
Igra z grafičnim vmesnikom



Aplikacija TicTacToe





Konstruktor razreda GlavnoOkno (1/3)

public GlavnoOkno() {

this.setTitle("Tic tac toe");

this.setDefaultCloseOperation(EXIT_ON_CLOSE);

this.setLayout(new GridBagLayout());

// menu

JMenuBar menu_bar = new JMenuBar();

this.setJMenuBar(menu_bar);

JMenu igra_menu = new JMenu("Nova igra");

menu_bar.add(igra_menu);

igraClovekRacunalnik = new JMenuItem("Človek - racunalnik");

igra_menu.add(igraClovekRacunalnik);

igraClovekRacunalnik.addActionListener(this);

// podobno za druge elemente na meniju

...

I Uporabljamo GridBagLayout, ki je fleksibilen vpravitelj postavitve (layout
manager) v Swingu.

I Vsak element na meniju mora imeti svoj akcijski poslušalec (action listener).



Konstruktor razreda GlavnoOkno (2/3)

...

// igralno polje

polje = new IgralnoPolje();

GridBagConstraints polje_layout = new GridBagConstraints();

polje_layout.gridx = 0;

polje_layout.gridy = 0;

polje_layout.fill = GridBagConstraints.BOTH;

polje_layout.weightx = 1.0;

polje_layout.weighty = 1.0;

getContentPane().add(polje, polje_layout);

...

I Damo polje po GridBagLayoutu na koordinati gridx = 0, gridy = 0.

I Vrednosti za fill, weightx in weighty pomenijo, da, če spremenimo velikost
glavnega okna, spremenimo tudi velikost igralnega polja

I getContentPane().add(component, constraints) doda del component na
okno z omejitvami constraints



Konstruktor razreda GlavnoOkno (3/3)

...

// statusna vrstica za sporočila

status = new JLabel();

GridBagConstraints status_layout = new GridBagConstraints();

status_layout.gridx = 0;

status_layout.gridy = 1;

status_layout.anchor = GridBagConstraints.CENTER;

getContentPane().add(status, status_layout);

status.setText("Izberite igro!");

}

I Damo polje po GridBagLayoutu na koordinati gridx = 0, gridy = 1.

I Vrednost CENTER za anchor pomeni, da bo besedilo v centru statusne vrtice.



Razred GlavnoOkno

public class GlavnoOkno extends JFrame implements ActionListener {

private IgralnoPolje polje;

private JLabel status;

private JMenuItem igraClovekRacunalnik;

private JMenuItem igraRacunalnikClovek;

private JMenuItem igraClovekClovek;

private JMenuItem igraRacunalnikRacunalnik;

public GlavnoOkno() { ... }

@Override

public void actionPerformed(ActionEvent e) { ... }

public void osveziGUI() { ... }

}



Razred IgralnoPolje

public class IgralnoPolje extends JPanel implements MouseListener {

public IgralnoPolje() {

setBackground(Color.WHITE);

this.addMouseListener(this); }

@Override

public Dimension getPreferredSize() {

return new Dimension(400, 400); }

@Override

protected void paintComponent(Graphics g) { ... }

@Override

public void mouseClicked(MouseEvent e) { ... }

public void mousePressed(MouseEvent e) { }

public void mouseReleased(MouseEvent e) { }

public void mouseEntered(MouseEvent e) { }

public void mouseExited(MouseEvent e) { }

}



Metoda paintComponent (1/2)

private final static double LINE_WIDTH = 0.08; // relativna širina črte

// Sirina enega kvadratka

private double squareWidth() {

return Math.min(getWidth(), getHeight()) / Igra.N; }

@Override

protected void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;

double w = squareWidth();

// crte

g2.setColor(Color.BLACK);

g2.setStroke(new BasicStroke((float) (w * LINE_WIDTH)));

for (int i = 1; i < Igra.N; i++) {

g2.drawLine((int)(i * w), (int)(0),

(int)(i * w), (int)(Igra.N * w));

g2.drawLine((int)(0), (int)(i * w),

(int)(Igra.N * w), (int)(i * w));

}

...

}



Metoda paintComponent (2/2)

private final static double PADDING = 0.18; // relativni prostor okoli X/O

private void paintO(Graphics2D g2, int i, int j) {

double w = squareWidth();

double d = w * (1.0 - LINE_WIDTH - 2.0 * PADDING); // premer O

double x = w * (i + 0.5 * LINE_WIDTH + PADDING);

double y = w * (j + 0.5 * LINE_WIDTH + PADDING);

g2.setColor(Color.RED);

g2.setStroke(new BasicStroke((float) (w * LINE_WIDTH)));

g2.drawOval((int)x, (int)y, (int)d , (int)d);

}

protected void paintComponent(Graphics g) {

...

// krizci in krožci

Polje[][] plosca;;

if (Vodja.igra != null) {

plosca = Vodja.igra.getPlosca();

for (int i = 0; i < Igra.N; i++) {

for (int j = 0; j < Igra.N; j++) {

switch(plosca[i][j]) {

case X: paintX(g2, i, j); break;

case O: paintO(g2, i, j); break;

default: break;

} } } } }



Komentarji o metodi paintComponent

I squareWidth je metoda, ker mora biti vrednost dinamično
izračunana, če spremenimo velikost okna.

I Izpustil sem kodo, ki pobarva ozadje zmagovalne terice.

I N je statično polje razreda Igra. Igramo igro velikosti N×N.

I Razred Vodja ima statično polje igra tipa Igra. Polje igra

je igra, ki jo igramo. Uporabljamo njegovo metodo
getPlosca, da bi videli trenutno stanje v igri.

(Razred Igra je podoben razredu preǰsnjega tedna, vendar
ima nekaj novih metod, na primer getPlosca.)



Paketi v aplikaciji in njihovi razredi

I default package

TicTacToe (ima metodo main)

I vodja

Vodja, VrstaIgralca

I gui

GlavnoOkno, IgralnoPolje

I logika

Igra, Igralec, Koordinati, Polje, Stanje, Vrsta



Razred Igra

Konstruktor, ki ustvari novo igro.

Igra ()

Javni polja in metode

static final int N = 3 // velikost igralne plošče je NxN

Igralec naPotezi()

public Polje[][] getPlosca() // vrne tabelo igralne plošče

List<Koordinati> poteze() // vrne seznam možnih potez

Vrsta zmagovalnaVrsta() // vrne zmagovalno vrsto, če obstaja

Stanje stanje()

boolean odigraj(Koordinati p)

Metoda odigraj(p) odigra potezo p v igri in vrne true, če je poteza možna, sicer
vrne false.



Razred Vodja (1/4) in metoda actionPerformed

V razredu Vodja:

public class Vodja {

public static Map<Igralec,VrstaIgralca> vrstaIgralca;

public static GlavnoOkno okno;

public static Igra igra = null; // igra, ki jo trenutno igramo

public static boolean clovekNaVrsti = false;

...

V razredu GlavnoOkno:

@Override

public void actionPerformed(ActionEvent e) {

if (e.getSource() == igraClovekRacunalnik) {

Vodja.vrstaIgralca =

new EnumMap<Igralec,VrstaIgralca>(Igralec.class);

Vodja.vrstaIgralca.put(Igralec.O, VrstaIgralca.C);

Vodja.vrstaIgralca.put(Igralec.X, VrstaIgralca.R);

Vodja.igramoNovoIgro();

} else if (e.getSource() == igraRacunalnikClovek) { ...

} else if (e.getSource() == igraClovekClovek) { ...

} else if (e.getSource() == igraRacunalnikRacunalnik) { ... }

}



Razred Vodja (2/4)

public static void igramoNovoIgro () {

igra = new Igra (); igramo (); }

public static void igramo () {

okno.osveziGUI();

switch (igra.stanje()) {

case ZMAGA_O:

case ZMAGA_X:

case NEODLOCENO:

return; // odhajamo iz metode igramo

case V_TEKU:

Igralec igralec = igra.naPotezi();

VrstaIgralca vrstaNaPotezi = vrstaIgralca.get(igralec);

switch (vrstaNaPotezi) {

case C:

clovekNaVrsti = true;

break;

case R:

igrajRacunalnikovoPotezo ();

break;

}

}

}

...



Metoda osveziGUI

V razredu GlavnoOkno:

public void osveziGUI() {

if (Vodja.igra == null) { status.setText("Igra ni v teku."); }

else {

switch(Vodja.igra.stanje()) {

case NEODLOCENO: status.setText("Neodločeno!"); break;

case V_TEKU:

status.setText("Na potezi je " + Vodja.igra.naPotezi + " - " +

Vodja.vrstaIgralca.get(Vodja.igra.naPotezi));

break;

case ZMAGA_O:

status.setText("Zmagal je O - " +

Vodja.vrstaIgralca.get(Igralec.O));

break;

case ZMAGA_X:

status.setText("Zmagal je X - " +

Vodja.vrstaIgralca.get(Igralec.X));

break;

}

}

polje.repaint();

}



Razred Vodja (3/4)

...

private static Random random = new Random ();

public static void igrajRacunalnikovoPotezo() {

List<Koordinati> moznePoteze = igra.poteze();

int randomIndex = random.nextInt(moznePoteze.size());

Koordinati poteza = moznePoteze.get(randomIndex);

igra.odigraj(poteza);

igramo ();

}

...

Računalnik igra brez inteligence!



Metoda mouseClicked in razred Vodja (4/4)
V razredu IgralnoPolje:

@Override

public void mouseClicked(MouseEvent e) {

if (Vodja.clovekNaVrsti) {

int x = e.getX(); int y = e.getY();

int w = (int)(squareWidth());

int i = x / w ; int j = y / w ;

double di = (x % w) / squareWidth() ;

double dj = (y % w) / squareWidth() ;

if (0 <= i && i < Igra.N &&

0.5 * LINE_WIDTH < di && di < 1.0 - 0.5 * LINE_WIDTH &&

0 <= j && j < Igra.N &&

0.5 * LINE_WIDTH < dj && dj < 1.0 - 0.5 * LINE_WIDTH) {

Vodja.igrajClovekovoPotezo (new Koordinati(i, j));

} } }

V razredu Vodja:

public static void igrajClovekovoPotezo(Koordinati poteza) {

if (igra.odigraj(poteza)) clovekNaVrsti = false;

igramo ();

}

}



Komentarji o strukturi programa

I Vsa polja in metode razreda Vodja so statična.

– Razred Vodja vodi samo eno igro v edinem oknu.

I Razred Igra ima konstruktor in dinamičnimi medotami.

– Uporabljamo nov objekt igra razreda Igra, ko začnemo novo
igro.

– Ko pǐsemo kodo za računalnikovo inteligenco, bo bistveno, da
lahko ustvarimo mnoge objekte razreda Igra.

I Paket logika je samostojni.

– Paket logika se tiče samo logike igre. Razredom v paketu
igra ni treba uporabljati razredov v paketih vodja in gui.



Razred TicTacToe

public class TicTacToe {

public static void main(String[] args) {

GlavnoOkno glavno_okno = new GlavnoOkno();

glavno_okno.pack();

glavno_okno.setVisible(true);

Vodja.okno = glavno_okno;

}

}



Niti v Swingu

I Metoda main se izvaja v začetni niti (initial thread).

Ta nit samo inicializira okno.

I Potem program se izvaja pod vodjo Swinga v niti event
dispatch thread (EDT).

I Če izvajanje programa potrebuje čas, ne bo EDT normalno
funkcionirala, medtem ko program izračuna. Zato je
pomembno, da izvajamo kodo, ki potrebuje čas, v niti v
ozadju.

I Java ima dobro podporo za sočasno programiranje z nitmi.
Na žalost, Swing ni varna z nitimi.

I Abstraktni razred SwingWorker podpora programiranje z
Swingom z nitmi.



Niti z uporabo razreda SwingWorker

import javax.swing.SwingWorker;

SwingWorker<t, Void> worker =

new SwingWorker<t, Void> () {

@Override

protected t doInBackground() {

Ta koda se izvaja v niti v ozadju. Mora vrniti vrednost tipa t.

}

@Override

protected void done () {

Ta koda se izvaja, ko je koda v ozadju končana.
Metoda get() nam da vrednost tipa t, ki jo je vrnila koda v ozadju.
Metoda get() lahko vrži ExecutionException in InterruptedException.

}

};

worker.execute();



Metoda igrajRacunalnikovoPotezo

public static void igrajRacunalnikovoPotezo() {

Igra zacetkaIgra = igra;

SwingWorker<Koordinati, Void> worker =

new SwingWorker<Koordinati, Void> () {

@Override

protected Koordinati doInBackground() {

try {TimeUnit.SECONDS.sleep(2);} catch (Exception e) {};

List<Koordinati> moznePoteze = igra.poteze();

int randomIndex = random.nextInt(moznePoteze.size());

return moznePoteze.get(randomIndex);

}

@Override

protected void done () {

Koordinati poteza = null;

try {poteza = get();} catch (Exception e) {};

if (igra == zacetkaIgra && poteza != null) {

igra.odigraj(poteza);

igramo ();

}

}

};

worker.execute();

}



Bolj elegantna rešitev (brez uporabe get())

public static void igrajRacunalnikovoPotezo() {

Igra zacetkaIgra = igra;

SwingWorker<Void, Void> worker = new SwingWorker<Void, Void> () {

@Override

protected Void doInBackground() {

try {TimeUnit.SECONDS.sleep(2);} catch (Exception e) {};

return null;

}

@Override

protected void done () {

if (igra != zacetkaIgra) return;

List<Koordinati> moznePoteze = igra.poteze();

int randomIndex = random.nextInt(moznePoteze.size());

Koordinati poteza = moznePoteze.get(randomIndex);

igra.odigraj(poteza);

igramo ();

}

};

worker.execute();

}


