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Instructions

1. Read this instructions before you start. DO NOT TURN THE PAGE UNTIL INDICATED

2. Please write your name and student number in the spaces above.

3. You must remain seated during the entire exam and you are not allowed to communicate with your
classmates.

4. You are allowed to use the class notes provided by the instructor but no other source of information
is allowed.

5. Please, mute your phone and try to use it only in case of an emergency.

6. The exam consists of 6 problems. You only need to solve 5 but you are allowed (and encouraged)
to try (and solve) all of them. Any extra job will count, meaning that you can get up to 20% of
extra marks.

7. Please use blank pages to write your solutions. Write your name on each of them. Yo can ask the
instructor for more paper sheets if you need.

8. Try no to solve more than one problem on each side of the page, but you can use each side for a
different problem. Please indicate very clearly which problem you are solving on each page, use
sentences like ‘Problem 3, page 1/2’.

9. Show your work : write answers as complete as possible. This improves your chances to get partial
marks. You do not need to compute numerical operations, meaning that an aswer as 3×617+53+2+1
is perfectly valid as long as you justify where it came from. If you just give a large number such as
352039485 without explaining where it came from, you will not get full mark (even if it is correct!)

10. Good luck!



1. (20 Pts.) Prove that if two permutations are conjugate then they have the same number of fixed
points. Give an example of two permutations with the same number of fixed points that are not
conjugate.

Solution:

1. If σ and τ are permutations of the same finite set then they have the same cycle type. Obviously
they have the same number of fixed points.

2. If σ = µτµ−1 and x is a fixed point of τ then µ(x) is a fixed point of σ, indeed:

σ(µ(x)) = µτµ−1(µ(x))

= µτ(x)

= µ(x).

In S5 the permutations (1 2 3 4) and (1 2)(3 4) have exactly one fixed point (5) and theay are not
conjugate.

2. (20 Pts.) Let G be a group acting transitively on a set X. Let H be a subgroup of G and let S denote
the subgroup StabG(x). Prove that the following statements are equivalent

(i) G = SH,

(ii) G = HS,

(iii) H is transitive.

Use the above to prove that the only transitive subgroup containing S is the group G itself.

Solution:

(i) ⇒ (ii) Let g ∈ G, then g−1 ∈ G, which implies that there exists s ∈ S and h ∈ H such that
g−1 = sh. Then

g =
(
g−1
)−1

= (sh)−1 = h−1s−1 ∈ HS.

It follows that G = HS.

(ii) ⇒ (iii) Let y ∈ X, we will show that for every y ∈ Y there exists h ∈ H such hx = y. This
is equivalent to show that H is transitive. Since G is transitive, there exists g ∈ G such that
gx = y; since G = HS, then g = hs for some h ∈ H and s ∈ S, finally:

hx = h(sx) = (hs)x = gx = y.

(iii) ⇒ (i) Let g ∈ G and let y = g−1x, hence x = gy. Since H is transitive, there exists h ∈ H such
that x = hy (implying y = h−1x ). Obseve that

(gh−1)x = g(y) = x.

That means that gh−1 ∈ S, hence g = sh for some s ∈ S. It follows that G = SH.

If H 6 G and contains S then HS = H but if H is transitive, then G = HS = H.
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3. (20 Pts.) Let G be a group acting transitively on a set X. Let x ∈ X and denote by S the subgroup
StabG(x). Prove that if G acts transitively then

[NG(S) : S] = |Fix(S)|

Here NG(S) denotes the normaliser of S, that is, the largest subgroup of G in which S is normal and
Fix(S) = {y ∈ X : gy = y ∀g ∈ S}.

Solution: Consider the function φ : NG(S)/StoF ix(S) given by φ(nS) = nx.

This function is well-defined: First observe that if n ∈ NG(S) then nx ∈ Fix(S). Take s ∈ S, now
observe that since n ∈ NG(S), then there exists s′ ∈ S such that n−1sn = s′, equivalently, sn = ns′

then (sn)x = (ns′)x = nx. Then nx ∈ Fix(S).

Take two elements n1, n2 ∈ NG(S) then,

n1S = n2S ⇔ n−11 n2 ∈ S ⇔ n1x = n2x

Reading the arrows of the equation above shows that the definition of φ does not depend on the
representant of the coset. If we read the arrows in the opposite direction we show that φ is injective.

Take n ∈ G such that nx ∈ Fix(S). We have that snx = nx for every s ∈ S. Therefore n−1sn ∈ S.
It follows that n ∈ NG(S). Since G acts transitively, then every element in Fix(S) is of the form nx
for some n ∈ G. This proves that φ is surjective.

4. (20 Pts.) How many essentially different ways are there to label the faces of a cube with the numbers
1 through 6 ...

(i) ... if each number may be used more than once, but not all numbers need to be used?

(ii) ... if each number may only be used once?

Note: two labellings of the cube are considered to be the same if we can rotate the cube on the space
and obtain one where the values on each face are the same as in the other, regardless of the particular
orientation of each of the numbers.

Solution: Let X = {A,B,C,D,E, F} be the faces of the cube and K = {1, 2, 3, 4, 5, 6} the set of
possible numbers. The group of rotations of the cube acts transitivelly on faces, edges and vertices.
Moreover, if u, v are vertices (resp. edges, faces) then every element of this group maps {u, v} to a
pair of opposite vertices (resp. edges, labels). It follows that if H1 and H2 are the cyclic groups of
rotations with axis the line segment through (the centres of) a pair of vertices (resp. edges, faces),
then H1 and H2 are conjugate in G. It follows that the group G is a permutation group on X with
elements having the following cycle-type:

(a) The identity, of type [1, 1, 1, 1, 1, 1].

(b) 8 rotations of period 3 with axis through a pair of opposite vertices. Those are or type [3, 3]

(c) 6 half turns with axis through the midpoints of opposite edges of type [2, 2, 2].

(d) Two rotations of period 4 (one clockwise and its inverse) fixing a pair of opposite faces; this
gives us 6 elements of type [4, 1, 1].
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(e) One rotation of period 2 for each pair of opposite faces, for a total of 3 elements of type [2, 2, 1, 1].

We have a total of 24 elements.

From the observations above we can easily compute the cycle index of G:

ZG(t1, . . . , t6) =
1

24
(t61 + 8t23 + 6t32 + 6t21t4 + 3t21t

2
2)

(i) This is the same as counting the orbits of G on KX . We know that this number is

ZG(6, . . . , 6) =
53424

24
= 2226.

(ii) We use Burnside Lemma to solve this part. We need to count the number N of orbits of the
action of G on the set

Y = {f : {A,B,C,D,E, F} → {1, 2, 3, 4, 5, 6} | f is injective} .

By Burnside Lemma

N =
1

|G|
∑
σ∈G
|Fix(σ)|.

Given σ ∈ G and f ∈ Y , f ∈ Fix(σ) if and only if f(σ−1(x)) = f(x) for every x ∈ X. Since f
is injective, it means that σ−1(x) = x for every x or equivalently σ(x) = x. This implies that
σ = id and hence

N =
Fix(id)

|G|
=

6!

24
= 30

5. (20 Pts.) In how many ways can we put together a necklace of six corals if we have corals available
in white, red and blue? What if we want to use two reds and four blue corals? What if we want to
use three white, one red and two blue corals? Two necklaces are considered the same if we can get
one from the other either by rotations or by a flip.

Solution: We want to count the orbits of necklaces under the dihedral group D6. We know the cycle
type of this group:

ZD6(t1, . . . , t6) =
1

12

(
t61 + t32 + 2t23 + 2t6 + 3t21t

2
2 + 3t32

)
The number of necklaces with three colours is

ZD6(3, . . . , 3) =
1

12

(
36 + 33 + 2 · 32 + 2 · 3 + 3 · 32 · 32 + 3 · 33

)
= 92

By Pólya’s counting formula, the pattern inventory of necklaces is

PD6(w, r, b) = ZD6

(
w + r + b, w2 + r2 + b2, w3 + r3 + b3, w4 + r4 + b4, w5 + r5 + b5, w6 + r6 + b6

)
We are interested in the coeficient of r2b4 (two reds and four blues) and the coefficient of w3rb2 (three
whites, one red and two blues) in PD6(w, r, b). In the following table we compute such coefficients
according to each monomial on ZD6 (t1, . . . , t6).
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r2b4 w3rb2

(w + r + b)6
(

6

2

) (
6

3

)(
3

2

)
(w2 + r2 + b2)3

(
3

2

)
0

2(w3 + r3 + b3)2 0 0

2(w6 + r6 + b6) 0 0

3(w + r + b)2(w2 + r2 + b2)2 3 · (1 + 2) 3 ·
(

2

1

)(
2

1

)
3(w2 + r2 + b2)3 3 ·

(
3

1

)
0

It follows that the coefficient of r2b4 is

1

12

((
6

2

)
+

(
3

2

)
+ 3 · (1 + 2) + 3 ·

(
3

1

))
=

36

12
= 3,

and the coefficient of w3rb2 is

1

12

((
6

3

)(
3

2

)
+ 3 ·

(
2

1

)(
2

1

))
=

72

12
= 6.

6. (20 Pts.) Determine the number of ways to color the faces of an octahedron using the four colors red,
blue, orange, and green, if

(i) two colourings are considered to be equivalent if one can be obtained from the other by rotating
the octahedron in some way.

(ii) two colourings are considered to be equivalent if one can be obtained from the other by rotating
the octahedron in some way and possibly exchanging red and orange, or blue and green, or both.

Solution: The group of rotations of the octahedron is the same as the group of rotations of the cube.
In fact, we can recover the action on the faces of the octahedron from the action on the vertices of
the cube. Using the analysis that we did before for the cube, but considering the action on vertices we
have:

(a) The identity, of type [1, 1, 1, 1, 1, 1, 1, 1].

(b) 8 rotations of period 3 with axis through a pair of vertices. Those are or type [3, 3, 1, 1]

(c) 6 half turns with axis through the midpoints of edges of type [2, 2, 2, 2].

(d) Two rotations of period 4 (one clockwise and its inverse) fixing a pair of faces; this gives us 6
elements of type [4, 4].

(e) One rotation of period 2 for each pair of faces, for a total of 3 elements of type [2, 2, 2, 2].

From here it follows that the cycle index of the permutation group G is

ZG(t1, . . . , t8) =
1

24

(
t81 + 8t21t

2
3 + 6t42 + 6t24 + 3t42

)
Page 5



(i) We know that the solution is given by evaluating ZG(t1, . . . , t8) in (4, . . . , 4). Namely,

ZG(4, . . . , 4) =
1

24

(
48 + 8 · 4242 + 6 · 44 + 6 · 42 + 3 · 44

)
=

69984

24
= 2916

(ii) We need to find the number N of orbits of colouring under the action of both, G the permutation
group induced by the rotations of the octahedron and H the permutation group on the colours.
The permutation group H is isomorphic to Z2 × Z2. More precisely, the group H is

H = {(r)(o)(g)(b), (r o)(g)(b), (r)(o)(g b), (r o)(g b)}

We know that this number is given by

N =
1

|H|
∑
τ∈H

ZG(m1(τ), . . . ,mn(τ))

where mi(τ) =
∑

j|i j · zj(τ) and zj(τ) denotes the number of cycles of length j in τ .

Since all the elements τ of H have only cycles of length 1 or 2, zj(τ) = 0 for every j > 2. It
follows mi(τ) = m1(τ) if i is odd and mi(τ) = m2(τ) if i is even.

We compute m1(τ) and m2(τ) for every τ on the table below.

τ m1(τ) m2(τ)

(r)(o)(g)(b) 4 4

(r o)(g)(b) 2 2 + 2

(r)(o)(g b) 2 2 + 2

(r o)(g b) 0 0 + 2 · 2

The number N is given then by

N =
1

4

(
ZG(4, 4, 4, 4, 4, 4, 4, 4) + 2ZG(2, 4, 2, 4, 2, 4, 2, 4) + ZG(0, 4, 0, 4, 0, 4, 0, 4)

)
, that is

N =
1

4

(
2916 + 2 · 116 + 100

)
= 3132

To keep in mind: The group G of rotations of the cube has 24 elements, some of them fix a pair of
opposite vertices, some of them fix a pair of opposite edges and some of them fix a pair of opposite faces.
The group of roations of the octahedron is isomorphic to G. Moreover, the action of G on the vertices of
one of the two polyhedra is equivalent to the action of G on the faces of the other.
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