lgra TicTacToe (logika)

Razred Object

Vsak razred je podrazed razreda Object

Objekt razred ima metode
String toString()
boolean equals(Object o)
int hashCode ()

Ce razred ne definira teh metod, podeduje privzete metode iz
razreda Object.

public class Koordinati {
private int x;
private int y;

public Ko
this.
this.
}
public in
public in
}
Primer:

Koordinati h
Koordinati k

h.equals(k) =
h.toString()
h.hashCode ()
k.hashCode ()

ordinati(int x, int y) {
X = X;

y=y

t getX() { return x; }

t getY() { return y; }

new Koordinati(2,3);
new Koordinati(2,3);

=> false // objekta nista enaka

==> "Koordinati@7852e922" // referenca objekta
==> 1311053135

==> 2018699554 // x in y imata drugi kodi

Dodamo na razred Koordinati

@Qverride

public String toString() {
return "Koordinati [x=" + x + ", y=" +y + "]";

}

@Override

public boolean equals(Object o) { // tip parametra o mora biti Object
if (this == o) return true; // hiter in pogost primer
if (o == null || this.getClass() != o.getClass()) return false;

Koordinati k = (Koordinati) o; // vemo, da je Koordinati tip objekta o
return this.x == k.x && this.y == k.y;
}

@0verride

public int hashCode () {
return Objects.hash(this.x, this.y);
}

Koordinati h = new Koordinati(2,3);
Koordinati k = new Koordinati(2,3);

(h == k) ==> false // objekta nista ista
h.equals(k) ==> true // ampak sta enaka
h.toString() ==> "Koordinati [x=3, y=2]"
h.hashCode() ==> 1026
k.hashCode () ==> 1026

Ce preglasimo metodo equals, je priporodljivo, da prelgasimo tudi metodo hashCode.
Te dve metodi morata izpolniti pogoj:

e sta objekta x in y enaki (tj. ¢e x.equals(y) == true), potem sledi
x.hashCode() == y.hashCode().

(V resnici, je metoda hashCode pomembna samo, &e bomo uporabjali objekte razrada
kot kljute za ‘hash table’.)

Nekaj razredov ima Ze dobro metodo equals.

String x = "abc";
String y = "abc" + "";
String z = x + "";

(x=="abc") ==> true

(x==y) ==> true

(y==z) ==> false // pazite!
y.equals(z) ==> true

Pomembno je, da uporabljamo equals namesto ==, kadar
primerjamo nize.

Tipi enum

Tip za igralca v igri tic-tac-toe

public enum Igralec {
0, X;

public Igralec nasprotnik() {
return (this == X 7 0 : X);
}

public Polje getPolje() {
return (this == X 7 Polje.X : Polje.0);
}
}

Igralec je referen&ni tip s (stati€¢nima) vrednostma 0 in X, ter metodi nasprotnik in
getPolje.
Tip za vrednosti polj na plo¥¢i.

public enum Polje {
0, X, PRAZNO
}

Vsak igralec je ralunalnik ali ¢lovek.

enum Vrstalgralca { R, C; }

Map<Igralec,Vrstalgralca> vrstalgralca;

Spremljivka vrstalgralca je map (slovar), ki da vsakemu igralcu (O ali X) njegovo
vrsto (ratunalnik ali Elovek).

Na splo$no, Map<K,V> je vmesnik za razrede, ki implementirajo slovare (maps), ki
imajo kjluce tipa K in vrednosti tipa V.

» HashMap<K,V> implementira Map<K,V> za razrede K, ki imajo dobre
implementacije metod equals in hashCode. V tem primeru, je slovar
implementiran kot ‘hash table’.

» EnumMap<K,V> implementira Map<K,V> za razrede K, v katerih je K enum tip.

private static BufferedReader r =
new BufferedReader (new InputStreamReader(System.in));

public static void igramo () throws IOException {
while (true) {

System.out.println("Nova igra. Prosim, da izberete:");

System.out.println(" 1 - 0 clovek, X raZunalnik");

System.out.println(" 2 - 0 raZunalnik, X &lovek");

System.out.println(" 3 - 0 &lovek, X &lovek");

System.out.println(" 4 - izhod");

String s = r.readLine();

if (s.equals("1")) {
vrstalgralca = new EnumMap<Igralec,Vrstalgralca>(Igralec.class);
vrstalgralca.put(Igralec.0, Vrstalgralca.C);
vrstalgralca.put(Igralec.X, Vrstalgralca.R);

} else if (s.equals("2")) { ... podobno ...}

} else if (s.equals("3")) { ... podobno ...}

} else if (s.equals("4")) {
System.out.println("Nasvidenje!");
break; // izstopimo iz zanke

} else {
System.out.println("Vnos ni veljaven");
continue; // gremo na naslednje okrog zanke

}

// Ce je s == "1", "2" ali "3"

// koda na naslednji strani gre tukaj

Igra igra = new Igra ();
igranje : while (true) {

switch (igra.stanje()) {

case ZMAGA_O:
System.out.println("Zmagal je igralec 0");
break igranje;

case ZMAGA_X:
System.out.println("Zmagal je igralec X");
break igranje;

case NEODLOCENO:
System.out.println("Igra je neodloZena");
break igranje;

case V_TEKU:
Igralec igralec = igra.naPotezi();
Vrstalgralca vrstaNaPotezi = vrstalgralca.get(igralec);
Koordinati poteza = null;
switch (vrstaNaPotezi) {

case C:
poteza = clovekovaPoteza(igra) ;
break;

case R:
poteza = racunalnikovaPoteza(igra);
break;

}

System.out.println("Igralec " + igralec + " je igral " + poteza);

Tip za stanje igre

enum Stanje {
V_TEKU, ZMAGA_X, ZMAGA_O, NEODLOCENO;
}

Lahko uporabljamo izjavo switch, ko imamo spremenljivke tipov enum
ali tipa int, short, char, byte, String.
Ce ne pikemo break v izjavi case, Java nadaljuje z nadlednjim izjavo.

Na prejsnji strani uporabljamo tudi break igranje, kjer je igranje
nalepka.

Metoda racunalnikovaPoteza

private static Random random = new Random ();

public static Koordinati racunalnikovaPoteza(Igra igra) {
List<Koordinati> moznePoteze = igra.poteze();
int randomIndex = random.nextInt(moznePoteze.size());
Koordinati poteza = moznePoteze.get (randomIndex) ;
igra.odigraj(poteza);
return poteza;

Metoda clovekovaPoteza

public static Koordinati clovekovaPoteza(Igra igra) throws IOException {
while (true) {

Igralec igralec = igra.naPotezi();

System.out.println(igralec + " vnesite potezo \"x y\"");

String s = r.readLine();

int i = s.index0f (° ’); // kje je presledek

if (i == -1 || 1 == s.length()) {
System.out.println("NapaZen format"); continue;

}

String xString = s.substring(0,i);

String yString = s.substring(i+1);

int x, y;

try {
x = Integer.parselnt (xString);
y = Integer.parselnt(yString);

} catch (NumberFormatException e) {
System.out.println("NapaZen format"); continue;

}

if (x <0 ||l x> Igra.N || y<O0 || y> Igra.N){
System.out.println("NapaZen format"); continue;

}

Koordinati poteza = new Koordinati(x,y);

if (igra.odigraj(poteza)) return poteza;

System.out.println(poteza.toString() + " ni moZna");

Paketi

S paketi lahko dobro strukturiramo program.

Program TicTacToe je razdeljen v treh paketi:
1. Paket (default package) z enim razredom TicTacToe, ki ima metodo main.
2. Paket vodja z enim razredom Vodja.

3. Paket logika z razredi:
Igra Igralec Koordinati Polje Stanje Vrsta

Razred Vodja v paketu vodjaki vodi igro. Metode igramo, clovekovaPoteza in
racunalnikovaPoteza so stati¢ni metode v razredu Vodja.

V paketu logika je vsa koda, ki implementira stanje in pravila igre.

Dostop

Modifikatori private, protected, public dolo¢ajo dostop do
metodov in polj.

H isti razred ‘ isti paket ‘ podrazredi ‘ povsod

public v v v v
protected v v v
(brez) v v
private v

Za metodo metoda() v razredu Razred v paketu paket, pisemo:

metoda() v istem razredu
Razred.metoda() v istem paketu
paket.Razred.metoda() izven paketa
metoda() e je: import paket.Razred

Razred Igra ima konstruktorje, javna polja in metode:
Igra()
final int N = 3
Igralec naPotezi()
List<Koordinati> poteze()
Stanje stanje()
boolean odigraj(Koordinati p)

Samo N je stati¢en. Ostali polja in metode so dinamicni.

public class Igra {

// Velikost igralne plosZe je N x N.
public static final int N = 3;

// Igralno polje
private Polje[][] plosca;

// Igralec, ki je trenutno na potezi.
private Igralec naPotezi;

//Nova igra, v zaZetni poziciji je prazna in na potezi je O.
public Igra() {
plosca = new Polje[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
ploscalil [j] = Polje.PRAZNO;
}
}
naPotezi = Igralec.0;

}

public Igralec naPotezi () {
return naPotezi;

}

// @return seznam moznih potez

public List<Koordinati> poteze() {
LinkedList<Koordinati> ps = new LinkedList<Koordinati>();
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (ploscalil[j] == Polje.PRAZNO) {
ps.add(new Koordinati(i, j));
}

by
return ps;

}
// @return true, Ze je bila poteza uspesno odigrana

public boolean odigraj(Koordinati p) {
if (ploscalp.getX()]1[p.getY()] == Polje.PRAZNO) {
ploscalp.getX()] [p.getY()] = naPotezi.getPolje();
naPotezi = naPotezi.nasprotnik();
return true;
} else return false;

public Stanje stanje() {
// Ali imamo zmagovalca?
Vrsta t = zmagovalnaVrsta();
if (¢ != null) {
switch (ploscalt.x[0]1[t.y[0]]) {
case 0: return Stanje.ZMAGA_O;
case X: return Stanje.ZMAGA_X;
case PRAZNO: assert false;
}
}
// Ali imamo kak3Sno prazno polje?
// Ce ga imamo, igre ni konec
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (ploscalil [j] == Polje.PRAZNO) return Stanje.V_TEKU;
}
}
// Polje je polno, rezultat je neodlocen
return Stanje.NEODLOCENO;

// Objekt, ki predstavlja eno vrsto na ploZ&i.

class Vrsta {

public int[] x; public int[] y;

public Vrsta(int[] x, int[] y) { this.x = x; this.y = y; }
}

private static final List<Vrsta> VRSTE = new LinkedList<Vrsta>();

// Iniciraliziramo N-vrste
static { // Ta koda se izvede enkrat na zacetku
int[1[] smer = {{1,0}, {0,1}, {1,1}, {1,-1}};
for (int x = 0; x < N; x++) {
for (int y = 0; y < N; y++) {
for (int[] s : smer) {
int dx = s[0]; int dy = s[1];
if ((0 <= x + (N-1) * dx) && (x + (N-1) * dx < N) &&
(0 <=y + (N-1) * dy) && (y + (N-1) * dy < N)) {
int[] vrsta_x = new int[N];
int[] vrsta_y = new int[N];
for (int k = 0; k < N; k++) {
vrsta_x[k] = x + dx * k;
vrsta_y[k] = y + dy * k;

}
VRSTE.add(new Vrsta(vrsta_x, vrsta_y));

// return igralec, ki ima zapolnjeno vrsto @{t}, ali {@null}, ce nihZe
private Igralec cigavaVrsta(Vrsta t) {
int count_X = 0;
int count_0 = O;
for (int k = 0; k < N && (count_X == 0 || count_0 == 0); k++) {
switch (ploscalt.x[k]][t.y[k]]) {
case 0: count_0 += 1; break;
case X: count_X += 1; break;
case PRAZNO: break;
}
}
if (count_0 == N) { return Igralec.0; }
else if (count_X == N) { return Igralec.X; }
else { return null; }

}

// return zmagovalna vrsta, ali {@null}, €e je ni
public Vrsta zmagovalnaVrsta() {
for (Vrsta t : VRSTE) {
Igralec lastnik = cigavaVrsta(t);
if (lastnik !'= null) return t;
}

return null;

