily unique) Monotone f-1: Y-1 X such that f-of=idx and fof-1=idx. (· Every isomorphism is an embedding.)

· And <u>automorphism</u> is an isomorphism from a partially ordered set to itself

(order)

Prologue: The least ordinal property

Principle of transfinite induction (uniform varsion):

It X C OLD salities:

Then X = Ord.

Proposition (The least ordinal property)

If $\times \in 0$ and $\times i$ nonempty then \times has a snallest element (that is there exists $\times \in \times$ s.t. $\forall \beta \in \times$ $\times \in \mathbb{R}$).

Proof Suppose $X \in Ord$ and X does not have a least element. Then we show that $X = \varnothing$.

Define $\underline{Y} = \underline{0} \underline{n} - \underline{\times}$

We win T.I to show that $\gamma = Old$ hence $X = \varnothing$.

Suppose $\alpha \in Old$ is such that $\forall \beta < \alpha \quad \beta \in \Sigma$.

If 1344 thin B vould be the smallest element of X. But X has no least element. So 1364.

By T.I. Y = GId . Hence X = W . []

Proposition Consider the following 3 statements regarding a relation RCXXX (where, for convenience, X is a set) (y, x) ER 1. For every subjet ZCX if · for all x EX if (for all y EX, yRx inplies y EZ) thin xt Z & then 7 = X. 2. For every nonempty subject ZEX, there exists an R-minimal elenint ZEZ (I.R., Yz'EZ wi do not have z'Rz). 3. There is no R-decrewing infinite segunce in X (An R-decreasing sequence is x1-): IN -> X satistying

for all n, and Ran. Thin (1) (=) (2) (3)

(Furthermore 3) => 2) if we assume the axiom of dependent chails !) <- Leave to a pature lecture

Proof (1=) (2) Similar to the proof above about ordinals. (D) = 1 (D) Suppose (D) Also suppose Z SX satisfies & We need to prove Z=X.

Thursper indeed Z=X.

Suppose not. Then Y := X-Z is nonempty. So Y has an R-minimal element a (622). So for all yEX us have yRx = y & Y i.e. y & Z. By & x & Z ; i.e., x & Y. A contradiction.

Suppose that $x_{(-)}: N \to X$ is an R-divising signed.

Thin $\{x_n \mid n \in N\} \subseteq X$ has no R-minimal element.

Definition A relation $R \subseteq X \times X$ is said to be well-founded if property 1 (equivalently 2) of the proposition above hold.

Corollary of the proposition above

- · Strictly and a line by p. -> -
- · Strictly antisymmetrice they siry => 7 yRx

Definition A well-ordered set (well-order) is

given by a set X with a total order such that

the Strict order relation < on X is well-founded.

Examples of will orders

For every ordinal of the set La (remember La:= {\begin{pmatrix} \text{prod} | \beta \times \text{set} \] is well-orded by <.

(Proof Suppose XE Ja is non-empty.

By the least ordinal property X has a least element.

This is then a <-mininal element.

So < on to satisfies det 2 of a will-ordering.)

Temporary questions. Can we find other examples of Well-orders; i.e., ones not isomorphic to any $l \propto ?$ Can be and l B be isomorphic if $x \neq B$?

Two technical lemmas

Lemma A: If f is an embedding from a well-ordered set A to itself then f is inflationary; i.e, for all $x \in A$, $x \in F(x)$.

for all $x \in A$, $x \in f(x)$.

Proof

Suppose f is not inflationary.

Then the subset $B := \{x \in A \mid f(x) < x\}$ is non-empty.

So B has a least element $x_0 \in S_0$ $f(x_0) \in X_0$.

By Strict monotonicity $f(f(x_0)) < f(x_0)$.

That is $f(x_0) \in B$. This contradicts x_0 being the least

element of B.

An initial segment of a totally ordered sel- X is just a down closed subject IEX; i.e. if xeI and yex then yeI.

It is a proper initial segment if I is a proper subset of X.

Lenna B: (1) If I is a proper initial segment of a well-ordered set A then I = la for a unique acA.

(2) Similarly if a set I is an initial segment of the ordinals then I= to for a unique ordinal of.

Proof (1) The set I := A-I is nonempty.

Let a be the last element of I : Then I = La Durite

(2) Similar.

We assure our temporary questions in the negative.

The classification theorem for well-orders

Every well-ordered set is order isomorphic to $l \propto for$ a unique ordinal $\propto c$

We postpone the (lengthy) proof

Using the classification thrown, for any well-ordered set A we write ord(A) for the unique ordinal α s.t. $A \cong J \propto is$ is isomorphic to

(N.B. strictly we should write and (A, <n))
We call ord (A) the order type of the well-order.

Theorem The following are equivalent for well-ordered sets A,B.

 $(1) A \cong B$ (2) ord(A) = ord(B)

Theorem T.f.q.e. for WIII-ordered Vets A, B

(1) A embeds in B

(2) A is isomorphic to an initial sigment of B

 $(3) \quad ard(A) \leq ord(R)$

Corollary For Well-ordered selfs A,B:

(1) If A and B embed in each other then A & B

(2) Either Aenbeds in B or Benbeds in A.

Outline proof of second theorem above (2) => (1). The embedding from A to B is $A \xrightarrow{\alpha} I \xrightarrow{c} B$ (1) ⇒ (3) Suppose i: A→ B is an embedding Then we have an embedding LOID(A) => A is R => LOID(B) In other words we have an embedding Ja 3 JB when a = ord (A) B = ord (B) We need to show & S B. Support instead B< a, thin j(B) & UB SU j(B) < B. This contradicts Lemma A. $(3) \approx) (2)$ $A \xrightarrow{\mathcal{L}} \int_{\mathcal{Q}} ord(A) \xrightarrow{\mathcal{L}} \int_{\mathcal{Q}} ord(B) \xrightarrow{\mathcal{L}} B$ Let I be the image of this composite. I is an snitial sugarut of B. And the above map is an isomorphism from A to I.

17

Constructions on well-ordered Jets Suppose (X, <x) and (Y, <y) are well-oldered sely Define: $(X, \langle x \rangle + (Y, \langle y \rangle) := (X+Y, \langle x+y \rangle)$ where: ₹ <_{x+y} w ⇔ ∃α,x' ₹=(0,x) Λ ~=(0,x') Λ α<x' or Jany 2=(0,2) 1 W=(1,4) or Byy' Z= (1,y) 1 ~= (1,y') 1 y (y' (Ides ~) $(x, <_x) \times (Y, <_y) := (x \times Y, <_{x_x Y}) \cup hire :$ (a,y)<xxy (x',y') ⇔ y<y' or y=y' and Xcx'.

(reverse lexicographic order) Idea: Y-many copies of X

 $(y, \langle y \rangle)^{(x, \langle x \rangle)} := \left\{ finite[x, y], \langle yx \rangle \right\} \quad \text{whith} :$ $finite[x, y] := \left\{ f \in y^{\times} \mid \text{the Set } \{x \in X \mid f(x) \text{ is not the New the New of } y \} \right\}$ is finite

 $f <_{y^{2}} g \Leftrightarrow f \neq g$ and $f(x_{0}) < g(x_{0})$ where x_{0} is the maximum element in H_{1} sub $\{x \in X \mid f(x) \neq g(x)\}$

(Idea: ?)

Theorem If XIY are will-orders then:

(1) x+y is well-ordered by <x+y and

Ord (x+y) = ord(x) + ord(y)

(2) X×Y is vell-ordered by <xxy and

ord (x×y) = ord(x) · ord(y)

(3) yx (int. Finite [x,y]) is vell-ordered by <yx and

Ord (yx) = ord(y)

the vell-order expansion defined above.

Proposition (Rigidity)

(1) No well-ordered set is isomorphic to a proper initial segment of itself.

(it is rigid)

(2) Every will-ordered set has exactly one automorphism: the identity.

(3) If A and B are isomorphic well-ordered sets then the isomorphism between them is unique.

Proof (1) Suppose A is isomorphic to a proprintial seg.
By Lemm B we have an iso $f:A \rightarrow Ja$.

Then $f:A \rightarrow A$ is an embedding Here Is

Thin f: A) A is an embedding. Hence by Lemma A f(a) > a, which contradicts f(x) & la.

(2) Suppose f: A -> A is an automorphism.

Both f and f^{-1} are embeddings so D(SF|X) and $XSF^{-1}X$ for all X, by Lemma A. Sink f is monotone $f(X) \leq f(f^{-1}(X)) = X$. So indeed f(X) = D(X) = X

(3) Suppose f, g: A -> B are isomorphisms.

Thin g-1 is an isomorphism from B +A.

So g-1 of : A -> A is an iscmolphism.

Hance by 12) g of = idA.

It follows that g=f.

We are set up to prove the classification Haven.

Proof of the classification theorem: every well-ordered set is isomorphic to La For a unique ordinal X Proof Let A be a well-ordered set. Suppose la = A = La'. If x'< a then la is isomorphic to a proper initial segment of itself contradicting (1) of the rigidity proposition. Similarly aca' gives a similar contradiction. So exz/. So if the x in the statement of the theorem exists then it is unique. Define the relation $f \subseteq A \times Ord$ as talbus in principle f is a subclass. We will soon see it is a set - So we hencefurth write f. (x,α) ef (x,α) (x,α) (x,α) we establish (i) (α, α) , $(\alpha, \alpha') \in \mathcal{F} \Rightarrow \alpha = \alpha'$ (This implies that fix a set.) By a similar argument to at the start of the proof. $(ii) (\alpha, \alpha), (\alpha', \alpha) \in f = \beta \quad \alpha = \alpha'$ Again by a similar argument.

By (i) and (ii) f is a bisection from dom(F) SA to image (f) & Ord (iii) If (x,x) &f and x'<x then x'edon(f) and $f(x') < \infty$. Suppose $\alpha = f/\exists 1$) and $\alpha' < \infty$ By def. of f we have an isomorphism g: Ix -> Vx Then glas: Ix' - la reps la' To an initial Signest of lot, which has the form da' for June a's a by Lemma B. gla: lx' -) ld' is an somorphism So by definition of f, flat) = a' < a. (iv) If (I, x) + f and x'< x then x' image (f). By a similar argument to (iii). Given (i)-(iv), the function f is a bisection from an initial signest of A to an initial signest of Ord. And fis strictly menetone; i.e. an embedding by point (iii). Heart f is an isomorphism from an initial sympat of A to an initial ligatif of all.

We now show that day (f) = A.

Suppose not. Then don (+) is a proper initial Signest of A. So den(f) = lx for some IFA, by Lema B.

Also Mays (f) = IB for some BE Old.

Then f: tx -> tB is an isomorphism. HIML (7,13) of by def. of f.

So X E dom(x) contradicting that dom(x) = VX.

So includ don(F)=A. inagelf) = La for a might a 65 Linns B.

Indeed we have that f: A = don(f) -> inage (t) = la is an isomorphism.