lgra z umetno inteligenco

Algoritem minimax

Minimax je splosen algoritem za igre dveh igralcev

» Rabimo metodo, ki da numeri¢no oceno poziciji igre.

Pozitivna ocena pomeni, da je pozicija dobra za umetnega
igralca. Negativna ocena pomeni, da je slaba.

Ocena je priblizek kakovosti pozicije.

» Algoritem minimax raziskuje drevo moZnih potez do globine,
ki mu damo na zacetku.

Algoritem predlaga najbolj$o potezo glede ocen.

Implementacija v aplikaciji TicTacToe

private static final int ZMAGA = 100; // vrednost zmage
private static final int ZGUBA = -ZMAGA; // vrednost izgube
private static final int NEODLOC = O; // vrednost neodlo&ene igre

public class OcenjenaPoteza {

Poteza poteza;
int ocena;

public OcenjenaPoteza (Poteza poteza, int ocena) {
this.poteza = poteza;
this.ocena = ocena;

Polji poteza in ocena sta brez dolocila. To pomeni, da sta dostopni samo od paketa
(package private). Vsi razredi, ki se ti¢ejo inteligence, so v paketi Inteligenca.

Rekursivni algoritem za minimax v Javi

public OcenjenaPoteza minimax(Igra igra, int globina, Igralec jaz) {
OcenjenaPoteza najboljsaPoteza = null;
List<Poteza> moznePoteze = igra.poteze();
for (Poteza p: moznePoteze) {

}

Igra kopijalgre = new Igra(igra);
kopijalgre.odigraj (p);
int ocena;
switch (kopijalgra.stanje()) {
case ZMAGA_O: ocena = (jaz == Igralec.0 ? ZMAGA : ZGUBA); break;
case ZMAGA_X: ocena = (jaz == Igralec.X 7 ZMAGA : ZGUBA); break;
case NEODLOCENO: ocena = NEODLOC; break;
default: // nekdo je na potezi
if (globina == 1) ocena = oceniPozicijo(kopijalgre,jaz);
else ocena = minimax(kopijalgre, globina-1, jaz).ocena;
}
// ali je p z oceno boljsa kot najboljsaPoteza?
if (najboljsaPoteza == null
// odlocimo min ali max, odvisno od igralca, ki je igral p

|| igra.naPotezi()==jaz && ocena > najboljsaPoteza.ocena //max
|| igra.naPotezi()!=jaz && ocena < najboljsaPoteza.ocena) //min

najboljsaPoteza = new OcenjenaPoteza (p, ocena);

return najboljsaPoteza;

Pomembne tocke

> Vrednost parametra globlina mora biti > 1, in ne sme igra
igra biti ze koncana.

> Vrednosti parametrov globlina in igra se spremenita,
medtem ko se izvaja algoritem. Vrednost parametra jaz se ne
spremeni.

» Naredimo novo kopijo igre za vsako moZno potezo p.

» Zelo pomembno je, da so polji plosca in naPotezi razreda
Igra sta dinami¢ni. Zato, ko igramo s kopjo igre
kopijalgre, ne spremenimo originalno igro igra.

Paket inteligenca ima razrede:

» Inteligenca
Abstraktni razred, ki ima abstraktno metodo

Poteza izberiPotezo (Igra igra)

» Minimax

Podrazred razreda Inteligenca. Metoda izberiPotezo je
implementacija algoritma minimax.

» OceniPozicijo
Razred ima stati¢no metodo
int oceniPozicijo(Igra igra, Igralec jaz)

ki oceni trenutno pozicijo igre igra z vidike igralca jaz.

» OcenjenaPozicija

Videli smo Ze ta razred.

Razred Minimax

public class Minimax extends Inteligenca {

private static final int ZMAGA = 100;
private static final int ZGUBA = -ZMAGA;
private static final int NEODLOC = O;

private int globina;

public Minimax (int globina) {
super ("minimax globina " + globina);
this.globina = globina;

@0verride
public Poteza izberiPotezo (Igra igra) {
OcenjenaPoteza najboljsaPoteza =
minimax(igra, this.globina, igra.naPotezi());
return najboljsaPoteza.poteza;

public OcenjenaPoteza minimax(Igra igra,int globina,Igralec jaz) { ... }

V razredu Vodja

public static Inteligenca racunalnikovalnteligenca = new Minimax(3);

public static void igrajRacunalnikovoPotezo() {
Igra zacetkalgra = igra;
SwingWorker<Poteza, Void> worker =
new SwingWorker<Poteza, Void> () {
@0verride
protected Poteza doInBackground() {
Poteza poteza = racunalnikovalnteligenca.izberiPotezo(igra);
try {TimeUnit.SECONDS.sleep(1);} catch (Exception e) {};
return poteza;
}
@0verride
protected void done () {
Poteza poteza = null;
try {poteza = get();} catch (Exception e) {};
if (igra == zacetkalgra) {
igra.odigraj(poteza);
igramo ();

}
};

worker.execute() ;

Konstructor v razredu lgra, ki naredi kopijo igre

Nepravilno:

public Igra(Igra igra) {
this.plosca = igra.plosca;
this.naPotezi = igra.naPotezi;

Pravilno:

public Igra(Igra igra) {
this.plosca = new Polje[N] [N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
this.ploscali] [j] = igra.ploscali] [j];
}
}

this.naPotezi = igra.naPotezij;

Pazite na identiteto objektov!

Primerjajte:

int[] x = {1,2,3};
intl[] y = x;
x[1] = 5;

System.out.println(Arrays.toString(y));

[1, 5, 3]

Igralec i = Igralec.0;
Igralec j i
i = Igralec.X;

System.out.println(j);

15

0

Obrezovanje alfa-beta

Obrezovanje alfa-beta (alpha-beta pruning) je izboljsava algoritma
minimax, ki raziskuje drevo samo kjer je raziskava potrebna.

> « je spodnja meja vrednosti najbolj$e poteze, ko maksimiramo
vrednost.

» [je zgornja meja, ko minimiziramo vrednost.

» Ko je # < «, ni nam treba raziskovati poddrevo kjer smo, ker
najboljSa poteza ne pride do tega poddrevesa.

Algoritem za obrezovanje alfa-beta v Javi (1/2)

public OcenjenaPoteza alphabetaPoteze(Igra igra, int globina,
int alpha, int beta, Igralec jaz) {
int ocena;
// Ce sem raZunalnik, maksimiramo oceno z zaZetno oceno ZGUBA
// Ce sem pa &lovek, minimiziramo oceno z zaZetno oceno ZMAGA
if (igra.naPotezi() == jaz) {ocena = ZGUBA;} else {ocena = ZMAGA;}
List<Poteza> moznePoteze = igra.poteze();
Poteza kandidat = moznePoteze.get(0); // Ne more biti null.
for (Poteza p: moznePoteze) {
Igra kopijalgre = new Igra(igra);
kopijalgre.odigraj (p);
int ocenap;
switch (kopijalgre.stanje()) {
case ZMAGA_O: ocenap = (jaz == Igralec.0 ? ZMAGA : ZGUBA); break;
case ZMAGA_X: ocenap = (jaz == Igralec.X 7 ZMAGA : ZGUBA); break;
case NEODLOCENO: ocenap = NEODLOC; break;
default: // Nekdo je na potezi
if (globina == 1) ocenap = oceniPozicijo(kopijalgre, jaz);
else ocenap = alphabetaPoteze
(kopijalgre, globina-1, alpha, beta, jaz).ocena;

Algoritem za obrezovanje alfa-beta v Javi (2/2)

if (igra.naPotezi() == jaz) { // Maksimiramo oceno
if (ocenap > ocena) { // mora biti > namesto >=
ocena = ocenap;
kandidat = p;
alpha = Math.max(alpha,ocena);
}
} else { // igra.naPotezi() != jaz, torej minimiziramo oceno
if (ocenap < ocena) { // mora biti < namesto <=
ocena = ocenap;
kandidat = p;
beta = Math.min(beta, ocena);
}
}
if (alpha >= beta) // Ostale poteze ne pomagajo
return new OcenjenaPoteza (kandidat, ocena);
}

return new OcenjenaPoteza (kandidat, ocena);

