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3. POLYA THEORY

Now we turn our attention to a family of counting problems. These are all
part of what today is known as Pélya theory of counting but they arise from very
basic execercises.

Example 3.1. Assume that we have a broomstick and several cloth pieces of 5
different colours. How many different flags can be constructed using the broom-
stick as flagpole and two pieces of different colour.

Solution. Wehave 5 possibilities for the colour that goes next to the flagpole and 4
possibilities for the other colour, therefore we have 5 x 4 = 20 different flags. [

Example 3.2. If we have the same pieces of cloth as in the previous example, how
mzilny flags (with no flagpole) can be built using two pieces of cloth of different
colour?

Solution. O

Example 3.3. We have the same piece of cloth and the broomstick, how many
flags with flagpole can we build if the two colours do not need to be different.

Solution. O
Example 3.4. The same question as above but without the flagpole.

Example 3.5. We want to sit  knights in a round table. Two configurations are
the same if one can rotate the table to obtain one from the other. In how many
ways can the knights be sit?
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FIGURE 1. 2-colour necklaces of length 6.

Solution. O

Example 3.6. What is the number of essentially different necklaces wich can be
made with with 7 beads of two different colours?

This is not an easy question, for z = 6 the number is 13. See Figure 1.

Question 3.7. What is the number of non-isomorphic graphs on 7 vertices?.
For n = 4 there are 11.

Question 3.8. Whatis the number of essentially different ways to paint the faces
(or edges, or vertices) of the cube with 7 colors?

We begin with with the following theorem, which was originally published by
Burnside (1897) but was originally prove by Frobenius (1987).

Theorem 3.9 (Burnside’s Lemma). Let G be a group acting on a set X, the num-
ber n(G, X) of orbits of G on X is given by

1 .
m(G, X) = Il > " Fix(g)

g€G

Proof. Count the pairs (¢, x) € G X X such that gx = x. A given elementg € G
appears in |Fix(g)| of those pairs. On the other hand, given x € X, there are
|Stabg(x)| pairs with x as second coordinate. It follows that

> " [Fix(g)| = ) _ [Stabg(x)!.

g€G xEX
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Now assume that ¥ = {y;,..., 7.} C X is a set of elements, one for each orbit
(so that m(G, X) = m).

m(GX) =) 1

yEY

t

Let us apply Burnside’s Lemma to solve Example 3.5. Clearly, the cyclic group
C, acts mapping one arrangement of the table to another. Two arrangements
are essentially different if and only if they are not in the same orbit. This means
that we want to count orbits under the action of C, of all the possible ways of
sitting the knights. The amount of possible arrangements is 2!. The permutation
id € C, fixes every arrangement while every non-trivial element has no fixed
arrangements. By Burnside lemma the number of orbits is

1 !
= | Fix(id)| = 2.
n n

Let us now formalise this notion of conting colouring configurations of ob-
jects. Let K = {1,..., k} be a set, which we call the set of colours. Assume that
X is aset. A colouring of X is a function ¢ : X — K, thatis, a function that
assigns the colour ¢(x) to each element x € X. The set of colourings of X (with
colour-set K) is the set

K¥={c:X > K}.
Observe that if | X| = 7, then |K*| = £, as expected.
Let G be a a permutation group of X, then the group G acts on KX by

oc = c(o ),
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that is, for every x € X, the colouring ¢ is given by

(o0)(x) = c(e ().

The inverse is necessary to guarantee that the previous mapping is actually a
left action.

Now we use Burnside Lemma to compute the number of orbits of colourings
of a set X with respect a permutation group G of X.

Proposition 3.10. Let X be a set with n elements and G a permutation group of
Sx. Let K be a set of colours with |K| = k. Let m denote the number of orbits of G
on K%, the set of colourings of X. Then

1
m= g > (G,
4

where ci(G) denotes the number of elements of G that have € cicles.

Proof. Leto € G. Assume that ¢ is colouring fixed by 7, that is, for every x € X
(07'%) = o(c)(x) = o(x).

If follows that if any two elements of X in the same cycle of & must have the
same colour. Clearly, if & has € cycles, there are K colourings of X satisfying that
any two elements in the same cycle have the same colour. Any such colouring is
fixed by . The result follows from Burnside’s Lemma. O

We can now solve Example 3.6. We need to compute the number ¢,(Ds) for
the dihedral group Ds. The elements of Dy are listed below:

(D(2)(3)(4)(5)(6) (123456) (135)(2406)
14)(25)36)  (153)(264) (165432)
(D(4)26)(35)  (2)(5)13)(46) (3)(6)(24)(15)
(12)36)(45)  (23)(14)(56) (34)(25)16)

It follows that ¢;(Dg) = 2, c2(Dg) = 2, c3(Dg) = 4, c4(Dg) = 3, ¢5(Dg) = 0 and
¢(Dg) = 1.

The 6 permutations in the first two rows above are precisely the elements of
the cycle group Cs. We can compute the numbers ¢;(Cs) = 2(Cs) = 2,¢5(Cs) = 1
and ¢,(Cg) = 1.

We can now compute the number of necklaces of legth 6 with two colors with
respect to rotations (using Cs) or with respect to rotation and flips (using D).

| =

156

m(D6)=12(2><2+2><22+4><23+3><24+1><26)=E—13
1 5 3 ¢ 84
m(C6)=g(2><2+2><2 +1x2 +1X2):Z:14
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The fact that we get one extra orbit with the cyclic group is that all but one of
the orbits with respect to the dihedral group have mirror reflection (see Figure 1).
The rightmost necklace in the first row does not admit mirror reflection, hence
its orbit with respecct to the dihedral group has to be split into two different
orbits of the cyclic group.

Proposition 3.10 allows us to count colored objects that are essentially different
with respect to the symmetires of the group G. That number depends only on
the cycle structure of the elements on G, more precisely on the numbers ¢/(G).
In the following paragraph we will introduce the cycle index of a permutation
group G, which generalise in some sense the numbers ¢¢(G).

Let G be a permutation group of aset X, with | X| = zandleto € G, the cycle
monomial of ¢ is defined as

l‘l,..., Hl‘g

if 7 has k cycles and the 7-th cycle is of length #;,. In other words, the exponent of
ti €{L...,n}in M(ty,...,t,)is k whenever o has & cycle of lenth 7.
The cycle index of G is the polynomial

1
Zg(tl, ceey Z’n) = ? ZM(,(H, ooy l’n).

Observe that the cycle index actually generalises the numbers ¢,(G) discussed be-
fore. In fact, the sum of the coefficients of the terms of degree € in Zs(t, . . ., £,,)
a(G)

6l
From the previous discussion the following proposition is obvious.

is precisely the number the

Proposition 3.ax1. Let X be a set with n elements and G a permutation group of
Sx. Let K be a set of colours with |K| = k. Let m denote the number of orbits of G
on K%, the set of colourings of X. Then

m=Zak,... k).

We will compute some cycle index as excercises (see Exercises 3.1 to 3.4). We
shall use them just to show how they work.
According to Exercise 3.2, the cycle index of the cyclic group is

Zc tl; Z ¢ n/d'
dln

For n = 6 we have

1
ZC(,(tl: ceey fg) = g (Z'IG + Z'; + 21'32) + 2t6)

Similaryly for the dihedral group D,
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1
Zptyy.. . ts) = 5 (20 + 15 + 265 + 266 + 34715 + 383)

Then we can use Proposition 3.11 to solve the 2-colour necklace problem:

84

Zc(2,...,2) = (26+23+2-22+2-2)=Z=14

—_ N\ | =

156
Zp(2,...,2) = ﬁ( C42°+2:22+2-2+3-22.27+3.2%) = - -8
Proposition 3.11 allows us to compute the number of orbits of coloured ob-
jects whith no restrictions, but say that we are interested in finding 2-coloured
necklaces of length 6 such that only 2 white bead are used.
From now on we will modify slightly our notation, and we shall denote K =

{91 ..., 7} the set of colours.

Definition 3.12. Let X be a set with 7 elements and let G < §, a permutation
group actingon X. Let K = {y,..., %} aset of colours. Let Vv = (ny,..., n;)
a vector of £ integers such that #; > 0 for every 7 and #; + - - -, = n. Leta,
denote the number of non-equivalent colourings (with respect to G) such that
the colour y; is used 7, times. The pattern inventory ot G is the polynomial

PG()’L" .. -)yk) = Zﬂvy;ﬁ .. }/Zk

v

Clearly, if we know an explicit expression for P then we how many colourings
of a given type we have. Our task now is to find a way to compute Pg. Before
doing thatlet us compute a very simple to show how the pattern inventory works.

Example 3.13. Let X be a set with 7 elements. How many colourings with 2
colours exists if we do not mind symmetry?.

Proof. Solution Let say tha the colour-set is K = {x, y} For this problem the
vectors V are of length 2 and since both entries must sum 7 they are of the form
(¢, n—17). Obiously, the number of colourings using the colour x 7 times, when no
symmetry is considered is determined by which of the elements of X are coloured
with the given colour. In other words

n
ﬂ(l}}’l—i) = i b

hence the pattern inventoy is just

n n o
Piay(x, y) = ( '>xly” !
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The expression on the right side of prevoious equations should be familiar for
the reader. A well-known theorem claims that P(x, y) = (x + )", and this is not
a coincidence; let us explore this example further.

If we express the product (x + y)” as

£x+y)(x+y)---(x+yz

one can see that every term of the product, before reducing similar terms, is given
by chosing either x or y on each of the monomials. This explains the fact tha the
coefficient of x'y" " is precisely (:‘) , the number of ways of chossing 7 times the
letter x. We shall see that this coincides with the ways of chossing one colour for

each cyclie of the (unique) element on the group {zd}. More precisely,

Theorem 3.14 (Polya counting formula). Lez X be a set of n elementsand G < S,
agroup actingonX. Let K = {y,, - - -, yk} be a colour-set. Denote bye Pg(ys, . . ., Vi)
the pattern inventory and by Zg(ty, . . ., t,,) the cycle index of G, then

k k k
Pe(yy...om) = Zg Z}’jjz}’f)-"’zyf
j=1 j=1 J=1

Proof. LetV = (ny,..., n;) beavector such that z;, > 0 forevery 7and 72y + - - - +
ni = n. Let GG C K¥ the set of colourings of X such that there are exactly #;
elements of colour y,. Foro € G, let G5, C C; the set of colourings in Cy that
are preserved by o.

For v as above, let " denote the term »{" - - - y*. If ¢ € G5, then every two ele-
ments on a cycle have the same colour, because the colouring must be preserved
by o. Moreover, the lengths of the cycles coloured with a given colour y, must
add 7,. Obivously every colouring satisfying those two conditions is in Cy,,.

Consider the monomial M, <Zf:1 Vp Z]/.il ng, e Zj/; yj‘) . This monomial

is just

k
Z)’J’ Z%: S H(% +9f)
j=1 j=1

where ¢ runs over the lengths of the cycles of o. Observe that the the term y"
appears in [, (% + - - - + ;) as many times as the ways of choosing one letter
(of {y1, ...,y }) per cycle of 7 such that the sum of the lengths of the cycles where
we choose y; is #;.

When comparing the two previous analysis it is easy to see that the coefficient

of y" in M, (Zjil Vp Zle Ve Zle y]’?> is precisely |C;,|. When we sum
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over all possible ¥ we have

k v .
M, Z)’j: ny,...,zyjfz :Z|C@r|?v.
i=1 j=1 = =

Now we sum over all possible elements & € G and divide by |G| and we have:

k k k ] k k k
Zg z;yj,z;yf,...,z;yj’? ZEZMF z;yj,z;yf,...,z;yj’-‘
- j= Jj= J= J=

ceG =

1 —
= |_G| ZZ ’CV,a’y

ceG v

I f=D iten] by
v |G| 7eG

:Zﬂv?v

ZPG()’L»-'-)_)’/«)

where the second to last equality follows from Burnside Lemma. O

As an example let us compute the pattern inventory of possible colouring of
necklaces of length 4 using colours red (7) first with respect to the dihedral group
and then with respecto to the cyclic group.

Zp(totr 5, 15) = = (8 + 385 + 284 + 2871,

Ze(tv oty ta) = — (4 + 65 +215)

N

Using Polya counting formula we can see that

Pp(rngb)=Zp(r+g+b, r? +g2 + 057 +g3 + 03t +g4 + b4)
1
=—\(r+g+0) +3(r+g + +2(r+ g +07)+
8 ( g b)4 ( 2 gZ bZ)Z ( 4 g4 b4)
2r+g+b)(r* + g + b))
=+ P+ 2770 + g + g+ b+ 27°gh + 2rg7b + b+
+2770% + Zngz + 2g2b2 +7b’ +gb3 + bt
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and

Pe(rngb)=Ze,(r+g+br+g + 07 +& + b, r* + ¢t + bY)
1
= (r+g+b)*+ (P +g+ 0V +2(" +¢* + b))
=ty r3g + 2r2g2 + rg3 +g4 +7°b+ 3V2gb + 3rg2b +g3b+
+2720% + 3rgb2 + 2g2b2 + 76 +g193 +b*

Observe that there are two non-equivalent colouring with two red beads, one
green and one blue under D, wheareas there are three of them under C;. This
is essentially because the necklaces (7, 7, g, &) and (7, 7, b, g) are difterent with re-
specto to the cyclic group but equivalent with resepct to the dihedral group.

Consider now the following example:

Example 3.15. Suppose a jewelry company plans to market a new line of unisex
bracelets. The bracelets are sold in pairs, for a couple to share. Each bracelet
consists of 7 beads, some gold and some silver, and the two bracelets in a pair are
opposites, in the sense that one can be obtained from the other by changing each
silver bead to a gold one and each gold to assilver. For example, if one bracelet has
two adjacent gold beads and # — 2 silver beads, then its mate has two adjacent

silver beads and # — 2 gold beads.

Using the cycle index of D, computed before we can see that there are 6 non
equivalent bracelets with two colours. Moreover, using Polya counting formula
we can easily see that the pattern inventory is

Pp,(gs) =s*+5g+27¢ +5¢° + ¢*

Meaning thatbracelets can be represented as (s, 5, 5, ), (5 5, 5 £), (5 & 5 2) (5 5, & ),
(%49 ¢) and (g & & g). However, when we consider the change of colours we
only have three different pairs, namelly

{6559 (@025}
{6259 (@559}
{6529 (@859}
{0289 (5559}

Notice that the pair of the bracelet (5, g, 5, ¢) is (g 5 g 5), which is equivalent to
the former under the action of Dy. In other words, that pair of bracelets consists
of two identical bracelets.

We can take a step back and count unfasten bracelets (that is, linear {g, s}-
sequences) and then consider two of them equivalet if we can obtain one from
the other by either the action of a dihedral group or by a swich of colours. We
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can see that we obtain precisely the same equivalence classes as before:

{6559 (0599}

{(Lg)f,g) (@595 )}

{6599 (6559 (5559 (@359}

{0229 (9552 @582 5222 5552, (5589, (5859, (g559)}

Observe that in these consists of the orbits of linear {g, s}-sequences under the
action of two groups. On the one hand we have the group D; acting as symme-
tries of the necklaces and on the other hand we have a cyclic group C, swapping
the colours. Let us formalise these ideas for the general case.

Let X be a set with 7 elements and G < S, a permutation group acting on X.
Let K be a set with & colours and H < S, a permutation group acting on K. If
o € G,v € Handc € K¥ the mapping (5; 7)c > ¢ where ¢ is the colouring
defined by

dx)="7 (c(a’flx))
defines a left action of G x H on K* (see Exercise 3.14).

The following result tells us how to count the number of orbits for this action.

Proposition 3.16. Let X be a set with | X| = nand G < S, a permutation group
acting on X. Let K be a set of colours with |K| = k and H < S;, a permutation
group acting on K. The number of orbits N of K* under the action on G x H
defined above is:

ZZG ml ) mn(T))

where mA7) = .7 - zj(r) and z/(t) denotes the number of cycles of length j in 7.

Proof. Let s € G and 7 € H. Denote by ¢(s; 7) the number of colourings
preserved by (g; 7). By Burnside lemma

e L fer |H|Z< |Z¢”>

(a’T €EGXH T€H

It remains to show that

|G| Z ¢ a7 ZG(ml(T)’ (XS] mn(T))

7eG

Letyy, ..., y4bethe cycle of o and let us denote V; = supp(y;) C X the support
of y;, thatis V; = X \ Fix(y,). Clearly a colouring ¢ is preserved by (¢; 7) if and
onlyif each of its restriction¢, : V; — K is preserved by (y,, 7). Let ¢;(c; 7) be the
number of colourings of V; preserved by (y;, 7). From the previous observation
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we have that ¢(g; 7) = Hil ¢y 7). Observe thatif ¢; : V; — X is a colouring
fixed by (v, 7) then

—1

ci(x) = (7 7)eix) = 7(ci(y; %)) = 7(ci(o %)) forallx € V;,

or equivalently
c(oy) = 7(c(y)) = forally € V;

Assume that y; haslength ¢, (thatis | V7| = (), pickxy € V; and let k := ().
Observe that the colour of every other element in 7; depends only on #and 7. In
fact, if y = 0" (xo) then ¢(y) = c(c"x0) = 77(c,(x0)) = 77 (k). In particular, since
this is true for » = ¢;, we have that the cycle of 7 containing £ must divide ¢;.

Conversely, if we pick any element £ € K such that the cycle of 7 containing
k has length a divisor of ¢;, then the mapping ¢; : V; — X defined by ¢,(yx) =
7’ (k) is a well-defined colouring that is preserved by (y;, 7).

In other words the number ¢,(g; 7) is equal to the number of ways of picking
a colour £ lying on a cycle of 7 of length a divisor of ¢;. Obviously this number is

857) = > j3i(7) = my(7)

¥l

Finally, observe that

d d
8(57) = [ [#457) = [ [ me(2) = Molm(z), ..., ma()).

The result follows from taking the sum over the elements of G and dividing
by |G| O

We finish the section of the notes by remarking that the previous result solves
the problem of finding the number of non-equivalent colourings under the ac-
tion of the group G on the set of elements and the group A on the set of colours.
The notion of a patter inventory can be also extended to this context and an anal-
ogous result to Theorem 3.14 was proved by De Brujin in 1964. We leave this
result out of these notes but is the reader is interested a proof can be found on

[Bru67]

Exercises.

3.1 Find the cycle index of the group of rotations of the cube.
3.2 Prove that the cycle index if the cyclic group is

Zoty...t,) = % > gy

d|n
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3.3

3.4

3.5

3.7

3.8
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Prove that the cycle index of the dihedral group D,,is
n—1
L (S pley + nery ™) for 7 odd,

Zp,(ty.. s ty) = L )
ﬁ Zd\n ¢(d)t3/d + 258 Ly %l‘f) for n even

We say that a partition P of [] is of type (ky, ko, . .. k,) if P has &y subsets
of size 1, k, of size 2, etc.

(a) Find the number of partitions of [#] of a given type (s, ... k,).

(b) Use the previous item to prove that

1 W
Zs (ty...r ty) = Z TR AT -/e,,!tll ot
(k1)

(c) Compute explicitly the cycle index of S, for z < 5.
Find the number of essentially different colourings of the vertices of K
(the complete graph with 5 vertices) with at most 5 colours.
Let X; and X, be two disjoint sets of size 7#; and 7,, respectivelly. Let
G, a permutation group of the set X, ( € {1,2}). Consider the group
G =G X G,.

(a) Prove that G acts faithfully on X = X; U X,.

(b) Prove that

Z6(try oo tppy St e Sny) = 26t o5 Bny) - 26, (51 - -5 Sny)

(c) Compute the cycle index of the largest subgroup of Ss that preserves
the partition {{1, 2, 3}, {4, 5}}.

The commander of a space cruiser wishes to post four sentry ships arrayed
around the cruiser at the vertices of a tetrahedron for defensive purposes,
since an attack can come from any direction.

(a) How many ways are there to deploy the ships if there are two differ-
ent kinds of sentry ships available, and we discount all symmetries of
the tetrahedral formation?

(b) How many ways are there if there are three different kinds of sentry
ships available?

Consider the natural action of the dihedral group Dj on the tiles of an
unpainted 4 X 4 chekerboard. Let G denote the induced permutation
group of the 16 tiles.

(a) Find the cycle index of G.

(b) In how many ways can we paint the board if we use colours black
and white.

(c) In how many ways can we paint the checkerboard if 8 tiles must be
black and 8 must be white?

(d) What if we paint exactly 4 tiles black and there must be exactly one
black tile on each row and each column?
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Consider the symmetric group S, acting on the 6 edges of a complete
graph K. Let G denote the induced permutation group, thatis G < Sg.
(a) Compute the cycle index of G.
(b) Use this to compute the number of non-isomorphic graphs on 4 ver-
tices.
How many 0, I-sequences of lenght 12 exists if two sequences are consid-
ered to be the same if one can be obtained from the other by a cyclic shift.
How many are there if each consists of exactly 6 ones and 6 zeros.
What is the pattern inventory for coloring 7 objects using the 7 colours
V1> -+ > Ym if the group of symmetries is S, ?
Two identical cubes are glued to two oposite faces of a third cube to form
a3 x 1 prism. The prism has 14 squares exposed (4 of the cube in the
middle 5 of each of the other two cubes).
(a) Find the permutation group G on the 14 squares induced by all the
possible ways of rotating the prism.
(b) Compute the cycle index of G.
(c) In how many ways can the squares be painted using at most three
colours: black, white and blue.
(d) Whay if exactly two of the squares must be blue?
What is the number of essentially different ways to paint the faces of a
cube such that one face is red, two are blue, and the remaining three are
green?
Let X beaset with z elementsand G < S, a permutation group acting on
X. Let K be a set with & colours and H < S a permutation group acting
on K. Prove thatif o € G, 7 € H and ¢ € K* the mapping (s, 7)c — ¢
where ¢ is the colouring defined by

ax) =7 (c(o'_lx))

defines a left action of G x H on K*.

The hydrocarbon naphthalene has ten carbon atoms arranged in a double
hexagon as in Figure 2, and eight hydrogen atoms attached at each of the
positions labeled 1 through 8.

8 1

7032

6 3
5 4

FIGURE 2. Naphthalene
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(a) Naphthol is obtained by replacing one of the hydrogen atoms of
naphthalene with a hydroxyl group (OH). How many isomers of
naphtholare there?

(b) Tetramethylnaphthalene is obtained by replacing four of the hydro-
gen atoms of naphthalene with methyl groups (CH3). How many
isomers of tetramethylnaphthalene are there?

(c) How many isomers may be constructed by replacing three of the hy-
drogen molecules of naphthalene with hydroxyl groups, and another
three with methyl groups?

(d) How many isomers may be constructed by replacing two of the hy-
drogen molecules of naphthalene with hydroxyl groups, two with
methyl groups, and two with carboxyl groups (COOH )2

3.16  Determine the number of ways to color the faces of a cube using the three
colors red, blue, and green, if two colorings are considered to be equiva-
lent if one can be obtained from the other by rotating the cube in some
way in three-dimensional space, and possibly exchanging green and red.

References.

[Bruro] Richard Brualdi. Introductory combinatorics. Upper Saddle River,
N.J: Pearson/Prentice Hall, 2010. ISBN: 0136020402.

[Bru67] N. G. de Bruijn. “Color patterns that are invariant under a given
permutation of the colors”. en. In: Journal of Combinatorial The-
ory 2.4 (June 1967), pp. 418—421. ISSN: 0021-9800. DOI: 10.1016/
S0021-9800(67)80052-8. urRL:https://www.sciencedirect.
com/science/article/pii/S0021980067800528 (visited on
04/10/2022).

[HHMio] John Harris, Jeffry L. Hirst, and Michael Mossinghoft. Combina-
torics and Graph Theory. SPRINGER NATURE, Dec. 2010. 400 pp.
ISBN:1441927239. URL: https://www.ebook.de/de/product/
13975405 / john _harris _ jeffry _1 _hirst _michael _
mossinghoff_combinatorics_and_graph_theory.html.

[J Hoo] R. M. Wilson J. H. Van Lint. 4 Course in Combinatorics. Cam-
bridge University Press, Mar. 2009. 620 pp. ISBN: 0521006015. URL:
https://www.ebook.de/de/product/3258175/j_h_van_
lint_r_m_wilson_a_course_in_combinatorics.html.

[Meros]  Russell Merris. Combinatorics. John Wiley & Sons, Inc., Aug. 2003.
pol: 10.1002/0471449687.


https://doi.org/10.1016/S0021-9800(67)80052-8
https://doi.org/10.1016/S0021-9800(67)80052-8
https://www.sciencedirect.com/science/article/pii/S0021980067800528
https://www.sciencedirect.com/science/article/pii/S0021980067800528
https://www.ebook.de/de/product/13975405/john_harris_jeffry_l_hirst_michael_mossinghoff_combinatorics_and_graph_theory.html
https://www.ebook.de/de/product/13975405/john_harris_jeffry_l_hirst_michael_mossinghoff_combinatorics_and_graph_theory.html
https://www.ebook.de/de/product/13975405/john_harris_jeffry_l_hirst_michael_mossinghoff_combinatorics_and_graph_theory.html
https://www.ebook.de/de/product/3258175/j_h_van_lint_r_m_wilson_a_course_in_combinatorics.html
https://www.ebook.de/de/product/3258175/j_h_van_lint_r_m_wilson_a_course_in_combinatorics.html
https://doi.org/10.1002/0471449687

	3. Pólya theory
	Exercises
	References


