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5. Ramsey theory

In this section we explore what is called Ramsey theory. The basic idea is
given in the following example:

Example 5.1. Six people are waiting in the lobby of a hotel. Prove that
there are either three of them who know each other, or three of them who
do not know each other.

Solution. We can model the problem with a coloured complete graph. Let
us use one vertex for each person and colour the edge between two of them
with red if they know each other and with blue if they dont. Pick a vertex v,
there must be a colour so that at least three of the edges incident to v. With
out loss of generality, we may assume that this colour is red and consider
the set B of the the endpoints of the red edges of incident to v. If between
any two elements in B there is a red edge, then we can use v to complete
a red triangle (see Figure 1a), which will give us a set of three people who
know each other. Otherwise, any edge in betweeen any two elements in B is
blue and by construction |B| > 3. It follows that we can pick three elements
in B that form a blue triangle (see Figure 1b). That gives us a set of three
people that do not know each other. �

The previous example is the �rst example of the Ramsey theory, which
is named after Frank Ramsey who was a British mathematician that was
mostly interested on philosophy and logic. He died at the age of 26 in 1930,
the same year his paper On a problem of formal logic was published. This
paper was the formal beginning of what we know as Ramsey theory.
Example 5.1 is one of the �rst instances of a more general problem.
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Figure 1. R(3, 3) 6 6

A colouring of the edges of Kn with s colours is called a s-colouring. If
Vk ⊆ V (Kn) is a set with k vertices such that every edge between vertices of
Vk is red (say) we say that the s-colouring contains a red Kk.

De�nition 5.2. Given positive integers k and `, we say that a number
n ∈ N satis�es the Ramsey condition for k and ` if for every 2-colouring of
the complete graph Kn with colours red and blue (say), contains a red Kk

or a blue K`.

Clearly, if n satis�es the Ramsey condition for k and `, then any other
number m > n also satis�es the Ramsey condition for k and `. We denote
by R(k, `) the smallest of such numbers. In principle, this number R(k, `)
may not exist for arbitrary k and `, we shall prove in Theorem 5.3 that this
number actually exists.
Example 5.1 shows that R(3, 3) 6 6. The colouring of K5 in Figure 2

proves that R(3, 3) > 5, which implies that R(3, 3) = 6.
Before proving the general theorem let us explore the small cases. Every

2-colouring of the edges of Kn has an opposite colouring given by swapping
the colours. This implies that R(k, `) = R(`, k). If k = 1 or ` = 1, then the
problem becomes trivial and R(1, k) = 1 = R(1, k) for any k. Less trivially,
we can see that R(k, 2) = k. If we colour the edges of Kk with two colours,
red and blue and at least one edge is blue, then the colouring contains a blue
K2. Otherwise the whole Kk is red.
Let us prove what is often called the Ramsey theorem for graphs.

Theorem 5.3. Let k, ` > 2, then the number R(k, `) exists and satis�es

R(k, `) 6 R(k − 1, `) +R(k, `− 1).

Proof. We proceed by induction over k + l. The smallest possible value of
k = 2 = ` then the theorem follows from the previous discussion. Assume
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Figure 2. R(3, 3) > 5

inductively that both R(k, ` − 1) and R(k − 1, `) exist. Take a 2-colouring
of the complete graph on n = R(k − 1, `) +R(k, `− 1) vertices with colours
red and blue. We will prove that this colouring contains either a red Kk or a
blue K` Pick a vertex v and let r and b be the number of red and blue edges
incident to v, respectively. If both r 6 R(k − 1, `) − 1 and b 6 R(k, ` − 1)
hold, then the number of edges incident to v are

R(k − 1, `) +R(k, `− 1)− 1 = r + b 6 R(k − 1, `) +R(k, `− 1)− 2,

which is obviously a contradiction. It follows that either r > R(k − 1, `) or
b > R(k, `− 1).
Assume that r > R(k − 1, `) and let B denote the endpoints of the r red

edges incident to v. Since r = |B| > R(k−1, `), then the induced 2-colouring
of the complete graph Kr contains either a red Kk−1 or a blue K`. In the
former case we can complete this graph to a red Kk by attaching v while in
the latter the blue K` is contained in the colouring of the original Kn.
The case b > R(k, `− 1) is analogous. �

The previous theorem gives us an upper bound on R(k, `). In general this
bound is loose, as we shall see in the following example.

Example 5.4. R(3, 4) = 9.

Solution. From the bound in Theorem 5.3 we know that

R(3, 4) 6 R(2, 4) +R(3, 3) = 4 + 6 = 10.

Let us show that every colouring of K9 contains either a red triangle or a
blue K4. If any vertex v has 4 red edges the the fact that R(2, 4) = 4 implies
that the induced colouring on the graph determined by the endpoints of the
red edges has a red K2 or a blue K4. In the former case, we can complete
the red K2 to a red K3 by attaching v. In the latter we obtain directly a
blue K4. With a similar idea we can show that if any vertex has at least 6
blue edges we can use the fact that R(3, 3) = 6 to �nd a red triangle or a
blue triangle that can be completed to a blue K4.
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Figure 3. R(3, 4) > 8

k\` 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9
3 6 9 14 18 23 28 36
4 18 25

Table 1. Known values for R(k, `)
.

Therefore, we can assume that every vertex has at most 3 red edges and
at most 5 blue edges. Since ever vertex has degree 8, it follows that every
vertex has exactly 3 red edges and 5 blue edges. However, if we look at the
graph induced by the red edges, this is a 3-valent graph with 9 vertices. This
graph must have 3×9

2 edges, which is clearly impossible.
We have only proved that R(3, 4) 6 9. The colouring in Figure 3 proves

that R(3, 4) > 8. In this �gure we just only drew the blue edges. �

Computing the exact value for R(k, `) is not easy. In Table 1 we show the
known values of the number R(k, `) to the date of this notes. We only show
the values that are known exactly but we must point out that some other
values have be bounded, for example, it is known that 40 6 R(3, 10) 6 42.

The following result gives us another upper bound.

Proposition 5.5. For every k, ` > 2

R(k, `) 6

(
k + `− 2

k − 1

)
.

Proof. We can proceed by induction on k + `. If k = 2 = ` then

R(2, 2) = 2 6

(
2

1

)
= 2.



DISCRETE MATHEMATICS 2 5

By Theorem 5.3 and an inductive argument we have that

R(k, `) 6 R(k−1, `)+R(k, `−1) 6
(
k + `− 3

k − 2

)
+

(
k + `− 3

k − 1

)
=

(
k + `− 2

k − 1

)
,

where the last equality follows from Pascal formula. �

Corollary 5.6. For every k > 2,

R(k, k) 6 4k−1.

Proof. From Proposition 5.5

R(k, k) 6

(
2k − 2

k − 1

)
6 22k−2 = 4k−1

�

We can also give upper bounds on the Ramsey numbers, an easy one is
the following.

Proposition 5.7. For every k, ` > 2

R(k, `) > (k − 1)(`− 1).

Proof. We need to exhibit a 2-colouring of the edges of Kn for n = (k−1)(`−
1) without red Kk or blue K`. Arrange the vertices n vertices on a grid with
k− 1 rows each containing `− 1 points. Draw a blue edge in between any of
them if and only if the belong in the same row. Given any k vertices, by the
pigeonhole principle, two of them must be on the same row, hence the edge
between them is blue. This implies that there is no red Kk. If we remove all
the red edges the connected components are the blue K`−1 induced by the
vertices on a given row. This implies that there are no blue K` either. �

The bound given by the proposition above is in general very loose. For
example for k = ` = 3 we obtain that R(3, 3) > 4.
The bound in Corollary 5.6 shows that the numbers R(k, k) grow at most

exponentially with k it can be easily show that the actually grow exponen-
tially. More precisely.

Proposition 5.8. If n < 2
k
2 then there exists a 2-colouring of the edges of

Kn without monochromatic Kk. In particular R(k, k) > 2
k
2 .

Proof. We just explain the idea of the proof. There are a total of 2(
n
2)

2-colourings of the complete graph Kn. The number of colourings with a

monochromatic Kk on a given k-subset of vertices is 2
(
2(

n
2)−(

k
2)
)
. There are

at most
(
n
k

)
of such colourings, since a given colouring can be counted several

times (think of the colouring where all the edges are red, for example). Using

the fact that
(
n
k

)
< nk

k! and that n < 2
k
2 we can show that

2(
n
2) > 2(

n
2)−(

k
2)+1,

which proves our claim. �
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A �rst generalisation of Theorem 5.3 is to admit colourings of many
colours.

De�nition 5.9. Given k1, . . . , ks we say that a number n satis�es the Ram-
sey condition for k1, . . . , ks if every s-colouring of the edges of the complete
graph Kn has a complete Kki of colour i. We denote by R(k1, . . . , ks) the
minimum number n that satis�es the Ramsey condition for k1, . . . , ks.

As before, we should prove that this number exists.

Theorem 5.10. Let k1, . . . , ks > 2, then the number R(k1, . . . , ks) exists

and satis�es

R(k1 . . . , ks) 6 R (ki, R(k1, . . . , ki−1, ki+1, . . . , ks))

for every i ∈ {1, . . . , s}

Proof. We just prove the theorem for i = 1, the other inequalities follow in
the exact same way. We proceed by induction over s. If s = 2, then the
statement is precisely Theorem 5.3 by admitting the trivial convention that
R(`) = ` for every ` > 2. Assume that the number R(`1, . . . , `s−1) exists
for any numbers `1, . . . , `s−1. Take an s-colouring of the edges of Kn with
n = R (k1, R(k2, . . . , ks)). Observe that this induces a 2-colouring of edges
of Kn if we de�ne that an edge is red if it was of colour 1 on the original
colouring and it is blue otherwise.
Theorem 5.3 implies that there is either a red Kk1 which induces a Kk1 of

colour 1 in the original colouring or there is a blue K` for ` = R(k2, . . . , ks).
In this case, the blue K` comes from complete graph K` that has no edges
of colour 1 in the original colouring. Our inductive hypothesis implies that
this colouring of K` has a Kkj of colour j for some j > 2, as desired. �

Colouring the edges of the complete graph is equivalent to colouring the
2-subsets of a set of n elements. A fairly general version of the Ramsey
theorem uses colouring of the r-subsets of a set with n elements. We will
just give the statement of the theorem without a proof. However we should
point out that the prove for two colours (that is s = 2) is not conceptually
more di�cult than that for r = 2 (that is, colouring edges of a complete
graph). Then the result can be generalised to many colours using exactly
the same idea that the one used to generalise Theorem 5.3 to Theorem 5.10.

Theorem 5.11. Gien r > 2, s > 2 and k1, . . . , ks > 2 there exists a min-

imum number n = Rr(k1, . . . , ks) such that every if V is a set with m > n
elements, then every s-colouring of the r-subsets of V satis�es that there is

i ∈ {1, . . . , s}, a set A ⊆ V with |A| = ki such that every r-subset of A is of

colour i.

Exercises.

5.1 18 teams participate at a round-robin soccer tournament. Prove that
after eight rounds are played, we can still �nd three teams no two of
which have played each other yet.
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5.2 Each point of the space is colored either red or blue. Prove that
either there is a unit square whose vertices are all blue, or there is a
unit square that has at least three red vertices.

5.3 Prove that every edge-colouring of K6 with 2 colours has at least 2
monochromatic triangles (not necessarily of the same colour). Give
a colouring of K6 with exactly two monochromatic triangles.

5.4 Prove that there exists a natural number R(k1, . . . , ks) such that if
n > R(k1, . . . , ks) and we colour the edges of Kn with s colours, then
there exists i ∈ {1, . . . , s} and a set V of ki vertices that satis�s that
all the edges of the complete graph induced by V are of colour i.

5.5 Prove that

R(3, . . . , 3︸ ︷︷ ︸
s times

) 6 1 + s!

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

s!

)
5.6 Let n > 2. Prove that R(n+ 2, 3) > 3n.
5.7 Prove that R(3, 5) = 14.
5.8 Prove that R(4, 4) = 18.
5.9 We colored each point of the space either red, or blue, or green or

yellow. Prove that there is a segment of unit length with monochro-
matic vertices.

5.10 Prove that it is possible to colour each point of the plane either red
or blue so that there is no regular triangle with sides of unit length
and monochromatic vertices.

5.11 We coloured each point of the plane either red or blue. Let T be any
right-angled triangle. Prove that there is a triangle that is congruent
to T and has monochromatic vertices.

5.12 A company has 2002 employees, from 6 di�erent countries. Each
employee has a company identi�cation card (ID) with a number from
1 to 2002. Prove that there is either an employee whose ID number
is equal to the sum of the ID numbers of two of his compatriots,
or there is an employee whose ID number is twice that on one of
compatriots.

5.13 Let us colour each positive integer by one of the colors c1, . . . , ck.
• Prove that there exists an integer N(k) so that if n > N , then
there are three integer a, b, c that are less than n, are of the same
colour and satisfy a+ b = c (a = b is allowed).
• Determine N(2).
• Prove that N(3) > 13.

5.14 There are 9 participants in a convention. None of the participants
speak more than 3 languages. It is also true that 2 of each 3 partici-
pants speak a common language. Show that there are 3 participants
that speak a common language.
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