
Igra TicTacToe (logika)

Razred Object

Vsak razred je podrazed razreda Object

Objekt razred ima metode

String toString()

boolean equals(Object o)

int hashCode()

Če razred ne definira teh metod, podeduje privzete metode iz
razreda Object.

public class Koordinati {

private int x;

private int y;

public Koordinati(int x, int y) {

this.x = x;

this.y = y;

}

public int getX() { return x; }

public int getY() { return y; }

}

Primer:

Koordinati h = new Koordinati(2,3);

Koordinati k = new Koordinati(2,3);

h.equals(k) ==> false // objekta nista enaka

h.toString() ==> "Koordinati@7852e922" // referenca objekta

h.hashCode() ==> 1311053135

k.hashCode() ==> 2018699554 // x in y imata drugi kodi

Dodamo na razred Koordinati

@Override

public String toString() {

return "Koordinati [x=" + x + ", y=" + y + "]";

}

@Override

public boolean equals(Object o) { // tip parametra o mora biti Object

if (this == o) return true; // hiter in pogost primer

if (o == null || this.getClass() != o.getClass()) return false;

Koordinati k = (Koordinati) o; // vemo, da je Koordinati tip objekta o

return this.x == k.x && this.y == k.y;

}

@Override

public int hashCode () {

return Objects.hash(this.x, this.y);

}

Koordinati h = new Koordinati(2,3);

Koordinati k = new Koordinati(2,3);

(h == k) ==> false // objekta nista ista

h.equals(k) ==> true // ampak sta enaka

h.toString() ==> "Koordinati [x=3, y=2]"

h.hashCode() ==> 1026

k.hashCode() ==> 1026

Če preglasimo metodo equals, je priporočljivo, da prelgasimo tudi metodo hashCode.

Te dve metodi morata izpolniti pogoj:

če sta objekta x in y enaki (tj. če x.equals(y) == true), potem sledi
x.hashCode() == y.hashCode().

(V resnici, je metoda hashCode pomembna samo, če bomo uporabjali objekte razrada
kot ključe za ‘hash table’.)

Nekaj razredov ima že dobro metodo equals.

String x = "abc";

String y = "abc" + "";

String z = x + "";

(x=="abc") ==> true

(x==y) ==> true

(y==z) ==> false // pazite!

y.equals(z) ==> true

Pomembno je, da uporabljamo equals namesto ==, kadar
primerjamo nize.

Tipi enum

Tip za igralca v igri tic-tac-toe

public enum Igralec {

O, X;

public Igralec nasprotnik() {

return (this == X ? O : X);

}

public Polje getPolje() {

return (this == X ? Polje.X : Polje.O);

}

}

Igralec je referenčni tip s (statičnima) vrednostma O in X, ter metodi nasprotnik in
getPolje.

Tip za vrednosti polj na plošči.

public enum Polje {

O, X, PRAZNO

}

Vsak igralec je računalnik ali človek.

enum VrstaIgralca { R, C; }

Map<Igralec,VrstaIgralca> vrstaIgralca;

Spremljivka vrstaIgralca je map (slovar), ki da vsakemu igralcu (O ali X) njegovo
vrsto (računalnik ali človek).

Na splošno, Map<K,V> je vmesnik za razrede, ki implementirajo slovare (maps), ki
imajo kjluče tipa K in vrednosti tipa V.

I HashMap<K,V> implementira Map<K,V> za razrede K, ki imajo dobre
implementacije metod equals in hashCode. V tem primeru, je slovar
implementiran kot ‘hash table’.

I EnumMap<K,V> implementira Map<K,V> za razrede K, v katerih je K enum tip.

private static BufferedReader r =

new BufferedReader(new InputStreamReader(System.in));

public static void igramo () throws IOException {

while (true) {

System.out.println("Nova igra. Prosim, da izberete:");

System.out.println(" 1 - O clovek, X računalnik");

System.out.println(" 2 - O računalnik, X človek");

System.out.println(" 3 - O človek, X človek");

System.out.println(" 4 - izhod");

String s = r.readLine();

if (s.equals("1")) {

vrstaIgralca = new EnumMap<Igralec,VrstaIgralca>(Igralec.class);

vrstaIgralca.put(Igralec.O, VrstaIgralca.C);

vrstaIgralca.put(Igralec.X, VrstaIgralca.R);

} else if (s.equals("2")) { ... podobno ...}

} else if (s.equals("3")) { ... podobno ...}

} else if (s.equals("4")) {

System.out.println("Nasvidenje!");

break; // izstopimo iz zanke

} else {

System.out.println("Vnos ni veljaven");

continue; // gremo na naslednje okrog zanke

}

// Ce je s == "1", "2" ali "3"

// koda na naslednji strani gre tukaj

}

}

Igra igra = new Igra ();

igranje : while (true) {

switch (igra.stanje()) {

case ZMAGA_O:

System.out.println("Zmagal je igralec O");

break igranje;

case ZMAGA_X:

System.out.println("Zmagal je igralec X");

break igranje;

case NEODLOCENO:

System.out.println("Igra je neodločena");

break igranje;

case V_TEKU:

Igralec igralec = igra.naPotezi();

VrstaIgralca vrstaNaPotezi = vrstaIgralca.get(igralec);

Koordinati poteza = null;

switch (vrstaNaPotezi) {

case C:

poteza = clovekovaPoteza(igra);

break;

case R:

poteza = racunalnikovaPoteza(igra);

break;

}

System.out.println("Igralec " + igralec + " je igral " + poteza);

}

}

Tip za stanje igre

enum Stanje {

V_TEKU, ZMAGA_X, ZMAGA_O, NEODLOCENO;

}

Lahko uporabljamo izjavo switch, ko imamo spremenljivke tipov enum

ali tipa int, short, char, byte, String.

Če ne pǐsemo break v izjavi case, Java nadaljuje z nadlednjim izjavo.

Na preǰsnji strani uporabljamo tudi break igranje, kjer je igranje

nalepka.

Metoda racunalnikovaPoteza

private static Random random = new Random ();

public static Koordinati racunalnikovaPoteza(Igra igra) {

List<Koordinati> moznePoteze = igra.poteze();

int randomIndex = random.nextInt(moznePoteze.size());

Koordinati poteza = moznePoteze.get(randomIndex);

igra.odigraj(poteza);

return poteza;

}

Metoda clovekovaPoteza
public static Koordinati clovekovaPoteza(Igra igra) throws IOException {

while (true) {

Igralec igralec = igra.naPotezi();

System.out.println(igralec + " vnesite potezo \"x y\"");

String s = r.readLine();

int i = s.indexOf (’ ’); // kje je presledek

if (i == -1 || i == s.length()) {

System.out.println("Napačen format"); continue;

}

String xString = s.substring(0,i);

String yString = s.substring(i+1);

int x, y;

try {

x = Integer.parseInt(xString);

y = Integer.parseInt(yString);

} catch (NumberFormatException e) {

System.out.println("Napačen format"); continue;

}

if (x < 0 || x >= Igra.N || y < 0 || y >= Igra.N){

System.out.println("Napačen format"); continue;

}

Koordinati poteza = new Koordinati(x,y);

if (igra.odigraj(poteza)) return poteza;

System.out.println(poteza.toString() + " ni možna");

} }

Paketi

S paketi lahko dobro strukturiramo program.

Program TicTacToe je razdeljen v treh paketi:

1. Paket (default package) z enim razredom TicTacToe, ki ima metodo main.

2. Paket vodja z enim razredom Vodja.

3. Paket logika z razredi:

Igra Igralec Koordinati Polje Stanje Vrsta

Razred Vodja v paketu vodjaki vodi igro. Metode igramo, clovekovaPoteza in
racunalnikovaPoteza so statični metode v razredu Vodja.

V paketu logika je vsa koda, ki implementira stanje in pravila igre.

Dostop

Modifikatori private, protected, public določajo dostop do
metodov in polj.

isti razred isti paket podrazredi povsod

public X X X X
protected X X X

(brez) X X
private X

Za metodo metoda() v razredu Razred v paketu paket, pǐsemo:

metoda() v istem razredu
Razred.metoda() v istem paketu

paket.Razred.metoda() izven paketa
metoda() če je: import paket.Razred

Razred Igra ima konstruktorje, javna polja in metode:

Igra()

final int N = 3

Igralec naPotezi()

List<Koordinati> poteze()

Stanje stanje()

boolean odigraj(Koordinati p)

Samo N je statičen. Ostali polja in metode so dinamični.

public class Igra {

// Velikost igralne plošče je N x N.

public static final int N = 3;

// Igralno polje

private Polje[][] plosca;

// Igralec, ki je trenutno na potezi.

private Igralec naPotezi;

//Nova igra, v začetni poziciji je prazna in na potezi je O.

public Igra() {

plosca = new Polje[N][N];

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

plosca[i][j] = Polje.PRAZNO;

}

}

naPotezi = Igralec.O;

}

public Igralec naPotezi () {

return naPotezi;

}

// @return seznam moznih potez

public List<Koordinati> poteze() {

LinkedList<Koordinati> ps = new LinkedList<Koordinati>();

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

if (plosca[i][j] == Polje.PRAZNO) {

ps.add(new Koordinati(i, j));

}

}

}

return ps;

}

// @return true, če je bila poteza uspesno odigrana

public boolean odigraj(Koordinati p) {

if (plosca[p.getX()][p.getY()] == Polje.PRAZNO) {

plosca[p.getX()][p.getY()] = naPotezi.getPolje();

naPotezi = naPotezi.nasprotnik();

return true;

} else return false;

}

public Stanje stanje() {

// Ali imamo zmagovalca?

Vrsta t = zmagovalnaVrsta();

if (t != null) {

switch (plosca[t.x[0]][t.y[0]]) {

case O: return Stanje.ZMAGA_O;

case X: return Stanje.ZMAGA_X;

case PRAZNO: assert false;

}

}

// Ali imamo kakšno prazno polje?

// Ce ga imamo, igre ni konec

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

if (plosca[i][j] == Polje.PRAZNO) return Stanje.V_TEKU;

}

}

// Polje je polno, rezultat je neodlocen

return Stanje.NEODLOCENO;

}

// Objekt, ki predstavlja eno vrsto na plošči.

class Vrsta {

public int[] x; public int[] y;

public Vrsta(int[] x, int[] y) { this.x = x; this.y = y; }

}

private static final List<Vrsta> VRSTE = new LinkedList<Vrsta>();

// Iniciraliziramo N-vrste

static { // Ta koda se izvede enkrat na zacetku

int[][] smer = {{1,0}, {0,1}, {1,1}, {1,-1}};

for (int x = 0; x < N; x++) {

for (int y = 0; y < N; y++) {

for (int[] s : smer) {

int dx = s[0]; int dy = s[1];

if ((0 <= x + (N-1) * dx) && (x + (N-1) * dx < N) &&

(0 <= y + (N-1) * dy) && (y + (N-1) * dy < N)) {

int[] vrsta_x = new int[N];

int[] vrsta_y = new int[N];

for (int k = 0; k < N; k++) {

vrsta_x[k] = x + dx * k;

vrsta_y[k] = y + dy * k;

}

VRSTE.add(new Vrsta(vrsta_x, vrsta_y));

}

...

}

// return igralec, ki ima zapolnjeno vrsto @{t}, ali {@null}, ce nihče

private Igralec cigavaVrsta(Vrsta t) {

int count_X = 0;

int count_O = 0;

for (int k = 0; k < N && (count_X == 0 || count_O == 0); k++) {

switch (plosca[t.x[k]][t.y[k]]) {

case O: count_O += 1; break;

case X: count_X += 1; break;

case PRAZNO: break;

}

}

if (count_O == N) { return Igralec.O; }

else if (count_X == N) { return Igralec.X; }

else { return null; }

}

// return zmagovalna vrsta, ali {@null}, če je ni

public Vrsta zmagovalnaVrsta() {

for (Vrsta t : VRSTE) {

Igralec lastnik = cigavaVrsta(t);

if (lastnik != null) return t;

}

return null;

}

