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4. SYMMETRIES OF GRAPHS

The notes on this section are heavily based on a set of course notes written
by Prof. Primoz gparl.

We shall assume some standard notation. A graph I" consists of a set V(I)
of vertices and an edge-set E(I') of (unordered) pairs of vertices. For two
vertices u,v € V(I'), we often denote u ~ v instead of {u,v} € E(T'). A path
is a sequence of vertices uy, ..., uy such that u;—1 ~ u; for all i € {1,...,¢}.
A path starting on u and finishing on v is a uv-path. A graph is connected if
for every two vertices u, v there is a uv-path. The neighbourhood of a vertex
v in I is the set

Nw)={ueV(T):u~v},
and we say that v is of valency or degree d if |N(v)| = d.

We shall also assume some familiarity with certain standard families of
graphs: We denote by IC,,, the complete graph on n vertices. The graph
Kmn is the complete bipartite graph with m vertices on one part and n
vertices on the other. The cycle with n vertices is denoted C,.

For a graph I we denote by Aut(I") it automorphism group, that is

Aut(T) = {a € Sy(r) : v ~ uif and only if au ~ av}.

If T is a graph and G < Aut(I") we say that I' is G-vertez-transitive (G-
VT) and G-edge-transitive (G-ET) if G acts transitively on V(I') and E(T'),
respectivelly. If G = Aut(T") we just say that I' is vertez-transitive (VT) or
edge-transitive (ET).

In this notes we will focus mostly on vertex-transitive graphs but other
classes of symmetry conditions are also interested.

A fairly obvious observation is the following.
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Remark 4.1. If T is a vertex-transitive graph, then every vertex v has the
same valency. Such graphs are called regular and if the valency is k they are
often called k-regular.

Proof. If o is an automorphism mapping v to u, then afy e : N(v) = N(u)
is a bijection that shows that |N(v)| = |N(u)]. O

The previous result, although obvious impose an importat restriction on
vertex transitive graphs. It is not hard to find a small example of a non-
vertex transitive graph. For example the path on 3 vertices (see Figure 1a) is
not vertex transitive because it has two vertices of valency 1 and one vertex
of valency 2. However, finding a small example of a regular graph that is not
vertex-transitive is not trivial. The smallest example is the Folkman graph
(see Figure 1b), wich is a 4-regular graph with 20 vertices. This graph has
two orbits on vertices. It is not hard to see that the blue vertices and the
black vertices are in different orbits: every blue vetex has a (blue) vertex
that have the exact same neighbourhood. This is not the case with the black
vertices, hence they cannot be on the same orbit. It is also easy to see that
any two vertices belong to the same orbit. A slightly more interesting (but
not hard) task is to show that all the black vertices are in the same orbit.

There are infinite families of vertex transitive graphs: the complete graph
IC,, on n vertices, the cycle C,, on n vertices. The cube Q3 (Figure 1c) is also
vertex transitive.

An important family of vertex transitive graphs are the so called Cay-
ley garphs. They were introduced as early as 1878 by Cayley as a graphic
representation of a group. In fact, they were originally called color group.

Definition 4.2. Given a group G and a set S C G such that
e lg g Sa
o S .= {3‘1 15 € S} = S. The Cayley graph (of G with respect to
S) Cay(G, S) is the graph whose vertex set is G and such that z ~ y
if and only if y 'z € S.
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Observe that the fact that 1 ¢ S implies that Cay(G, S) has no loops and
since S = S~! then y 'z € S if and only z~'y € S. Therefore, Cay(G, S) is
actually a well-defined graph.

Example 4.3. There are natural examples of Cayley graphs:

(a) The complete graph is a Cayley graph for every group of n elements.
More precisely, K, = Cay(G, G \ {1g}).

(b) The cycle C,, is isomorphic to Cay(Z,, {1, —1}) (recall that the trivial
element in Zj, is 0).

(c) The cube Q3 is Cay(Z3,{e1,ea,e3}), where e; = (1,0,0), ez =
(0,1,0) and e3 = (0,0, 1).

(d) We can define the n-cube Q,, as the Cayley graph Cay(Z3, {e1,...,en})
where {ej, - ,e,} is the standard basis for the vector space Z3.

Proposition 4.4. Every vertex in Cay(G,S) has valency |S| and the graph
Cay(G, S) is connected if and only if (S) = G.

Proof. For a given vertex © € G, the neighbours of z are precisely the ele-
ments of the form zs for s € S. It follows that = has exactly |S| neighbours.

Assume that Cay(G,S) is conected and let x be any element of G. Since
G is connected there is a path P from the vertex 1g to x. Let 1g =
o, x1,..-.,T¢y = x the sequence of vertices induced by P. Observe that
since 1g ~ x1, then x1 € S, say x1 = s1. Similartly, xo = x150 = s159 for
some sy € S. In general, if 0 < ¢ < £ then z; = x;_1; for some s; € S. It
follows that x = xy = s;--- sy € S; hence (S) = G.

The other implication is similar. If G = (S), then every vertex x can be
written as a product sp---sp of elements in S. This induces a path from
1lg := xg to x := x4 with vertex sequence xg,...,z¢ by defining x; = z;_1s;.
This implies that Cay(G, S) is connected. O

Now we turn our attention to symmetry propeties of Cayley graphs.

Proposition 4.5. The action of G on itself by left multiplication induces an
action of G on Cay(G,S) by automorphism. Since this action is transitive,
every Cayley graph is vertex transitive.

Proof. The left action of and element g € G is given g : x — gx for z €
G. This induces a permutation of G, i.e. a permutation of the vertices
of Cay(G,S). We only need to show that this permutation maps edges to
edges:

lyes

T~y = Yy
— y g lgze s
— (gy)'(gx) € S
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The previous proposition shows that every Cayley graph is a vertex tran-
sitive graph. The converse is not true (see Exercises 4.3 and 4.14). In fact,
the Petersen graph is the smallest example of a non-Cayley vertex-transitive
graph.

Observe that the action of G on itself is not only transitive, but free,
meaning that the only group element that fixes a point is 1. This implies
that given any two vertices z,y in Cay(G, S), there exists exactly one auto-
morphism in G mapping x to y, namely, the automorphism induced by the
group element yz~'. It turns out that this property characterises Cayley
graphs, at it is shown in the following theorem. This result is classical one
on the theory of symmetries of graphs and it was first proved by G. Sabidussi
in 1958.

Theorem 4.6 (Sabidussi, 1958). A graph I' is a Cayley graph if and only if
its automorphism group has a subgroup G acting transitive and freely on the
set of vertices of I.

Proof. One implication was previously discussed. If I' = Cay(G, S), then G
acts free and transitively.

Assume that for a graph I' there exists a group G < Aut(I") acting free
and transitively on the vertices of I'. Pick a fixed vertex vy € V(I'). Con-
sider the mapping ¢ :  — g, from the V(I') to G where g, is the unique
element of G that maps the vertex vy to z. Observe that p(vg) = 1g. Let
u1,...,ur be the neighbours of vy in I'. Let S = {gu,,...,09u,} and con-
sider the grap Cay(G,S). The function ¢ is a bijection between V(I') and
G =V (Cay(G, S)); let us show that it is a graph isomophism.

Let  and y be two vertices in I" such that x ~ y. We need to show that
o(x) = g ~ gy = p(y). First, observe that the graph automorphism gy_1

satisfies
g9y {zyh) = {9, (@), 9, ()} = {9, ' (), 00} ,

which implies that g, ! () = u; for some i € {1,...,k}.
Now comnsider the automorphism g, Lo,

gy_lga:(vo) = gy_l(ﬂﬁ) = Uj.

It follows that g;lgx = gu; € 5, that is g, ~ g, in Cay(G, S). This proves
that ¢ is a graph isomorphism. O

Proposition 4.7. Let I' = Cay(G, S) be a Cayley graph of an abelian group
G. If G s not an elementary abelian 2-group, that is, isomorphic to the
direct product of many copies of Zo, then G is a proper subgroup of the
automorphism group Aut(I'). Moreover, if the valence of T' is at least 3,
then the girth (the length smallest cycle of ') is at most 4.

Proof. Consider the mapping o : G — G given ty g — gL

abelian we have that

Since G is

1

g~h <= hlgeS < ghteS < g'~h! <= alg) ~ah).
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FIGURE 2. The Petersen graph

So clearly o € Aut(I'). The permutation « is a non-trivial element in Aut(I")
(since G is not elementary abelian 2-group) that fixes 1, hence cannot be
induced by an element of G. If |S| > 3 we can pick two elements a,b € S
such that a & {b=1,b}. Then the path (1g,a,ab,b) is a 4-cycle in T. O

The Petersen graph (see Figure 2) is a vertex transitive graph that is
not Cayley (see Exercise 4.14). In fact it is the smallest non-Cayley vertex-
transitive graph.

The problem of determining those numbers n for which there exists a
vertex-transitive graph of order n which is not a Cayley graph was posed
by Marusic¢ in 1983. It has proved to be a highly non-trivial problem and a
complete solution is, to the date, still unknown. The following proposition
is a very basic basic result on the lines of this problem.

Proposition 4.8. If ' is a vertex-transitive graph on p vertices for prime
number p, then I' is a Cayley graph.

Proof. Since I is vertex-transitive, then the Orbit-Stabiliser Theorem implies
that the size p divides the size of Aut(I'). By Cauchy Theorem, there exists
an element o € Aut(I") of order p. In particular « is not trivial and if v is a
vertex moved by a, then | (o) x| divides p, hence | (o) 2| = p. Tt follows that
the group () acts free and transitive on the vertices of I an by Theorem 4.6,
I' is a Cayley graph. O

Cayley graphs offer a way to build vertex transitive graphs, but unfortu-
nately not every vertex transitive graph is a Cayley graph. We now explore
a construction that generalises that of Cayley graphs and that will give us a
way to describe every vertex transitive graph. Let us explore basic properties
of vertex transitive graphs that will inspire the construction.

Proposition 4.9. Let I' be a vertex transitive graph. Let v denote o fized
graph and denote by H the stabiliser of v under the automorphism group of
I'. Denote by S the set

{g € Aut(T") : g(v) € N(v)}.



6 DISCRETE MATHEMATICS 2

Then:

(a) Every vertex uw of T' can be identified with the coset gH with g €
Aut(I") an automorphism mapping u to v.

(b) S =UsegHsH = {hishy : h1,hy € H and s € S} .

(c) S is closed under inverses, that is s € S if and only if s™* € S and
HnNS=40.

(d) g1v is adjacent to gov in T if and only if g;lgl es.

(e) T is connected if and only if (H,S) = G.

Proof.

(a) It follows directly form the fact that I is vertex-transitive: the action
of Aut(I") on vertices is equivalent to the action of Aut(I') on the left
cosets of H.

(b) Clearly S C J,cqg HsH. Take hy,hy € H and s € S. then hyshov =
hisv = hju for some u € N(v). Since hy € H, then h; permutes
the elements of N(v) then hju € N(v) hence hyshov € N(v), which
implies hishg € S.

(c) Take s € S, meaning sv € N(v). Then {v, sv} is an edge of I'. Since
s~1 € Aut(T), then

s, sv} = {s_lvjv}

is an edge in I', which implies that s~'v € N(v), or equivalently,
st € S. Every element in h € H fixes v, in particular hv € N(v),
hence h & S.

(d) {g1v,g2v} is an edge if and only if {g;lglv,v} is a edge, and this
occurs if and only if gz_lgl es.

(e) This follows the same ideas as the proof of Proposition 4.4.

O

Proposition above inspires a construction that we shall call Sabidussi
coset graphs or simply cosset graphs. This construction was introduced by
Sabidussi in 1964. We should remark that the term coset graph is some-
times used to name Shereier coset graphs which are a different construction.
Sabidussi coset graphs are also called Generalised orbital graphs.

Definition 4.10. Given a group G, a subgroup H and a set S C G that
satisfy:

o S =g HsH,

o« STl=5,

e SNH =.
Then the Sabidussi coset graph SabCos(G, H, S) is the graph whose vertex
set are the left cosets of H in G and whose edges are given by

1

cH ~yH <— y "z €.

First observe that this relation actually defines a graph. Assume that
T1,T9,Y1,y2 are elements in G such that ©1H = xoH, y1H = yoH and
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yflfﬁl € S. Since x1H = xoH, then x1hy = z2 for some h; € H. Similarly
y1hg = yo for some ho € H. This implies that

Yy ‘w2 = (y1ha) " (w1h1) = hylyy twaha € S,

where the last equality follows from the facts that y; 121 € S and S is a
union of double cosets of H. This shows that the defining relations for the
edges of SabCos(G, H, S) is well defined on cosets. The relation is symmetric
because S = S~! and the graph has no loops because H N S.

Proposition 4.11. Let G be a group, H < G and S C G satisfying the
condition in Definition 4.10. Let I' = SabCos(G, H, S). Then the action of
G by left multiplication on left cosets of H induces an action of G on I' by
automorphisms. The group G acts transitively on vertices.

Proof. The action of left multiplication on left cosets of H is transitive. We
just need to prove that every element in G actually induces automorphisms
of I'. Observe that

tH~yH — y_jx€8 < y g lgz € G < gyH ~ gzH.

This prove that G actually induces automorphisms of T U

We have prove that every coset graph is vertex-transitive. The converse is
also true and therefore we have a characterisation of vertex transitive graphs
in terms of groups.

Theorem 4.12. Every vertex transitive graph I' is isomorphic to a Sabidussi
coset graph.

Proof. We actually have mostly proved this theorem. Let G = Aut(I'), v a
vertex of I" and H = Stabg(v). Define S = {s € G : sv € N(v)}. By part (a)
of Proposition 4.8 the function ¢ : V(I') — G/H given by ¢(u) Moreover,
part (d) of the same result implies that ¢ is a graph isomorphism. O

We finish this section with an example in Figure 3 we we show how to build
the Petersen graph as a coset graph. The group G is the alternating group
Ajs and the group H = ((1 2 3),(1 2)(4 5)). A simple calculation shows that
S=(24)35)HU(14)(25HU(14)(35)H. In the figure we only wrote
the representatives of the coset of each vertex.

The example above show that we do not need to use the full automorphism
group of the vertex transitive graph to build as a coset graph. The construc-
tion works perfectly if we use any vertex-transitive subgroup of Aut(T"). For
the Petersen graph, the automorphism group is S5, while we build it using
the alternating group.
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FI1GURE 3. The Petersen graph as a coset graph

Exercises.

4.1

4.2
4.3

4.4

4.5

4.6

4.7

Prove that there exists a graph on n vertices, all of them of valency
k if and only if n > k£ + 1 and nk is even.
Find the automorphism group of the cycle C,.
Consider the graph I" whose vertices are the sets of size 2 of {1,2,3,4,5}
and so that A ~ B if and only if AN B = 0.
(a) Prove that I' is isomorphic to the Petersen graph.
(b) Find the automorphism group of I'.
Let H and K two subgroups of a group G. Assume that

e H<G and K <G,

e G=(HK),

e HNK ={1}.
Prove that G = H x K.
Let H and K two groups and 6 : K — Aut(H) and for k € K
denote by 6), the mapping (k) : H — H. Consider the set H x K
and the Operation *g given by (hl, kl) *p (hg, ]{22) = (hlﬁkl (hQ), klkg).
Prove that the pair (H X K, *g) is a group. This group is called the
(external) semidirect product of H and K with respect to 6 and is
often denoted H Xy K.
Let H and K two subgroups of a group G. Assume that

e H«(G,

e G=(HK),

e HNK ={1}.
Prove that G = H xy K, where 0(h) = khk~!. This is often called
the (internal) semidirect product of H and K and it is usually de-
noted by H x K.
Prove that a complete bipartite graph Ky, ,, is vertex transitive if and
only if m = n.
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Find the automorphism group of the complete bipartite graph Iy, ..
Hint: consider the cases n # m and n = m separately.
Let @, denote the n-cube graph. Prove that

AUt(Qn) = ZEL Xg Sn,
where 0(c) : Z — Z1 is defined by

0(0) 1 (V1,5 0n) = (Vo1(1)s - -+ Vg=1(n));

for every vector (v1,...,v,) € Z. That is, 6 is the natural action of
Sy permuting the coordinates of Zj.

Assume that a graph T' has m; connected components isomorphic
to Ay, meo connected components isomorphic to Ag, etc. Such that
A; =2 Ajif and only if ¢ = j. Prove that the automorphism group of
T" is isomorphic to

(AUb(AD)™ x -+ x Aut(Ag)™) X (S, X+ X Sy )-

The cartesian product of two graphs I' and A is denoted by T'TJA
and defined by V(IT'OA) = V(T') x V(A) and the edges of TTA are
given by

u1 = ug and v; ~ vy oOr

v] = vg and uy ~ Us

(uy,v2) ~ (ug,v2) < {

(i) Prove that if I" and A are vertex transitive, then so it is TOA.
(ii) Prove that Aut(I') x Aut(A) < Aut(TOA).
(iii) Give an example of two graphs I" and A such that Aut(I') x
Aut(A) is a proper subgroup of Aut(T'TA).
The lexicographic product of two graphs I' and A is denoted by T'[A]
and defined by V(I'OA) = V(T') x V(A) and the edges of TTA are
given by

up ~ug in I or

u] = ug and vy ~ v in A

(ul,vg) ~ (UQ,’UQ) = {

Assume that I' has m vertices. Observe that the action of Aut(I') on
V(I') induces an action 6 of Aut(I') on (Aut(A))™.

(i) Prove that if I" and A are vertex transitive, then so it is I'[A].
(ii) Prove that the group

Aut(A)™ xg Aut(T)

is a subgroup of Aut(I'[A]).
(iii) Give an example of two graphs I" and A such that Aut(I')™ X
Aut(A) is a proper subgroup of Aut(I'[A]).
Prove that a graph is a Cayley graph if and only if its complement
is a Cayley graph.
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4.14

4.15

4.16
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Prove that if p is an odd prime then there are only two groups of
order 2p, namely Zo, and D,. Hint: prove that Zg, = Z, X Zs and
D, = Z, x Zy. Use this to prove that the Petersen graph is not a
Cayley graph.

Prove that there is no vertex-transitive graph of order at most 9
which is not a Cayley graph.

Prove that the cube graph is isomorphic to some generalised orbital
graph of the symmetric group Sy.
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