
Igra z umetno inteligenco

Algoritem minimax

Minimax je splošen algoritem za igre dveh igralcev

I Rabimo metodo, ki da numerično oceno poziciji igre.

Pozitivna ocena pomeni, da je pozicija dobra za umetnega
igralca. Negativna ocena pomeni, da je slaba.

Ocena je približek kakovosti pozicije.

I Algoritem minimax raziskuje drevo možnih potez do globine,
ki mu damo na začetku.

Algoritem predlaga najbolǰso potezo glede ocen.

Implementacija v aplikaciji TicTacToe

private static final int ZMAGA = 100; // vrednost zmage

private static final int ZGUBA = -ZMAGA; // vrednost izgube

private static final int NEODLOC = 0; // vrednost neodločene igre

public class OcenjenaPoteza {

Poteza poteza;

int ocena;

public OcenjenaPoteza (Poteza poteza, int ocena) {

this.poteza = poteza;

this.ocena = ocena;

}

}

Polji poteza in ocena sta brez določila. To pomeni, da sta dostopni samo od paketa
(package private). Vsi razredi, ki se tičejo inteligence, so v paketi Inteligenca.

Rekursivni algoritem za minimax v Javi

public OcenjenaPoteza minimax(Igra igra, int globina, Igralec jaz) {

OcenjenaPoteza najboljsaPoteza = null;

List<Poteza> moznePoteze = igra.poteze();

for (Poteza p: moznePoteze) {

Igra kopijaIgre = new Igra(igra);

kopijaIgre.odigraj (p);

int ocena;

switch (kopijaIgra.stanje()) {

case ZMAGA_O: ocena = (jaz == Igralec.O ? ZMAGA : ZGUBA); break;

case ZMAGA_X: ocena = (jaz == Igralec.X ? ZMAGA : ZGUBA); break;

case NEODLOCENO: ocena = NEODLOC; break;

default: // nekdo je na potezi

if (globina == 1) ocena = oceniPozicijo(kopijaIgre,jaz);

else ocena = minimax(kopijaIgre, globina-1, jaz).ocena;

}

// ali je p z oceno boljsa kot najboljsaPoteza?

if (najboljsaPoteza == null

// odlocimo min ali max, odvisno od igralca, ki je igral p

|| igra.naPotezi()==jaz && ocena > najboljsaPoteza.ocena //max

|| igra.naPotezi()!=jaz && ocena < najboljsaPoteza.ocena) //min

najboljsaPoteza = new OcenjenaPoteza (p, ocena);

}

return najboljsaPoteza;

}

Pomembne točke

I Vrednost parametra globlina mora biti ≥ 1, in ne sme igra
igra biti že končana.

I Vrednosti parametrov globlina in igra se spremenita,
medtem ko se izvaja algoritem. Vrednost parametra jaz se ne
spremeni.

I Naredimo novo kopijo igre za vsako možno potezo p.

I Zelo pomembno je, da so polji plosca in naPotezi razreda
Igra sta dinamični. Zato, ko igramo s kopjo igre
kopijaIgre, ne spremenimo originalno igro igra.

Paket inteligenca ima razrede:

I Inteligenca

Abstraktni razred, ki ima abstraktno metodo

Poteza izberiPotezo (Igra igra)

I Minimax

Podrazred razreda Inteligenca. Metoda izberiPotezo je
implementacija algoritma minimax.

I OceniPozicijo

Razred ima statično metodo

int oceniPozicijo(Igra igra, Igralec jaz)

ki oceni trenutno pozicijo igre igra z vidike igralca jaz.

I OcenjenaPozicija

Videli smo že ta razred.

Razred Minimax

public class Minimax extends Inteligenca {

private static final int ZMAGA = 100;

private static final int ZGUBA = -ZMAGA;

private static final int NEODLOC = 0;

private int globina;

public Minimax (int globina) {

super("minimax globina " + globina);

this.globina = globina;

}

@Override

public Poteza izberiPotezo (Igra igra) {

OcenjenaPoteza najboljsaPoteza =

minimax(igra, this.globina, igra.naPotezi());

return najboljsaPoteza.poteza;

}

public OcenjenaPoteza minimax(Igra igra,int globina,Igralec jaz) { ... }

}

V razredu Vodja

public static Inteligenca racunalnikovaInteligenca = new Minimax(3);

public static void igrajRacunalnikovoPotezo() {

Igra zacetkaIgra = igra;

SwingWorker<Poteza, Void> worker =

new SwingWorker<Poteza, Void> () {

@Override

protected Poteza doInBackground() {
Poteza poteza = racunalnikovaInteligenca.izberiPotezo(igra);
try {TimeUnit.SECONDS.sleep(1);} catch (Exception e) {};

return poteza;

}

@Override

protected void done () {

Poteza poteza = null;

try {poteza = get();} catch (Exception e) {};

if (igra == zacetkaIgra) {

igra.odigraj(poteza);

igramo ();

}

}

};

worker.execute();

}

Konstructor v razredu Igra, ki naredi kopijo igre

Nepravilno:

public Igra(Igra igra) {

this.plosca = igra.plosca;

this.naPotezi = igra.naPotezi;

}

Pravilno:

public Igra(Igra igra) {

this.plosca = new Polje[N][N];

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

this.plosca[i][j] = igra.plosca[i][j];

}

}

this.naPotezi = igra.naPotezi;

}

Pazite na identiteto objektov!

Primerjajte:

int[] x = {1,2,3};

int[] y = x;

x[1] = 5;

System.out.println(Arrays.toString(y));

[1, 5, 3]

Igralec i = Igralec.O;

Igralec j = i;

i = Igralec.X;

System.out.println(j);

O

Obrezovanje alfa-beta

Obrezovanje alfa-beta (alpha-beta pruning) je izbolǰsava algoritma
minimax, ki raziskuje drevo samo kjer je raziskava potrebna.

I α je spodnja meja vrednosti najbolǰse poteze, ko maksimiramo
vrednost.

I β je zgornja meja, ko minimiziramo vrednost.

I Ko je β ≤ α, ni nam treba raziskovati poddrevo kjer smo, ker
najbolǰsa poteza ne pride do tega poddrevesa.

Algoritem za obrezovanje alfa-beta v Javi (1/2)

public OcenjenaPoteza alphabetaPoteze(Igra igra, int globina,

int alpha, int beta, Igralec jaz) {

int ocena;

// Če sem računalnik, maksimiramo oceno z začetno oceno ZGUBA

// Če sem pa človek, minimiziramo oceno z začetno oceno ZMAGA

if (igra.naPotezi() == jaz) {ocena = ZGUBA;} else {ocena = ZMAGA;}

List<Poteza> moznePoteze = igra.poteze();

Poteza kandidat = moznePoteze.get(0); // Ne more biti null.

for (Poteza p: moznePoteze) {

Igra kopijaIgre = new Igra(igra);

kopijaIgre.odigraj (p);

int ocenap;

switch (kopijaIgre.stanje()) {

case ZMAGA_O: ocenap = (jaz == Igralec.O ? ZMAGA : ZGUBA); break;

case ZMAGA_X: ocenap = (jaz == Igralec.X ? ZMAGA : ZGUBA); break;

case NEODLOCENO: ocenap = NEODLOC; break;

default: // Nekdo je na potezi

if (globina == 1) ocenap = oceniPozicijo(kopijaIgre, jaz);

else ocenap = alphabetaPoteze

(kopijaIgre, globina-1, alpha, beta, jaz).ocena;

}

...

Algoritem za obrezovanje alfa-beta v Javi (2/2)

...

if (igra.naPotezi() == jaz) { // Maksimiramo oceno

if (ocenap > ocena) { // mora biti > namesto >=

ocena = ocenap;

kandidat = p;

alpha = Math.max(alpha,ocena);

}

} else { // igra.naPotezi() != jaz, torej minimiziramo oceno

if (ocenap < ocena) { // mora biti < namesto <=

ocena = ocenap;

kandidat = p;

beta = Math.min(beta, ocena);

}

}

if (alpha >= beta) // Ostale poteze ne pomagajo

return new OcenjenaPoteza (kandidat, ocena);

}

return new OcenjenaPoteza (kandidat, ocena);

}

