lgra z grafi¢nim vmesnikom

Aplikacija TicTacToe

e0e Tic tac toe
Nova igra

Na potezi je X - Clovek

GlowoOkay
M
,j . f extods JFrame

—— I@ tal4o /Dof)'g
eXtoady T ane |

Konstruktor razreda GlavnoQOkno (1/3)

public GlavnoOkno() {

this.setTitle("Tic tac toe");
this.setDefaultCloseOperation(EXIT_ON_CLOSE);
this.setLayout (new GridBagLayout());

// menu

JMenuBar menu_bar = new JMenuBar();
this.setJMenuBar (menu_bar) ;

JMenu igra_menu = new JMenu("Nova igra");
menu_bar.add (igra_menu) ;

igraClovekRacunalnik = new JMenuItem("Clovek - racunalnik");
igra_menu.add(igraClovekRacunalnik) ;
igraClovekRacunalnik.addActionListener(this);

// podobno za druge elemente na meniju

» Uporabljamo GridBagLayout, ki je fleksibilen vpravitelj postavitve (layout
manager) v Swingu.

> Vsak element na meniju mora imeti svoj akcijski poslusalec (action listener).

Konstruktor razreda GlavnoQOkno (2/3)

// igralno polje
polje = new IgralnoPolje();

GridBagConstraints polje_layout = new GridBagConstraints();

polje_layout.
polje_layout.
polje_layout.
polje_layout.
polje_layout.

gridx = 0;

gridy = 0;

fill = GridBagConstraints.BOTH;
weightx = 1.0;

weighty = 1.0;

getContentPane() .add(polje, polje_layout);

» Damo polje po GridBagLayoutu na koordinati gridx = 0, gridy = 0.

» Vrednosti za £ill, weightx in weighty pomenijo, da, &e spremenimo velikost
glavnega okna, spremenimo tudi velikost igralnega polja

> getContentPane () .add(component, constraints) doda del component na
okno z omejitvami constraints

Konstruktor razreda GlavnoQOkno (3/3)

// statusna vrstica za sporo&ila

status = new JLabel();

GridBagConstraints status_layout = new GridBagConstraints();
status_layout.gridx = O;

status_layout.gridy = 1;

status_layout.anchor = GridBagConstraints.CENTER;
getContentPane() .add(status, status_layout);

status.setText ("Izberite igro!");

» Damo polje po GridBagLayoutu na koordinati gridx = 0, gridy = 1.

» Vrednost CENTER za anchor pomeni, da bo besedilo v centru statusne vrtice.

Razred GlavnoOkno

public class GlavnoOkno extends JFrame implements ActionListener {
private IgralnoPolje polje;
private JLabel status;
private JMenultem igraClovekRacunalnik;
private JMenultem igraRacunalnikClovek;

private JMenultem igraClovekClovek;
private JMenultem igraRacunalnikRacunalnik;

public GlavnoOkno() { ... }

@0verride

public void actionPerformed(ActionEvent e) { ... }
public void osveziGUI() { ... }

Razred IgralnoPolje

public class IgralnoPolje extends JPanel implements MouseListener {

public IgralnoPolje() {
setBackground (Color.WHITE) ;

this.addMouseListener (this); }
@Override
public Dimension getPreferredSize() {

return new Dimension(400, 400); }
@0verride
protected void paintComponent (Graphics g) { ... }
@0verride
public void mouseClicked(MouseEvent e) { ... }

public void mousePressed(MouseEvent e) { }
public void mouseReleased(MouseEvent e) { }
public void mouseEntered(MouseEvent e) { }
public void mouseExited(MouseEvent e) { }

Metoda paintComponent (1/2)

private final static double LINE_WIDTH = 0.08; // relativna Sirina &rte

// Sirina enega kvadratka
private double squareWidth() {
return Math.min(getWidth(), getHeight()) / Igra.N; }

@0verride

protected void paintComponent (Graphics g) {
super . paintComponent (g) ;
Graphics2D g2 = (Graphics2D)g;
double w = squareWidth();

// crte
g2.setColor (Color.BLACK) ;
g2.setStroke(new BasicStroke((float) (w * LINE_WIDTH)));
for (int i = 1; i < Igra.N; i++) {
g2.drawLine((int) (i * w), (int)(0),
(int) (i * w), (int)(Igra.N * w));
g2.drawLine ((int) (0), (int) (i * w),
(int) (Igra.N * w), (int) (i * w));

Metoda paintComponent (2/2)

private final static double PADDING = 0.18; // relativni prostor okoli X/0
private void paintO(Graphics2D g2, int i, int j) {
double w = squareWidth();
double d = w * (1.0 - LINE_WIDTH - 2.0 * PADDING); // premer 0
double x = w * (i + 0.5 * LINE_WIDTH + PADDING);
double y = w * (j + 0.5 * LINE_WIDTH + PADDING);
g2.setColor(Color.RED) ;
g2.setStroke (new BasicStroke((float) (w * LINE_WIDTH)));
g2.drawOval ((int)x, (int)y, (int)d , (int)d);
}

protected void paintComponent (Graphics g) {

// krizci in kroZci
Polje[]l[] plosca;;
if (Vodja.igra != null) {
plosca = Vodja.igra.getPlosca();
for (int i = 0; i < Igra.N; i++) {
for (int j = 0; j < Igra.N; j++) {
switch(ploscali] [j1) {
case X: paintX(g2, i, j); break;
case 0: paint0(g2, i, j); break;
default: break;
} ¥ ¥ } }

Komentarji o metodi paintComponent

> squareWidth je metoda, ker mora biti vrednost dinami¢no
izratunana, ¢e spremenimo velikost okna.

> Izpustil sem kodo, ki pobarva ozadje zmagovalne terice.
> N je stati¢no polje razreda Igra. Igramo igro velikosti NxN.

> Razred Vodja ima stati¢no polje igra tipa Igra. Polje igra
je igra, ki jo igramo. Uporabljamo njegovo metodo
getPlosca, da bi videli trenutno stanje v igri.

(Razred Igra je podoben razredu prej$njega tedna, vendar
ima nekaj novih metod, na primer getPlosca.)

Paketi v aplikaciji in njihovi razredi

v

default package

TicTacToe (ima metodo main)

> vodja

Vodja, Vrstalgralca

> gui

GlavnoOkno, IgralnoPolje

v

logika

Igra, Igralec, Koordinati, Polje, Stanje, Vrsta

Razred Igra

Konstruktor, ki ustvari novo igro.

Igra ()

Javni polja in metode
static final int N = 3 // velikost igralne plos&e je NxN

Igralec naPotezi()

public Polje[][] getPlosca() // vrne tabelo igralne plo&iZe
List<Koordinati> poteze() // vrne seznam moZnih potez

Vrsta zmagovalnaVrsta() // vrne zmagovalno vrsto, Ce obstaja
Stanje stanje()

boolean odigraj(Koordinati p)

Metoda odigraj(p) odigra potezo p v igri in vrne true, e je poteza moZna, sicer
vrne false.

Razred Vodja (1/4) in metoda actionPerformed

V razredu Vodja:

public class Vodja {

public
public
public
public

static Map<Igralec,Vrstalgralca> vrstalgralca;

static GlavnoOkno oknoj;

static Igra igra = null; // igra, ki jo trenutno igramo
static boolean clovekNaVrsti = false;

V razredu GlavnoOkno:

@0verride

public void actionPerformed(ActionEvent e) {
if (e.getSource() == igraClovekRacunalnik) {
Vodja.vrstalgralca =

new EnumMap<Igralec,Vrstalgralca>(Igralec.class);

Vodja.vrstalgralca.put(Igralec.0, Vrstalgralca.C);
Vodja.vrstalgralca.put(Igralec.X, Vrstalgralca.R);
Vodja.igramoNovoIgro();

} else if (e.getSource() == igraRacunalnikClovek) { ...
} else if (e.getSource() == igraClovekClovek) { ...
} else if (e.getSource() == igraRacunalnikRacunalnik) { ... }

Razred Vodja (2/4)

public static void igramoNovoIgro () {
igra = new Igra (); igramo (); }

public static void igramo () {

okno.osveziGUI();

switch (igra.stanje()) {

case ZMAGA_O:

case ZMAGA_X:

case NEODLOCENO:
return; // odhajamo iz metode igramo

case V_TEKU:
Igralec igralec = igra.naPotezi();
Vrstalgralca vrstaNaPotezi = vrstalgralca.get(igralec);
switch (vrstaNaPotezi) {

case C:
clovekNaVrsti = true;
break;
case R:
igrajRacunalnikovoPotezo ();
break;
}

Metoda osveziGUI

V razredu GlavnoOkno:

public void osveziGUI() {
if (Vodja.igra == null) { status.setText("Igra ni v teku."); }
else {
switch(Vodja.igra.stanje()) {
case NEODLOCENO: status.setText("NeodloZeno!"); break;
case V_TEKU:
status.setText("Na potezi je " + Vodja.igra.naPotezi + " - " +
Vodja.vrstalgralca.get(Vodja.igra.naPotezi));
break;
case ZMAGA_O:
status.setText ("Zmagal je 0 - " +
Vodja.vrstalgralca.get(Igralec.0));
break;
case ZMAGA_X:
status.setText ("Zmagal je X - " +
Vodja.vrstalgralca.get(Igralec.X));
break;
}
}
polje.repaint();

Razred Vodja (3/4)

private static Random random = new Random () ;

public static void igrajRacunalnikovoPotezo() {
List<Koordinati> moznePoteze = igra.poteze();
int randomIndex = random.nextInt(moznePoteze.size());
Koordinati poteza = moznePoteze.get(randomIndex) ;
igra.odigraj(poteza);
igramo ();

Ra&unalnik igra brez inteligence!

Metoda mouseClicked in razred Vodja (4/4)
V razredu IgralnoPolje:

@0verride
public void mouseClicked(MouseEvent e) {
if (Vodja.clovekNaVrsti) {
int x = e.getX(); int y = e.getY();
int w = (int) (squareWidth());
inti=x/w; int j=y / w;
double di = (x % w) / squareWidth() ;
double dj = (y % w) / squareWidth() ;
if (0 <=1 && i < Igra.N &&
0.5 x LINE_WIDTH < di && di < 1.0 - 0.5 * LINE_WIDTH &&
0 <=3 & j < Igra.N &&
0.5 * LINE_WIDTH < dj & dj < 1.0 - 0.5 * LINE_WIDTH) {
Vodja.igrajClovekovoPotezo (new Koordinati(i, j));

} } }

V razredu Vodja:

public static void igrajClovekovoPotezo(Koordinati poteza) {
if (igra.odigraj(poteza)) clovekNaVrsti = false;
igramo ();

Komentarji o strukturi programa

» Vsa polja in metode razreda Vodja so stati¢na.

— Razred Vodja vodi samo eno igro v edinem oknu.

» Razred Igra ima konstruktor in dinami¢nimi medotami.

— Uporabljamo nov objekt igra razreda Igra, ko za¢énemo novo
igro.

— Ko pisemo kodo za racunalnikovo inteligenco, bo bistveno, da
lahko ustvarimo mnoge objekte razreda Igra.

> Paket logika je samostojni.

— Paket logika se ti¢e samo logike igre. Razredom v paketu
igra ni treba uporabljati razredov v paketih vodja in gui.

Razred TicTacToe

public class TicTacToe {

public static void main(String[] args) {
GlavnoOkno glavno_okno = new GlavnoOkno();
glavno_okno.pack();
glavno_okno.setVisible(true);
Vodja.okno = glavno_okno;

Niti v Swingu

» Metoda main se izvaja v zaletni niti (initial thread).

Ta nit samo inicializira okno.

> Potem program se izvaja pod vodjo Swinga v niti event
dispatch thread (EDT).

» Ce izvajanje programa potrebuje &as, ne bo EDT normalno
funkcionirala, medtem ko program izrauna. Zato je
pomembno, da izvajamo kodo, ki potrebuje ¢as, v niti v
ozadju.

» Java ima dobro podporo za soasno programiranje z nitmi.
Na Zalost, Swing ni varna z nitimi.

> Abstraktni razred SwingWorker podpora programiranje z
Swingom z nitmi.

Niti z uporabo razreda SwingWorker

import javax.swing.SwingWorker;

SwingWorker<t, Void> worker =
new SwingWorker<t, Void> () {
@0verride
protected t doInBackground() {

Ta koda se izvaja v niti v ozadju. Mora vrniti vrednost tipa t.
}
@0verride
protected void done () {
Ta koda se izvaja, ko je koda v ozadju konc&ana.
Metoda get () nam da vrednost tipa t, ki jo je vrnila koda v ozadju.
Metoda get () lahko vrzi ExecutionException in InterruptedException.

¥
};

worker.execute();

Metoda igrajRacunalnikovoPotezo

public static void igrajRacunalnikovoPotezo() {
Igra zacetkalgra = igra;
SwingWorker<Koordinati, Void> worker =
new SwingWorker<Koordinati, Void> () {
Q@0verride
protected Koordinati doInBackground() {
try {TimeUnit.SECONDS.sleep(2);} catch (Exception e) {};
List<Koordinati> moznePoteze = igra.poteze();
int randomIndex = random.nextInt(moznePoteze.size());
return moznePoteze.get (randomIndex) ;
}
@0verride
protected void done () {
Koordinati poteza = null;
try {poteza = get();} catch (Exception e) {};
if (igra == zacetkalgra && poteza != null) {
igra.odigraj(poteza);
igramo ();

}
};

worker.execute() ;

Bolj elegantna resitev (brez uporabe get())

public static void igrajRacunalnikovoPotezo() {
Igra zacetkalgra = igra;
SwingWorker<Void, Void> worker = new SwingWorker<Void, Void> () {
Q@0verride
protected Void doInBackground() {
try {TimeUnit.SECONDS.sleep(2);} catch (Exception e) {};
return null;

}

Q@0verride

protected void done () {
if (igra != zacetkalgra) return;
List<Koordinati> moznePoteze = igra.poteze();
int randomIndex = random.nextInt(moznePoteze.size());
Koordinati poteza = moznePoteze.get (randomIndex) ;
igra.odigraj(poteza) ;
igramo ();

}

};

worker.execute() ;

