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5. RAMSEY THEORY

In this section we explore what is called Ramsey theory. The basic idea is
given in the following example:

Example 5.1. Six people are waiting in the lobby of a hotel. Prove that
there are either three of them who know each other, or three of them who
do not know each other.

Solution. We can model the problem with a coloured complete graph. Let
us use one vertex for each person and colour the edge between two of them
with red if they know each other and with blue if they dont. Pick a vertex v,
there must be a colour so that at least three of the edges incident to v. With
out loss of generality, we may assume that this colour is red and consider
the set B of the the endpoints of the red edges of incident to v. If between
any two elements in B there is a red edge, then we can use v to complete
a red triangle (see Figure la), which will give us a set of three people who
know each other. Otherwise, any edge in betweeen any two elements in B is
blue and by construction |B| > 3. Tt follows that we can pick three elements
in B that form a blue triangle (see Figure 1b). That gives us a set of three
people that do not know each other. U

The previous example is the first example of the Ramsey theory, which
is named after Frank Ramsey who was a British mathematician that was
mostly interested on philosophy and logic. He died at the age of 26 in 1930,
the same year his paper On a problem of formal logic was published. This
paper was the formal beginning of what we know as Ramsey theory.

Example 5.1 is one of the first instances of a more general problem.
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FI1GURE 1. R(3,3) <6

A colouring of the edges of IC,, with s colours is called a s-colouring. If
Vi C V(K,,) is a set with k vertices such that every edge between vertices of
Vi is red (say) we say that the s-colouring contains a red K.

Definition 5.2. Given positive integers k and ¢, we say that a number
n € N satisfies the Ramsey condition for k and ¢ if for every 2-colouring of
the complete graph K,, with colours red and blue (say), contains a red K
or a blue ICy.

Clearly, if n satisfies the Ramsey condition for k£ and ¢, then any other
number m > n also satisfies the Ramsey condition for £ and ¢. We denote
by R(k,?) the smallest of such numbers. In principle, this number R(k,?)
may not exist for arbitrary k£ and ¢, we shall prove in Theorem 5.3 that this
number actually exists.

Example 5.1 shows that R(3,3) < 6. The colouring of K5 in Figure 2
proves that R(3,3) > 5, which implies that R(3,3) = 6.

Before proving the general theorem let us explore the small cases. Every
2-colouring of the edges of K, has an opposite colouring given by swapping
the colours. This implies that R(k,¢) = R(¢,k). If k =1 or £ = 1, then the
problem becomes trivial and R(1,k) =1 = R(1,k) for any k. Less trivially,
we can see that R(k,2) = k. If we colour the edges of Kj with two colours,
red and blue and at least one edge is blue, then the colouring contains a blue
Ks. Otherwise the whole K, is red.

Let us prove what is often called the Ramsey theorem for graphs.

Theorem 5.3. Let k,{ > 2, then the number R(k, () exists and satisfies
R(k,0) < R(k—1,0) + R(k, ¢ —1).

Proof. We proceed by induction over k£ + [. The smallest possible value of
k = 2 = { then the theorem follows from the previous discussion. Assume
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FIGURE 2. R(3,3) > 5

inductively that both R(k,¢ — 1) and R(k — 1,¢) exist. Take a 2-colouring
of the complete graph on n = R(k — 1,¢) + R(k,{ — 1) vertices with colours
red and blue. We will prove that this colouring contains either a red Iy or a
blue Ky Pick a vertex v and let r and b be the number of red and blue edges
incident to v, respectively. If both r < R(k — 1,¢) — 1 and b < R(k,¢ — 1)
hold, then the number of edges incident to v are

R(k—1,0)+ R(k, 6 —1) =1 =r+b< R(k—1,0) + R(k,£ —1) — 2,

which is obviously a contradiction. It follows that either r > R(k — 1,¢) or
b> R(k,{—1).

Assume that » > R(k — 1,¢) and let B denote the endpoints of the r red
edges incident to v. Since r = |B| > R(k—1,¢), then the induced 2-colouring
of the complete graph IC, contains either a red Kr_1 or a blue Kp. In the
former case we can complete this graph to a red K by attaching v while in
the latter the blue Iy is contained in the colouring of the original IC,,.

The case b > R(k,¢ — 1) is analogous. O

The previous theorem gives us an upper bound on R(k,¢). In general this
bound is loose, as we shall see in the following example.

Example 5.4. R(3,4) =09.
Solution. From the bound in Theorem 5.3 we know that
R(3,4) < R(2,4) + R(3,3) =4+ 6 = 10.

Let us show that every colouring of Kg contains either a red triangle or a
blue K4. If any vertex v has 4 red edges the the fact that R(2,4) = 4 implies
that the induced colouring on the graph determined by the endpoints of the
red edges has a red Ky or a blue K4. In the former case, we can complete
the red Ko to a red K3 by attaching v. In the latter we obtain directly a
blue 4. With a similar idea we can show that if any vertex has at least 6
blue edges we can use the fact that R(3,3) = 6 to find a red triangle or a
blue triangle that can be completed to a blue ICy.
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FIGURE 3. R(3,4) > 8

E\L 1 2 3 4 ) 6 7 8 9
1 1 1 1 1 1 1 1 1 1
2 2 3 4 ) 6 7 8 9
3 6 9 14 18 23 28 36
4 18 25

TABLE 1. Known values for R(k, )

Therefore, we can assume that every vertex has at most 3 red edges and
at most 5 blue edges. Since ever vertex has degree 8, it follows that every
vertex has exactly 3 red edges and 5 blue edges. However, if we look at the
graph induced by the red edges, this is a 3-valent graph with 9 vertices. This
graph must have 3%9 edges, which is clearly impossible.

We have only proved that R(3,4) < 9. The colouring in Figure 3 proves

that R(3,4) > 8. In this figure we just only drew the blue edges. O

Computing the exact value for R(k,¢) is not easy. In Table 1 we show the
known values of the number R(k,¢) to the date of this notes. We only show
the values that are known exactly but we must point out that some other
values have be bounded, for example, it is known that 40 < R(3,10) < 42.

The following result gives us another upper bound.

Proposition 5.5. For every k,{ > 2
k+1¢— 2>

R(k, ) < ( 1

Proof. We can proceed by induction on k4 £. If kK =2 = /¢ then

R(2,2) =2 < G) _9
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By Theorem 5.3 and an inductive argument we have that
E+¢—-3 E+¢—-3 k+0—2
< — —1) < =
N N N ]
where the last equality follows from Pascal formula. O

Corollary 5.6. For every k > 2,
R(k, k) < 4k1,

Proof. From Proposition 5.5
R(k, k) < <2: _12> < 22k=2 gkl

O

We can also give upper bounds on the Ramsey numbers, an easy one is
the following.

Proposition 5.7. For every k, £ > 2
R(k,0) > (k—1)(¢—1).

Proof. We need to exhibit a 2-colouring of the edges of K, forn = (k—1)(¢—
1) without red K or blue ICp. Arrange the vertices n vertices on a grid with
k — 1 rows each containing ¢ — 1 points. Draw a blue edge in between any of
them if and only if the belong in the same row. Given any k vertices, by the
pigeonhole principle, two of them must be on the same row, hence the edge
between them is blue. This implies that there is no red K. If we remove all
the red edges the connected components are the blue Ky_1 induced by the
vertices on a given row. This implies that there are no blue Ky either. U

The bound given by the proposition above is in general very loose. For
example for k = ¢ = 3 we obtain that R(3,3) > 4.

The bound in Corollary 5.6 shows that the numbers R(k, k) grow at most
exponentially with k it can be easily show that the actually grow exponen-
tially. More precisely.

Proposition 5.8. Ifn < 25 then there ewists a 2-colouring of the edges of
k
Kr, without monochromatic Ky. In particular R(k, k) > 22.

Proof. We just explain the idea of the proof. There are a total of 2(3)
2-colourings of the complete graph XC,,. The number of colourings with a

n k
monochromatic K on a given k-subset of vertices is 2 <2(2)_(2)>. There are

at most (Z) of such colourings, since a given colouring can be counted several

times (think of the colouring where all the edges are red, for example). Using
the fact that (Z) < %l: and that n < 23 we can show that

2(3) > 2(3)-(5)+1

which proves our claim. O

)
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A first generalisation of Theorem 5.3 is to admit colourings of many
colours.

Definition 5.9. Given ky, ..., ks we say that a number n satisfies the Ram-
sey condition for k1, ...,k if every s-colouring of the edges of the complete
graph /C,, has a complete Ky, of colour i. We denote by R(ki,...,ks) the
minimum number n that satisfies the Ramsey condition for ki, ..., ks.

As before, we should prove that this number exists.

Theorem 5.10. Let ky,...,ks > 2, then the number R(k1,..., ks) exists
and satisfies

Rk1 ... k) < R (kiy R(K1, o kity ki ks))
for every i € {1,...,s}

Proof. We just prove the theorem for ¢ = 1, the other inequalities follow in
the exact same way. We proceed by induction over s. If s = 2, then the
statement is precisely Theorem 5.3 by admitting the trivial convention that
R(¢) = (¢ for every £ > 2. Assume that the number R(¢1,...,¢s;_1) exists
for any numbers ¢1,...,¢5_1. Take an s-colouring of the edges of K,, with
n = R(ki, R(ks,...,ks)). Observe that this induces a 2-colouring of edges
of IC,, if we define that an edge is red if it was of colour 1 on the original
colouring and it is blue otherwise.

Theorem 5.3 implies that there is either a red K, which induces a K, of
colour 1 in the original colouring or there is a blue Ky for £ = R(ka, ..., ks).
In this case, the blue Ky comes from complete graph Iy that has no edges
of colour 1 in the original colouring. Our inductive hypothesis implies that
this colouring of Ky has a Ky, of colour j for some j > 2, as desired. O

Colouring the edges of the complete graph is equivalent to colouring the
2-subsets of a set of n elements. A fairly general version of the Ramsey
theorem uses colouring of the r-subsets of a set with n elements. We will
just give the statement of the theorem without a proof. However we should
point out that the prove for two colours (that is s = 2) is not conceptually
more difficult than that for » = 2 (that is, colouring edges of a complete
graph). Then the result can be generalised to many colours using exactly
the same idea that the one used to generalise Theorem 5.3 to Theorem 5.10.

Theorem 5.11. Gienr > 2, s > 2 and k1,...,ks > 2 there exisls a min-
imum number n = R,(k1,...,ks) such that every if V is a sel with m > n
elements, then every s-colouring of the r-subsets of V' satisfies that there is
ie{l,...,s}, aset ACV with |A| = k; such that every r-subset of A is of
colour i.

Exercises.

2.1 18 teams participate at a round-robin soccer tournament. Prove that
after eight rounds are played, we can still find three teams no two of
which have played each other yet.
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Each point of the space is colored either red or blue. Prove that
either there is a unit square whose vertices are all blue, or there is a
unit square that has at least three red vertices.
Prove that every edge-colouring of g with 2 colours has at least 2
monochromatic triangles (not necessarily of the same colour). Give
a colouring of Kg with exactly two monochromatic triangles.
Prove that there exists a natural number R(ki,...,ks) such that if
n > R(ki,...,ks) and we colour the edges of K,, with s colours, then
there exists i € {1,...,s} and a set V of k; vertices that satisfis that
all the edges of the complete graph induced by V' are of colour 1.
Prove that
1 1 1
R(3,...,3) <1+s! <1+++~-+>
——— 1 2! s!
s times
Let n > 2. Prove that R(n + 2,3) > 3n.
Prove that R(3,5) = 14.
Prove that R(4,4) = 18.
We colored each point of the space either red, or blue, or green or
yellow. Prove that there is a segment of unit length with monochro-
matic vertices.
Prove that it is possible to colour each point of the plane either red
or blue so that there is no regular triangle with sides of unit length
and monochromatic vertices.
We coloured each point of the plane either red or blue. Let T be any
right-angled triangle. Prove that there is a triangle that is congruent
to T' and has monochromatic vertices.
A company has 2002 employees, from 6 different countries. Each
employee has a company identification card (ID) with a number from
1 to 2002. Prove that there is either an employee whose ID number
is equal to the sum of the ID numbers of two of his compatriots,
or there is an employee whose ID number is twice that on one of
compatriots.
Let us colour each positive integer by one of the colors ¢y, ..., cg.

e Prove that there exists an integer N (k) so that if n > N, then
there are three integer a, b, ¢ that are less than n, are of the same
colour and satisfy a + b = ¢ (a = b is allowed).

e Determine N(2).

e Prove that N(3) > 13.

There are 9 participants in a convention. None of the participants
speak more than 3 languages. It is also true that 2 of each 3 partici-
pants speak a common language. Show that there are 3 participants
that speak a common language.
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