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3. Pólya theory

Now we turn our attention to a family of counting problems. These are all
part of what today is known as Pólya theory of counting but they arise from very
basic execercises.

Example 3.1. Assume that we have a broomstick and several cloth pieces of 5
di�erent colours. How many di�erent �ags can be constructed using the broom-
stick as �agpole and two pieces of di�erent colour.

Solution. We have5possibilities for the colour that goes next to the �agpole and4
possibilities for the other colour, therefore we have 5×4 = 20di�erent �ags. �

Example 3.2. If we have the same pieces of cloth as in the previous example, how
many �ags (with no �agpole) can be built using two pieces of cloth of di�erent
colour?

Solution. �

Example 3.3. We have the same piece of cloth and the broomstick, how many
�ags with �agpole can we build if the two colours do not need to be di�erent.

Solution. �

Example 3.4. The same question as above but without the �agpole.

Example 3.5. We want to sit n knights in a round table. Two con�gurations are
the same if one can rotate the table to obtain one from the other. In how many
ways can the knights be sit?
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Figure 1. 2-colour necklaces of length 6.

Solution. �

Example 3.6. What is the number of essentially di�erent necklaces wich can be
made with with n beads of two di�erent colours?

This is not an easy question, for n = 6 the number is 13. See Figure 1.

Question 3.7. What is the number of non-isomorphic graphs on n vertices?.
For n = 4 there are 11.

Question 3.8. What is the number of essentially di�erent ways to paint the faces
(or edges, or vertices) of the cube with n colors?

We begin with with the following theorem, which was originally published by
Burnside (1897) but was originally prove by Frobenius (1987).

Theorem 3.9 (Burnside’s Lemma). Let G be a group acting on a set X, the num-
ber n(G, X ) of orbits of G on X is given by

m(G, X ) =
1
|G|
∑
g∈G

Fix(g)

Proof. Count the pairs (g, x) ∈ G×X such that gx = x. A given element g ∈ G
appears in |Fix(g)| of those pairs. On the other hand, given x ∈ X , there are
|StabG(x)| pairs with x as second coordinate. It follows that

∑
g∈G

|Fix(g)| =
∑
x∈X

|StabG(x)| .
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Now assume that Y = {y1, . . . , ym} ⊆ X is a set of elements, one for each orbit
(so that m(G, X ) = m).

m(G, X ) =
∑
y∈Y

1

=
∑
x∈Gy1|

1
|Gy1|

+ · · · +
∑
x∈Gym

1
|Gym|

=
∑
x∈Gy1

1
|Gx|

+ · · · +
∑
x∈Gym

1
|Gx|

=
∑
x∈X

1
|Gx|

=
∑
x∈X

| StabG(x)|
|G|

=
1
|G|
∑
x∈X

| StabG(x)|

=
1
|G|
∑
g∈X

| Fix(g)|.

�

Let us apply Burnside’s Lemma to solve Example 3.5. Clearly, the cyclic group
Cn acts mapping one arrangement of the table to another. Two arrangements
are essentially di�erent if and only if they are not in the same orbit. This means
that we want to count orbits under the action of Cn of all the possible ways of
sitting the knights. The amount of possible arrangements isn!. The permutation
id ∈ Cn �xes every arrangement while every non-trivial element has no �xed
arrangements. By Burnside lemma the number of orbits is

1
n
| Fix(id)| = n!

n
.

Let us now formalise this notion of conting colouring con�gurations of ob-
jects. Let K = {1, . . . , k} be a set, which we call the set of colours. Assume that
X is a set. A colouring of X is a function c : X → K , that is, a function that
assigns the colour c(x) to each element x ∈ X . The set of colourings of X (with
colour-set K) is the set

KX = {c : X → K} .
Observe that if |X | = n, then |KX | = kn, as expected.
Let G be a a permutation group of X , then the group G acts on KX by

σc = c(σ−1),
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that is, for every x ∈ X , the colouring σc is given by

(σc)(x) = c(σ−1(x)).

The inverse is necessary to guarantee that the previous mapping is actually a
left action.

Now we use Burnside Lemma to compute the number of orbits of colourings
of a set X with respect a permutation group G of X .

Proposition 3.10. Let X be a set with n elements and G a permutation group of
SX . Let K be a set of colours with |K | = k. Let m denote the number of orbits of G
on KX , the set of colourings of X. Then

m =
1
|G|
∑
ℓ

cℓ (G)kℓ ,

where cℓ (G) denotes the number of elements of G that have ℓ cicles.

Proof. Let σ ∈ G. Assume that c is colouring �xed by σ , that is, for every x ∈ X

c(σ−1x) = σ(c)(x) = c(x).

If follows that if any two elements of X in the same cycle of σ must have the
same colour. Clearly, if σ has ℓ cycles, there are kℓ colourings of X satisfying that
any two elements in the same cycle have the same colour. Any such colouring is
�xed by σ . The result follows from Burnside’s Lemma. �

We can now solve Example 3.6. We need to compute the number cℓ (D6) for
the dihedral group D6. The elements of D6 are listed below:

(1)(2)(3)(4)(5)(6) (1 2 3 4 5 6) (1 3 5)(2 4 6)
(1 4)(2 5)(3 6) (1 5 3)(2 6 4) (1 6 5 4 3 2)
(1)(4)(2 6)(3 5) (2)(5)(1 3)(4 6) (3)(6)(2 4)(1 5)
(1 2)(3 6)(4 5) (2 3)(1 4)(5 6) (3 4)(2 5)(1 6)

It follows that c1(D6) = 2, c2(D6) = 2, c3(D6) = 4, c4(D6) = 3, c5(D6) = 0 and
c6(D6) = 1.

The 6 permutations in the �rst two rows above are precisely the elements of
the cycle groupC6. We can compute the numbers c1(C6) = c2(C6) = 2, c3(C6) = 1
and c6(C6) = 1.

We can now compute the number of necklaces of legth 6with two colors with
respect to rotations (using C6) or with respect to rotation and �ips (using D6).

m(D6) =
1
12
(
2× 2 + 2× 22 + 4× 23 + 3× 24 + 1× 26

)
=
156
12

= 13

m(C6) =
1
6
(
2× 2 + 2× 22 + 1× 23 + 1× 26

)
=
84
6

= 14
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The fact that we get one extra orbit with the cyclic group is that all but one of
the orbits with respect to the dihedral group have mirror re�ection (see Figure 1).
The rightmost necklace in the �rst row does not admit mirror re�ection, hence
its orbit with respecct to the dihedral group has to be split into two di�erent
orbits of the cyclic group.

Proposition 3.10 allows us to count colored objects that are essentially di�erent
with respect to the symmetires of the group G. That number depends only on
the cycle structure of the elements on G, more precisely on the numbers cℓ (G).
In the following paragraph we will introduce the cycle index of a permutation
group G, which generalise in some sense the numbers cℓ (G).

LetG be a permutation group of a setX , with |X | = n and let σ ∈ G, the cycle
monomial of σ is de�ned as

Mσ (t1, . . . , tn) =
k∏
i=1

tℓi

if σ has k cycles and the i-th cycle is of length tℓi . In other words, the exponent of
ti, i ∈ {1, . . . , n} in Mσ (t1, . . . , tn) is k whenever σ has k cycle of lenth i.

The cycle index of G is the polynomial

ZG(t1, . . . , tn) =
1
|G|
∑
σ∈G

Mσ (t1, . . . , tn).

Observe that the cycle index actually generalises the numbers cℓ (G) discussed be-
fore. In fact, the sum of the coe�cients of the terms of degree ℓ in ZG(t1, . . . , tn)
is precisely the number the cℓ (G)

|G| .
From the previous discussion the following proposition is obvious.

Proposition 3.11. Let X be a set with n elements and G a permutation group of
SX . Let K be a set of colours with |K | = k. Let m denote the number of orbits of G
on KX , the set of colourings of X. Then

m = ZG(k, . . . , k).

We will compute some cycle index as excercises (see Exercises 3.1 to 3.4). We
shall use them just to show how they work.

According to Exercise 3.2, the cycle index of the cyclic group is

ZCn(t1, . . . tn) =
1
n
∑
d|n

ϕ(d)tn/dd .

For n = 6 we have

ZC6(t1, . . . , t6) =
1
6
(
t61 + t

3
2 + 2t23 + 2t6

)
Similaryly for the dihedral group D6,
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ZD6(t1, . . . , t6) =
1
12
(
t61 + t

3
2 + 2t23 + 2t6 + 3t21 t

2
2 + 3t32

)
Then we can use Proposition 3.11 to solve the 2-colour necklace problem:

ZC6(2, . . . , 2) =
1
6
(
26 + 23 + 2 · 22 + 2 · 2

)
=
84
6

= 14

ZD6(2, . . . , 2) =
1
12
(
26 + 23 + 2 · 22 + 2 · 2 + 3 · 22 · 22 + 3 · 23

)
=
156
12

= 13

Proposition 3.11 allows us to compute the number of orbits of coloured ob-
jects whith no restrictions, but say that we are interested in �nding 2-coloured
necklaces of length 6 such that only 2 white bead are used.

From now on we will modify slightly our notation, and we shall denote K =
{y1, . . . , yk} the set of colours.

De�nition 3.12. Let X be a set with n elements and let G 6 Sn a permutation
group acting on X . Let K = {y1, . . . , yk} a set of colours. Let v = (n1, . . . , nk)
a vector of k integers such that ni > 0 for every i and n1 + · · · nk = n. Let av
denote the number of non-equivalent colourings (with respect to G) such that
the colour yi is used ni times. The pattern inventory of G is the polynomial

PG(y1, . . . , yk) =
∑
v

avyn11 . . . ynkk .

Clearly, if we know an explicit expression forPG then we how many colourings
of a given type we have. Our task now is to �nd a way to compute PG. Before
doing that let us compute a very simple to show how the pattern inventory works.

Example 3.13. Let X be a set with n elements. How many colourings with 2
colours exists if we do not mind symmetry?.

Proof. Solution Let say tha the colour-set is K = {x, y} For this problem the
vectors v are of length 2 and since both entries must sum n they are of the form
(i, n−i). Obiously, the number of colourings using the colour x i times, when no
symmetry is considered is determined by which of the elements ofX are coloured
with the given colour. In other words

a(i,n−i) =
(
n
i

)
,

hence the pattern inventoy is just

P{id}(x, y) =
n∑
i=0

(
n
i

)
xiyn−1

�
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The expression on the right side of prevoious equations should be familiar for
the reader. A well-known theorem claims that Pid(x, y) = (x+ y)n, and this is not
a coincidence; let us explore this example further.

If we express the product (x + y)n as

(x + y)(x + y) · · · (x + y)︸ ︷︷ ︸
n times

one can see that every term of the product, before reducing similar terms, is given
by chosing either x or y on each of the monomials. This explains the fact tha the
coe�cient of xiyn−i is precisely

(n
i

)
, the number of ways of chossing i times the

letter x. We shall see that this coincides with the ways of chossing one colour for
each cyclie of the (unique) element on the group {id}. More precisely,

Theorem 3.14 (Polya counting formula). LetX be a set of n elements andG 6 Sn
a group acting onX. LetK = {y1, · · · , yk}be a colour-set. Denote byePG(y1, . . . , yk)
the pattern inventory and by ZG(t1, . . . , tn) the cycle index of G, then

PG(y1, . . . , yk) = ZG

 k∑
j=1

yj ,
k∑
j=1

y2j , . . . ,
k∑
j=1

ynj

 .

Proof. Let v = (n1, . . . , nk) be a vector such that ni > 0 for every i and n1 + · · ·+
nk = n. Let Cv ⊆ KX the set of colourings of X such that there are exactly ni
elements of colour yi. For σ ∈ G, let Cv,σ ⊆ Cv the set of colourings in Cv that
are preserved by σ .

For v as above, let yv denote the term yn11 · · · y
nk
k . If c ∈ Cv,σ then every two ele-

ments on a cycle have the same colour, because the colouring must be preserved
by σ . Moreover, the lengths of the cycles coloured with a given colour yi must
add ni. Obivously every colouring satisfying those two conditions is in Cv,σ .

Consider the monomialMσ

(∑k
j=1 yj ,

∑k
j=1 y2j , . . . ,

∑k
j=1 ynj

)
. This monomial

is just

Mσ

 k∑
j=1

yj ,
k∑
j=1

y2j , . . . ,
k∑
j=1

ynj

 =
∏
ℓ

(
yℓ1 + · · · + yℓk

)
where ℓ runs over the lengths of the cycles of σ . Observe that the the term yv
appears in

∏
ℓ

(
yℓ1 + · · · + yℓk

)
as many times as the ways of choosing one letter

(of{y1, . . . , yk}) per cycle of σ such that the sum of the lengths of the cycles where
we choose yi is ni.

When comparing the two previous analysis it is easy to see that the coe�cient
of yv in Mσ

(∑k
j=1 yj ,

∑k
j=1 y2j , . . . ,

∑k
j=1 ynj

)
is precisely |Cv,σ |. When we sum
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over all possible v we have

Mσ

 k∑
j=1

yj ,
k∑
j=1

y2j , . . . ,
k∑
j=1

ynj

 =
∑
v

|Cv,σ | yv.

Now we sum over all possible elements σ ∈ G and divide by |G| and we have:

ZG

 k∑
j=1

yj ,
k∑
j=1

y2j , . . . ,
k∑
j=1

ynj

 =
1
|G|
∑
σ∈G

Mσ

 k∑
j=1

yj ,
k∑
j=1

y2j , . . . ,
k∑
j=1

ynj


=

1
|G|
∑
σ∈G

∑
v

|Cv,σ | yv

=
∑
v

(
1
|G|
∑
σ∈G

|Cv,σ |

)
yv

=
∑
v

avyv

= PG(y1, . . . , yk)

where the second to last equality follows from Burnside Lemma. �

As an example let us compute the pattern inventory of possible colouring of
necklaces of length 4 using colours red (r) �rst with respect to the dihedral group
and then with respecto to the cyclic group.

ZD4(t1, t2, t3, t4) =
1
8
(
t41 + 3t22 + 2t4 + 2t21 t2

)
ZC4(t1, t2, t3, t4) =

1
4
(
t41 + t

2
2 + 2t4

)
Using Polya counting formula we can see that

PD4(r, g, b) = ZD4(r + g + b, r2 + g2 + b2, r3 + g3 + b3, r4 + g4 + b4)

=
1
8
(
(r + g + b)4 + 3(r2 + g2 + b2)2 + 2(r4 + g4 + b4)+

2(r + g + b)2(r2 + g2 + b2)
)

= r4 + r3g + 2r2g2 + rg3 + g4 + r3b + 2r2gb + 2rg2b + g3b+
+ 2r2b2 + 2rgb2 + 2g2b2 + rb3 + gb3 + b4
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and

PC4(r, g, b) = ZC4(r + g + b, r2 + g2 + b2, r3 + g3 + b3, r4 + g4 + b4)

=
1
4
(
(r + g + b)4 + (r2 + g2 + b2)2 + 2(r4 + g4 + b4)

)
= r4 + r3g + 2r2g2 + rg3 + g4 + r3b + 3r2gb + 3rg2b + g3b+

+ 2r2b2 + 3rgb2 + 2g2b2 + rb3 + gb3 + b4

Observe that there are two non-equivalent colouring with two red beads, one
green and one blue under D4 wheareas there are three of them under C4. This
is essentially because the necklaces (r, r, g, b) and (r, r, b, g) are di�erent with re-
specto to the cyclic group but equivalent with resepct to the dihedral group.

Consider now the following example:

Example 3.15. Suppose a jewelry company plans to market a new line of unisex
bracelets. The bracelets are sold in pairs, for a couple to share. Each bracelet
consists of n beads, some gold and some silver, and the two bracelets in a pair are
opposites, in the sense that one can be obtained from the other by changing each
silver bead to a gold one and each gold to a silver. For example, if one bracelet has
two adjacent gold beads and n − 2 silver beads, then its mate has two adjacent
silver beads and n− 2 gold beads.

Using the cycle index of D4 computed before we can see that there are 6 non
equivalent bracelets with two colours. Moreover, using Polya counting formula
we can easily see that the pattern inventory is

PD4(g, s) = s4 + s3g + 2s2g2 + sg3 + g4

Meaning that bracelets can be represented as (s, s, s, s), (s, s, s, g), (s, g, s, g) (s, s, g, g),
(s, g, g, g) and (g, g, g, g). However, when we consider the change of colours we
only have three di�erent pairs, namelly

{(s, s, s, s), (g, g, g, g)}
{(s, g, s, g), (g, s, g, s)}
{(s, s, g, g), (g, g, s, s)}
{(g, g, g, s), (s, s, s, g)}

Notice that the pair of the bracelet (s, g, s, g) is (g, s, g, s), which is equivalent to
the former under the action ofD4. In other words, that pair of bracelets consists
of two identical bracelets.

We can take a step back and count unfasten bracelets (that is, linear {g, s}-
sequences) and then consider two of them equivalet if we can obtain one from
the other by either the action of a dihedral group or by a swich of colours. We
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can see that we obtain precisely the same equivalence classes as before:

{(s, s, s, s), (g, g, g, g)}
{(s, g, s, g), (g, s, g, s)}
{(s, s, g, g), (g, g, s, s), (s, g, g, s), (g, s, s, g)}
{(g, g, g, s), (g, g, s, g), (g, s, g, g), (s, g, g, g), (s, s, s, g), (s, s, g, s), (s, g, s, s), (g, s, s, s)}

Observe that in these consists of the orbits of linear {g, s}-sequences under the
action of two groups. On the one hand we have the group D4 acting as symme-
tries of the necklaces and on the other hand we have a cyclic group C2 swapping
the colours. Let us formalise these ideas for the general case.

LetX be a set with n elements andG 6 Sn a permutation group acting onX .
Let K be a set with k colours and H 6 Sk a permutation group acting on K . If
σ ∈ G, τ ∈ H and c ∈ KX the mapping (σ, τ)c 7→ c where c is the colouring
de�ned by

c(x) = τ
(
c(σ−1x)

)
de�nes a left action of G ×H on KX (see Exercise 3.14).

The following result tells us how to count the number of orbits for this action.

Proposition 3.16. Let X be a set with |X | = n and G 6 Sn a permutation group
acting on X. Let K be a set of colours with |K | = k and H 6 Sk a permutation
group acting on K. The number of orbits N of KX under the action on G × H
defined above is:

N =
1
|H |

∑
τ∈H

ZG(m1(τ), . . . , mn(τ))

where mi(τ) =
∑

j|i j · zj(τ) and zj(τ) denotes the number of cycles of length j in τ.

Proof. Let σ ∈ G and τ ∈ H . Denote by ϕ(σ, τ) the number of colourings
preserved by (σ, τ). By Burnside lemma

N =
1

|G ×H |
∑

(σ,τ)∈G×H

ϕ(σ, τ) =
1
|H |

∑
τ∈H

(
1
|G|
∑
σ∈G

ϕ(σ, τ)

)
It remains to show that

1
|G|
∑
σ∈G

ϕ(σ, τ) = ZG(m1(τ), . . . , mn(τ)).

Let γ1, . . . , γd be the cycle of σ and let us denoteVi = supp(γi) ⊆ X the support
of γi, that is Vi = X \ Fix(γi). Clearly a colouring c is preserved by (σ, τ) if and
only if each of its restriction ci : Vi → K is preserved by (γi, τ). Letϕi(σ, τ) be the
number of colourings of Vi preserved by (γi, τ). From the previous observation
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we have that ϕ(σ, τ) =
∏d

i=1 ϕi(γi, τ). Observe that if ci : Vi → X is a colouring
�xed by (γi, τ) then

ci(x) = (γi, τ)ci(x) = τ(ci(γ−1i x)) = τ(ci(σ−1x)) for all x ∈ Vi,

or equivalently
ci(σy) = τ(ci(y)) = for all y ∈ Vi

Assume that γi has length ℓi (that is |Vi| = ℓi), pick x0 ∈ Vi and let k := ci(x0).
Observe that the colour of every other element inVi depends only on k and τ. In
fact, if y = σ r(x0) then ci(y) = ci(σ rx0) = τr(ci(x0)) = τr(k). In particular, since
this is true for r = ℓi, we have that the cycle of τ containing k must divide ℓi.

Conversely, if we pick any element k ∈ K such that the cycle of τ containing
k has length a divisor of ℓi, then the mapping ci : Vi → X de�ned by ci(γri x0) =
τr(k) is a well-de�ned colouring that is preserved by (γi, τ).

In other words the number ϕi(σ, τ) is equal to the number of ways of picking
a colour k lying on a cycle of τ of length a divisor of ℓi. Obviously this number is

ϕi(σ, τ) =
∑
j|ℓi

jzj(τ) = mℓi (τ)

Finally, observe that

ϕ(σ, τ) =
d∏
i

ϕi(σ, τ) =
d∏
i

mℓi (τ) = Mσ (m1(τ), . . . , mn(τ)).

The result follows from taking the sum over the elements of G and dividing
by |G| �

We �nish the section of the notes by remarking that the previous result solves
the problem of �nding the number of non-equivalent colourings under the ac-
tion of the groupG on the set of elements and the groupH on the set of colours.
The notion of a patter inventory can be also extended to this context and an anal-
ogous result to Theorem 3.14 was proved by De Brujin in 1964. We leave this
result out of these notes but is the reader is interested a proof can be found on
[Bru67]

Exercises.
3.1 Find the cycle index of the group of rotations of the cube.
3.2 Prove that the cycle index if the cyclic group is

ZCn(t1, . . . tn) =
1
n
∑
d|n

ϕ(d)tn/dd .



12 DISCRETE MATHEMATICS 2

3.3 Prove that the cycle index of the dihedral group Dnis

ZDn(t1, . . . , tn) =


1
2n

(∑
d|n ϕ(d)t

n/d
d + nt1t

n−1
2

2

)
for n odd,

1
2n

(∑
d|n ϕ(d)t

n/d
d + n

2 t
2
1 t

n
2−1
2 + n

2 t
n
2
2

)
for n even

3.4 We say that a partition P of [n] is of type (k1, k2, . . . kn) if P has k1 subsets
of size 1, k2 of size 2, etc.
(a) Find the number of partitions of [n] of a given type (k1, . . . kn).
(b) Use the previous item to prove that

ZSn(t1, . . . , tn) =
∑

(k1,...kn)

1
1k12k2 · · · nknk1!k2! · · · kn!

tk11 · · · tknn .

(c) Compute explicitly the cycle index of Sn for n 6 5.
3.5 Find the number of essentially di�erent colourings of the vertices of K5

(the complete graph with 5 vertices) with at most 5 colours.
3.6 Let X1 and X2 be two disjoint sets of size n1 and n2, respectivelly. Let

Gi a permutation group of the set Xi (i ∈ {1, 2}). Consider the group
G = G1 × G2.
(a) Prove that G acts faithfully on X = X1 ∪ X2.
(b) Prove that

ZG(t1, . . . , tn1 , s1, . . . , sn1) = ZG1(t1, . . . , tn1) · ZG2(s1, . . . , sn2)

(c) Compute the cycle index of the largest subgroup of S5 that preserves
the partition {{1, 2, 3} , {4, 5}}.

3.7 The commander of a space cruiser wishes to post four sentry ships arrayed
around the cruiser at the vertices of a tetrahedron for defensive purposes,
since an attack can come from any direction.
(a) How many ways are there to deploy the ships if there are two di�er-

ent kinds of sentry ships available, and we discount all symmetries of
the tetrahedral formation?

(b) How many ways are there if there are three di�erent kinds of sentry
ships available?

3.8 Consider the natural action of the dihedral group D4 on the tiles of an
unpainted 4 × 4 chekerboard. Let G denote the induced permutation
group of the 16 tiles.
(a) Find the cycle index of G.
(b) In how many ways can we paint the board if we use colours black

and white.
(c) In how many ways can we paint the checkerboard if 8 tiles must be

black and 8 must be white?
(d) What if we paint exactly 4 tiles black and there must be exactly one

black tile on each row and each column?
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3.9 Consider the symmetric group S4 acting on the 6 edges of a complete
graph K4. Let G denote the induced permutation group, that is G 6 S6.
(a) Compute the cycle index of G.
(b) Use this to compute the number of non-isomorphic graphs on 4 ver-

tices.
3.10 How many 0, 1-sequences of lenght 12 exists if two sequences are consid-

ered to be the same if one can be obtained from the other by a cyclic shift.
How many are there if each consists of exactly 6 ones and 6 zeros.

3.11 What is the pattern inventory for coloring n objects using the m colours
y1, . . . , ym if the group of symmetries is Sn?

3.12 Two identical cubes are glued to two oposite faces of a third cube to form
a 3 × 1 prism. The prism has 14 squares exposed (4 of the cube in the
middle 5 of each of the other two cubes).
(a) Find the permutation group G on the 14 squares induced by all the

possible ways of rotating the prism.
(b) Compute the cycle index of G.
(c) In how many ways can the squares be painted using at most three

colours: black, white and blue.
(d) Whay if exactly two of the squares must be blue?

3.13 What is the number of essentially di�erent ways to paint the faces of a
cube such that one face is red, two are blue, and the remaining three are
green?

3.14 LetX be a set withn elements andG 6 Sn a permutation group acting on
X . Let K be a set with k colours and H 6 Sk a permutation group acting
on K . Prove that if σ ∈ G, τ ∈ H and c ∈ KX the mapping (σ, τ)c 7→ c
where c is the colouring de�ned by

c(x) = τ
(
c(σ−1x)

)
de�nes a left action of G ×H on KX .

3.15 The hydrocarbon naphthalene has ten carbon atoms arranged in a double
hexagon as in Figure 2, and eight hydrogen atoms attached at each of the
positions labeled 1 through 8.

Figure 2. Naphthalene
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(a) Naphthol is obtained by replacing one of the hydrogen atoms of
naphthalene with a hydroxyl group (OH). How many isomers of
naphtholare there?

(b) Tetramethylnaphthalene is obtained by replacing four of the hydro-
gen atoms of naphthalene with methyl groups (CH3). How many
isomers of tetramethylnaphthalene are there?

(c) How many isomers may be constructed by replacing three of the hy-
drogen molecules of naphthalene with hydroxyl groups, and another
three with methyl groups?

(d) How many isomers may be constructed by replacing two of the hy-
drogen molecules of naphthalene with hydroxyl groups, two with
methyl groups, and two with carboxyl groups (COOH)?

3.16 Determine the number of ways to color the faces of a cube using the three
colors red, blue, and green, if two colorings are considered to be equiva-
lent if one can be obtained from the other by rotating the cube in some
way in three-dimensional space, and possibly exchanging green and red.
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