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4. Symmetries of Graphs

The notes on this section are heavily based on a set of course notes written
by Prof. Primoº �parl.

We shall assume some standard notation. A graph Γ consists of a set V (Γ)
of vertices and an edge-set E(Γ) of (unordered) pairs of vertices. For two
vertices u, v ∈ V (Γ), we often denote u ∼ v instead of {u, v} ∈ E(Γ). A path
is a sequence of vertices u0, . . . , u` such that ui−1 ∼ ui for all i ∈ {1, . . . , `}.
A path starting on u and �nishing on v is a uv-path. A graph is connected if
for every two vertices u, v there is a uv-path. The neighbourhood of a vertex
v in Γ is the set

N(v) = {u ∈ V (Γ) : u ∼ v} ,
and we say that v is of valency or degree d if |N(v)| = d.

We shall also assume some familiarity with certain standard families of
graphs: We denote by Km the complete graph on n vertices. The graph
Km,n is the complete bipartite graph with m vertices on one part and n
vertices on the other. The cycle with n vertices is denoted Cn.

For a graph Γ we denote by Aut(Γ) it automorphism group, that is

Aut(Γ) =
{
α ∈ SV (Γ) : v ∼ u if and only if αu ∼ αv

}
.

If Γ is a graph and G 6 Aut(Γ) we say that Γ is G-vertex-transitive (G-
VT) and G-edge-transitive (G-ET) if G acts transitively on V (Γ) and E(Γ),
respectivelly. If G = Aut(Γ) we just say that Γ is vertex-transitive (VT) or
edge-transitive (ET).

In this notes we will focus mostly on vertex-transitive graphs but other
classes of symmetry conditions are also interested.

A fairly obvious observation is the following.
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(a) The path with 3 ver-

tices (b) The Folkman graph (c) The 3-cube Q3

Figure 1

Remark 4.1. If Γ is a vertex-transitive graph, then every vertex v has the
same valency. Such graphs are called regular and if the valency is k they are
often called k-regular.

Proof. If α is an automorphism mapping v to u, then α�N(v) : N(v)→ N(u)

is a bijection that shows that |N(v)| = |N(u)|. �

The previous result, although obvious impose an importat restriction on
vertex transitive graphs. It is not hard to �nd a small example of a non-
vertex transitive graph. For example the path on 3 vertices (see Figure 1a) is
not vertex transitive because it has two vertices of valency 1 and one vertex
of valency 2. However, �nding a small example of a regular graph that is not
vertex-transitive is not trivial. The smallest example is the Folkman graph
(see Figure 1b), wich is a 4-regular graph with 20 vertices. This graph has
two orbits on vertices. It is not hard to see that the blue vertices and the
black vertices are in di�erent orbits: every blue vetex has a (blue) vertex
that have the exact same neighbourhood. This is not the case with the black
vertices, hence they cannot be on the same orbit. It is also easy to see that
any two vertices belong to the same orbit. A slightly more interesting (but
not hard) task is to show that all the black vertices are in the same orbit.

There are in�nite families of vertex transitive graphs: the complete graph
Kn on n vertices, the cycle Cn on n vertices. The cube Q3 (Figure 1c) is also
vertex transitive.

An important family of vertex transitive graphs are the so called Cay-
ley garphs. They were introduced as early as 1878 by Cayley as a graphic
representation of a group. In fact, they were originally called color group.

De�nition 4.2. Given a group G and a set S ⊆ G such that

• 1G 6∈ S,
• S−1 :=

{
s−1 : s ∈ S

}
= S. The Cayley graph (of G with respect to

S) Cay(G,S) is the graph whose vertex set is G and such that x ∼ y
if and only if y−1x ∈ S.



DISCRETE MATHEMATICS 2 3

Observe that the fact that 1G 6∈ S implies that Cay(G,S) has no loops and
since S = S−1 then y−1x ∈ S if and only x−1y ∈ S. Therefore, Cay(G,S) is
actually a well-de�ned graph.

Example 4.3. There are natural examples of Cayley graphs:

(a) The complete graph is a Cayley graph for every group of n elements.
More precisely, Kn ∼= Cay(G,G \ {1G}).

(b) The cycle Cn is isomorphic to Cay(Zn, {1,−1}) (recall that the trivial
element in Zn is 0).

(c) The cube Q3 is Cay(Z3
2, {e1, e2, e3}), where e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (0, 0, 1).
(d) We can de�ne the n-cubeQn as the Cayley graph Cay(Zn2 , {e1, . . . , en})

where {e1, · · · , en} is the standard basis for the vector space Zn2 .

Proposition 4.4. Every vertex in Cay(G,S) has valency |S| and the graph
Cay(G,S) is connected if and only if 〈S〉 = G.

Proof. For a given vertex x ∈ G, the neighbours of x are precisely the ele-
ments of the form xs for s ∈ S. It follows that x has exactly |S| neighbours.

Assume that Cay(G,S) is conected and let x be any element of G. Since
G is connected there is a path P from the vertex 1G to x. Let 1G =
x0, x1, . . . , x` = x the sequence of vertices induced by P . Observe that
since 1G ∼ x1, then x1 ∈ S, say x1 = s1. Similartly, x2 = x1s2 = s1s2 for
some s2 ∈ S. In general, if 0 6 i 6 ` then xi = xi−1si for some si ∈ S. It
follows that x = x` = s1 · · · s` ∈ S; hence 〈S〉 = G.

The other implication is similar. If G = 〈S〉, then every vertex x can be
written as a product s1 · · · s` of elements in S. This induces a path from
1G := x0 to x := x` with vertex sequence x0, . . . , x` by de�ning xi = xi−1si.
This implies that Cay(G,S) is connected. �

Now we turn our attention to symmetry propeties of Cayley graphs.

Proposition 4.5. The action of G on itself by left multiplication induces an
action of G on Cay(G,S) by automorphism. Since this action is transitive,
every Cayley graph is vertex transitive.

Proof. The left action of and element g ∈ G is given g : x 7→ gx for x ∈
G. This induces a permutation of G, i.e. a permutation of the vertices
of Cay(G,S). We only need to show that this permutation maps edges to
edges:

x ∼ y ⇐⇒ y−1x ∈ S
⇐⇒ y−1g−1gx ∈ S
⇐⇒ (gy)−1(gx) ∈ S
⇐⇒ gx ∼ gy.

�
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The previous proposition shows that every Cayley graph is a vertex tran-
sitive graph. The converse is not true (see Exercises 4.3 and 4.14). In fact,
the Petersen graph is the smallest example of a non-Cayley vertex-transitive
graph.

Observe that the action of G on itself is not only transitive, but free,
meaning that the only group element that �xes a point is 1G. This implies
that given any two vertices x, y in Cay(G,S), there exists exactly one auto-
morphism in G mapping x to y, namely, the automorphism induced by the
group element yx−1. It turns out that this property characterises Cayley
graphs, at it is shown in the following theorem. This result is classical one
on the theory of symmetries of graphs and it was �rst proved by G. Sabidussi
in 1958.

Theorem 4.6 (Sabidussi, 1958). A graph Γ is a Cayley graph if and only if
its automorphism group has a subgroup G acting transitive and freely on the
set of vertices of Γ.

Proof. One implication was previously discussed. If Γ = Cay(G,S), then G
acts free and transitively.

Assume that for a graph Γ there exists a group G 6 Aut(Γ) acting free
and transitively on the vertices of Γ. Pick a �xed vertex v0 ∈ V (Γ). Con-
sider the mapping ϕ : x 7→ gx from the V (Γ) to G where gx is the unique
element of G that maps the vertex v0 to x. Observe that ϕ(v0) = 1G. Let
u1, . . . , uk be the neighbours of v0 in Γ. Let S = {gu1 , . . . , guk} and con-
sider the grap Cay(G,S). The function ϕ is a bijection between V (Γ) and
G = V (Cay(G,S)); let us show that it is a graph isomophism.

Let x and y be two vertices in Γ such that x ∼ y. We need to show that
ϕ(x) = gx ∼ gy = ϕ(y). First, observe that the graph automorphism g−1

y

satis�es
g−1
y ({x, y}) =

{
g−1
y (x), g−1

y (y)
}

=
{
g−1
y (x), v0

}
,

which implies that g−1
y (x) = ui for some i ∈ {1, . . . , k}.

Now consider the automorphism g−1
y gx

g−1
y gx(v0) = g−1

y (x) = ui.

It follows that g−1
y gx = gui ∈ S, that is gx ∼ gy in Cay(G,S). This proves

that ϕ is a graph isomorphism. �

Proposition 4.7. Let Γ = Cay(G,S) be a Cayley graph of an abelian group
G. If G is not an elementary abelian 2-group, that is, isomorphic to the
direct product of many copies of Z2, then G is a proper subgroup of the
automorphism group Aut(Γ). Moreover, if the valence of Γ is at least 3,
then the girth (the length smallest cycle of Γ) is at most 4.

Proof. Consider the mapping α : G → G given ty g 7→ g−1. Since G is
abelian we have that

g ∼ h ⇐⇒ h1g ∈ S ⇐⇒ gh−1 ∈ S ⇐⇒ g−1 ∼ h−1 ⇐⇒ α(g) ∼ α(h).
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Figure 2. The Petersen graph

So clearly α ∈ Aut(Γ). The permutation α is a non-trivial element in Aut(Γ)
(since G is not elementary abelian 2-group) that �xes 1G, hence cannot be
induced by an element of G. If |S| > 3 we can pick two elements a, b ∈ S
such that a 6∈ {b−1, b}. Then the path (1G, a, ab, b) is a 4-cycle in Γ. �

The Petersen graph (see Figure 2) is a vertex transitive graph that is
not Cayley (see Exercise 4.14). In fact it is the smallest non-Cayley vertex-
transitive graph.

The problem of determining those numbers n for which there exists a
vertex-transitive graph of order n which is not a Cayley graph was posed
by Maru²i£ in 1983. It has proved to be a highly non-trivial problem and a
complete solution is, to the date, still unknown. The following proposition
is a very basic basic result on the lines of this problem.

Proposition 4.8. If Γ is a vertex-transitive graph on p vertices for prime
number p, then Γ is a Cayley graph.

Proof. Since Γ is vertex-transitive, then the Orbit-Stabiliser Theorem implies
that the size p divides the size of Aut(Γ). By Cauchy Theorem, there exists
an element α ∈ Aut(Γ) of order p. In particular α is not trivial and if v is a
vertex moved by α, then | 〈α〉x| divides p, hence | 〈α〉x| = p. It follows that
the group 〈α〉 acts free and transitive on the vertices of Γ an by Theorem 4.6,
Γ is a Cayley graph. �

Cayley graphs o�er a way to build vertex transitive graphs, but unfortu-
nately not every vertex transitive graph is a Cayley graph. We now explore
a construction that generalises that of Cayley graphs and that will give us a
way to describe every vertex transitive graph. Let us explore basic properties
of vertex transitive graphs that will inspire the construction.

Proposition 4.9. Let Γ be a vertex transitive graph. Let v denote a �xed
graph and denote by H the stabiliser of v under the automorphism group of
Γ. Denote by S the set

{g ∈ Aut(Γ) : g(v) ∈ N(v)} .
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Then:

(a) Every vertex u of Γ can be identi�ed with the coset gH with g ∈
Aut(Γ) an automorphism mapping u to v.

(b) S =
⋃
s∈S HsH = {h1sh2 : h1, h2 ∈ H and s ∈ S} .

(c) S is closed under inverses, that is s ∈ S if and only if s−1 ∈ S and
H ∩ S = ∅.

(d) g1v is adjacent to g2v in Γ if and only if g−1
2 g1 ∈ S.

(e) Γ is connected if and only if 〈H,S〉 = G.

Proof.

(a) It follows directly form the fact that Γ is vertex-transitive: the action
of Aut(Γ) on vertices is equivalent to the action of Aut(Γ) on the left
cosets of H.

(b) Clearly S ⊆
⋃
s∈S HsH. Take h1, h2 ∈ H and s ∈ S. then h1sh2v =

h1sv = h1u for some u ∈ N(v). Since h1 ∈ H, then h1 permutes
the elements of N(v) then h1u ∈ N(v) hence h1sh2v ∈ N(v), which
implies h1sh2 ∈ S.

(c) Take s ∈ S, meaning sv ∈ N(v). Then {v, sv} is an edge of Γ. Since
s−1 ∈ Aut(Γ), then

s−1 {v, sv} =
{
s−1v, v

}
is an edge in Γ, which implies that s−1v ∈ N(v), or equivalently,
s−1 ∈ S. Every element in h ∈ H �xes v, in particular hv 6∈ N(v),
hence h 6∈ S.

(d) {g1v, g2v} is an edge if and only if
{
g−1

2 g1v, v
}
is a edge, and this

occurs if and only if g−1
2 g1 ∈ S.

(e) This follows the same ideas as the proof of Proposition 4.4.
�

Proposition above inspires a construction that we shall call Sabidussi
coset graphs or simply cosset graphs. This construction was introduced by
Sabidussi in 1964. We should remark that the term coset graph is some-
times used to name Shereier coset graphs which are a di�erent construction.
Sabidussi coset graphs are also called Generalised orbital graphs.

De�nition 4.10. Given a group G, a subgroup H and a set S ⊆ G that
satisfy:

• S =
⋃
s∈S HsH,

• S−1 = S,
• S ∩H = ∅.

Then the Sabidussi coset graph SabCos(G,H, S) is the graph whose vertex
set are the left cosets of H in G and whose edges are given by

xH ∼ yH ⇐⇒ y−1x ∈ S.

First observe that this relation actually de�nes a graph. Assume that
x1, x2, y1, y2 are elements in G such that x1H = x2H, y1H = y2H and



DISCRETE MATHEMATICS 2 7

y−1
1 x1 ∈ S. Since x1H = x2H, then x1h1 = x2 for some h1 ∈ H. Similarly
y1h2 = y2 for some h2 ∈ H. This implies that

y−1
2 x2 = (y1h2)−1(x1h1) = h−1

2 y−1
2 x2h1 ∈ S,

where the last equality follows from the facts that y−1
1 x1 ∈ S and S is a

union of double cosets of H. This shows that the de�ning relations for the
edges of SabCos(G,H, S) is well de�ned on cosets. The relation is symmetric
because S = S−1 and the graph has no loops because H ∩ S.

Proposition 4.11. Let G be a group, H 6 G and S ⊆ G satisfying the
condition in De�nition 4.10. Let Γ = SabCos(G,H, S). Then the action of
G by left multiplication on left cosets of H induces an action of G on Γ by
automorphisms. The group G acts transitively on vertices.

.

Proof. The action of left multiplication on left cosets of H is transitive. We
just need to prove that every element in G actually induces automorphisms
of Γ. Observe that

xH ∼ yH ⇐⇒ y−1x ∈ S ⇐⇒ y−1g−1gx ∈ G ⇐⇒ gyH ∼ gxH.

This prove that G actually induces automorphisms of Γ. �

We have prove that every coset graph is vertex-transitive. The converse is
also true and therefore we have a characterisation of vertex transitive graphs
in terms of groups.

Theorem 4.12. Every vertex transitive graph Γ is isomorphic to a Sabidussi
coset graph.

Proof. We actually have mostly proved this theorem. Let G = Aut(Γ), v a
vertex of Γ and H = StabG(v). De�ne S = {s ∈ G : sv ∈ N(v)}. By part (a)
of Proposition 4.8 the function ϕ : V (Γ) → G/H given by ϕ(u) Moreover,
part (d) of the same result implies that ϕ is a graph isomorphism. �

We �nish this section with an example in Figure 3 we we show how to build
the Petersen graph as a coset graph. The group G is the alternating group
A5 and the group H = 〈(1 2 3), (1 2)(4 5)〉. A simple calculation shows that
S = (2 4)(3 5)H ∪ (1 4)(2 5)H ∪ (1 4)(3 5)H. In the �gure we only wrote
the representatives of the coset of each vertex.

The example above show that we do not need to use the full automorphism
group of the vertex transitive graph to build as a coset graph. The construc-
tion works perfectly if we use any vertex-transitive subgroup of Aut(Γ). For
the Petersen graph, the automorphism group is S5, while we build it using
the alternating group.
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(1)

(1 4)(2 5)

(1 2)(3 5)

(1 3)(2 5)

(1 3)(2 4)

(1 4)(2 3)

(2 4)(3 5)

(1 4)(3 5)

(1 5)(2 3)

(1 2)(3 4)

Figure 3. The Petersen graph as a coset graph

Exercises.

4.1 Prove that there exists a graph on n vertices, all of them of valency
k if and only if n > k + 1 and nk is even.

4.2 Find the automorphism group of the cycle Cn.
4.3 Consider the graph Γ whose vertices are the sets of size 2 of {1, 2, 3, 4, 5}

and so that A ∼ B if and only if A ∩B = ∅.
(a) Prove that Γ is isomorphic to the Petersen graph.
(b) Find the automorphism group of Γ.

4.4 Let H and K two subgroups of a group G. Assume that
• H / G and K / G,
• G = 〈H,K〉,
• H ∩K = {1}.

Prove that G ∼= H ×K.
4.5 Let H and K two groups and θ : K → Aut(H) and for k ∈ K

denote by θk the mapping θ(k) : H → H. Consider the set H ×K
and the operation ∗θ given by (h1, k1)∗θ (h2, k2) = (h1θk1(h2), k1k2).
Prove that the pair (H ×K, ∗θ) is a group. This group is called the
(external) semidirect product of H and K with respect to θ and is
often denoted H oθ K.

4.6 Let H and K two subgroups of a group G. Assume that
• H / G,
• G = 〈H,K〉,
• H ∩K = {1}.

Prove that G ∼= H oθ K, where θk(h) = khk−1. This is often called
the (internal) semidirect product of H and K and it is usually de-
noted by H oK.

4.7 Prove that a complete bipartite graph Km,n is vertex transitive if and
only if m = n.
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4.8 Find the automorphism group of the complete bipartite graph Km,n.
Hint: consider the cases n 6= m and n = m separately.

4.9 Let Qn denote the n-cube graph. Prove that

Aut(Qn) ∼= Zn2 oθ Sn,

where θ(σ) : Zn2 → Zn2 is de�ned by

θ(σ) : (v1, . . . , vn) = (vσ−1(1), . . . , vσ−1(n)),

for every vector (v1, . . . , vn) ∈ Zn2 . That is, θ is the natural action of
Sn permuting the coordinates of Zn2 .

4.10 Assume that a graph Γ has m1 connected components isomorphic
to ∆1, m2 connected components isomorphic to ∆2, etc. Such that
∆i
∼= ∆j if and only if i = j. Prove that the automorphism group of

Γ is isomorphic to

(Aut(∆1)m1 × · · · ×Aut(∆`)
m`) o (Sm1 × · · · × Sm`

).

4.11 The cartesian product of two graphs Γ and ∆ is denoted by Γ�∆
and de�ned by V (Γ�∆) = V (Γ)× V (∆) and the edges of Γ�∆ are
given by

(u1, v2) ∼ (u2, v2)⇔

{
u1 = u2 and v1 ∼ v2 or
v1 = v2 and u1 ∼ u2

(i) Prove that if Γ and ∆ are vertex transitive, then so it is Γ�∆.
(ii) Prove that Aut(Γ)×Aut(∆) 6 Aut(Γ�∆).
(iii) Give an example of two graphs Γ and ∆ such that Aut(Γ) ×

Aut(∆) is a proper subgroup of Aut(Γ�∆).
4.12 The lexicographic product of two graphs Γ and ∆ is denoted by Γ[∆]

and de�ned by V (Γ�∆) = V (Γ)× V (∆) and the edges of Γ�∆ are
given by

(u1, v2) ∼ (u2, v2)⇔

{
u1 ∼ u2 in Γ or
u1 = u2 and v1 ∼ v2 in ∆

Assume that Γ has m vertices. Observe that the action of Aut(Γ) on
V (Γ) induces an action θ of Aut(Γ) on (Aut(∆))m.
(i) Prove that if Γ and ∆ are vertex transitive, then so it is Γ[∆].
(ii) Prove that the group

Aut(∆)m oθ Aut(Γ)

is a subgroup of Aut(Γ[∆]).
(iii) Give an example of two graphs Γ and ∆ such that Aut(Γ)m oθ

Aut(∆) is a proper subgroup of Aut(Γ[∆]).
4.13 Prove that a graph is a Cayley graph if and only if its complement

is a Cayley graph.
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4.14 Prove that if p is an odd prime then there are only two groups of
order 2p, namely Z2p and Dp. Hint: prove that Z2p

∼= Zp × Z2 and
Dp
∼= Zp o Z2. Use this to prove that the Petersen graph is not a

Cayley graph.
4.15 Prove that there is no vertex-transitive graph of order at most 9

which is not a Cayley graph.
4.16 Prove that the cube graph is isomorphic to some generalised orbital

graph of the symmetric group S4.
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