

DISCRETE MATHEMATICS 2

ANTONIO MONTERO

Office 5.17
FMF - University of Ljubljana

4. Symmetries of Graphs

Exercises.

- 4.1 Prove that there exists a graph on n vertices, all of them of valency k if and only if $n \ge k + 1$ and nk is even.
- 4.2 Find the automorphism group of the cycle C_n .
- 4.3 Consider the graph Γ whose vertices are the sets of size 2 of $\{1, 2, 3, 4, 5\}$ and so that $A \sim B$ if and only if $A \cap B = \emptyset$.
 - (a) Prove that Γ is isomorphic to the Petersen graph.
 - (b) Find the automorphism group of Γ .
- 4.4 Let H and K two subgroups of a group G. Assume that
 - $H \triangleleft G$ and $K \triangleleft G$,
 - $G = \langle H, K \rangle$,
 - $H \cap K = \{1\}.$

Prove that $G \cong H \times K$.

- 4.5 Let H and K two groups and $\theta: K \to \operatorname{Aut}(H)$ and for $k \in K$ denote by θ_k the mapping $\theta(k): H \to H$. Consider the set $H \times K$ and the operation $*_{\theta}$ given by $(h_1, k_1) *_{\theta} (h_2, k_2) = (h_1 \theta_{k_1}(h_2), k_1 k_2)$. Prove that the pair $(H \times K, *_{\theta})$ is a group. This group is called the (external) semidirect product of H and K with respect to θ and is often denoted $H \rtimes_{\theta} K$.
- 4.6 Let H and K two subgroups of a group G. Assume that
 - $H \triangleleft G$,
 - $G = \langle H, K \rangle$,
 - $H \cap K = \{1\}.$

Prove that $G \cong H \rtimes_{\theta} K$, where $\theta_k(h) = khk^{-1}$. This is often called the *(internal) semidirect product of H and K* and it is usually denoted by $H \rtimes K$.

- 4.7 Prove that a complete bipartite graph $\mathcal{K}_{m,n}$ is vertex transitive if and only if m = n.
- 4.8 Find the automorphism group of the complete bipartite graph $\mathcal{K}_{m,n}$. Hint: consider the cases $n \neq m$ and n = m separately.
- 4.9 Let Q_n denote the *n*-cube graph. Prove that

$$\operatorname{Aut}(Q_n) \cong \mathbb{Z}_2^n \rtimes_{\theta} S_n$$

where $\theta(\sigma): \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ is defined by

$$\theta(\sigma): (v_1, \dots, v_n) = (v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(n)}),$$

for every vector $(v_1, \ldots, v_n) \in \mathbb{Z}_2^n$. That is, θ is the natural action of S_n permuting the coordinates of \mathbb{Z}_2^n .

4.10 Assume that a graph Γ has m_1 connected components isomorphic to Δ_1 , m_2 connected components isomorphic to Δ_2 , etc. Such that $\Delta_i \cong \Delta_j$ if and only if i = j. Prove that the automorphism group of Γ is isomorphic to

$$(\operatorname{Aut}(\Delta_1)^{m_1} \times \cdots \times \operatorname{Aut}(\Delta_\ell)^{m_\ell}) \rtimes (S_{m_1} \times \cdots \times S_{m_\ell}).$$

4.11 The cartesian product of two graphs Γ and Δ is denoted by $\Gamma \Box \Delta$ and defined by $V(\Gamma \Box \Delta) = V(\Gamma) \times V(\Delta)$ and the edges of $\Gamma \Box \Delta$ are given by

$$(u_1, v_2) \sim (u_2, v_2) \Leftrightarrow \begin{cases} u_1 = u_2 \text{ and } v_1 \sim v_2 & \text{or} \\ v_1 = v_2 \text{ and } u_1 \sim u_2 \end{cases}$$

- (i) Prove that if Γ and Δ are vertex transitive, then so it is $\Gamma \square \Delta$.
- (ii) Prove that $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(\Delta) \leqslant \operatorname{Aut}(\Gamma \square \Delta)$.
- (iii) Give an example of two graphs Γ and Δ such that $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(\Delta)$ is a proper subgroup of $\operatorname{Aut}(\Gamma \square \Delta)$.
- 4.12 The lexicographic product of two graphs Γ and Δ is denoted by $\Gamma[\Delta]$ and defined by $V(\Gamma \Box \Delta) = V(\Gamma) \times V(\Delta)$ and the edges of $\Gamma \Box \Delta$ are given by

$$(u_1, v_2) \sim (u_2, v_2) \Leftrightarrow \begin{cases} u_1 \sim u_2 \text{ in } \Gamma & \text{or} \\ u_1 = u_2 \text{ and } v_1 \sim v_2 \text{ in } \Delta \end{cases}$$

Assume that Γ has m vertices. Observe that the action of $\operatorname{Aut}(\Gamma)$ on $V(\Gamma)$ induces an action θ of $\operatorname{Aut}(\Gamma)$ on $(\operatorname{Aut}(\Delta))^m$.

- (i) Prove that if Γ and Δ are vertex transitive, then so it is $\Gamma[\Delta]$.
- (ii) Prove that the group

$$\operatorname{Aut}(\Delta)^m \rtimes_{\theta} \operatorname{Aut}(\Gamma)$$

is a subgroup of $Aut(\Gamma[\Delta])$.

- (iii) Give an example of two graphs Γ and Δ such that $\operatorname{Aut}(\Gamma)^m \rtimes_{\theta} \operatorname{Aut}(\Delta)$ is a proper subgroup of $\operatorname{Aut}(\Gamma[\Delta])$.
- 4.13 Prove that a graph is a Cayley graph if and only if its complement is a Cayley graph.
- 4.14 Prove that if p is an odd prime then there are only two groups of order 2p, namely \mathbb{Z}_{2p} and D_p . Hint: prove that $\mathbb{Z}_{2p} \cong \mathbb{Z}_p \times \mathbb{Z}_2$ and $D_p \cong \mathbb{Z}_p \rtimes \mathbb{Z}_2$. Use this to prove that the Petersen graph is not a Cayley graph.
- 4.15 Prove that there is no vertex-transitive graph of order at most 9 which is not a Cayley graph.
- 4.16 Prove that the cube graph is isomorphic to some generalised orbital graph of the symmetric group S_4 .