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Abstract
We explain the many reasons for the interest in flavor physics. We describe
flavor physics and the related CP violation within the Standard Model, and
explain how the B-factories proved that the Kobayashi-Maskawa mechanism
dominates the CP violation that is observed in meson decays.We explain the
implications of flavor physics for new physics, with emphasis on the “new
physics flavor puzzle”, and present the idea of minimal flavorviolation as a
possible solution. We explain why the values flavor parameters of the Standard
Model are puzzling, present the Froggatt-Nielsen mechanism as a possible so-
lution, and describe how measurements of neutrino parameters are interpreted
in the context of this puzzle. We show that the recently discovered Higgs-
like boson may provide new opportunities for making progress on the various
flavor puzzles.

1 What is flavor?

The term “flavors” is used, in the jargon of particle physics, to describe several copies of the same gauge
representation, namely several fields that are assigned thesame quantum charges. Within the Standard
Model, when thinking of its unbrokenSU(3)C × U(1)EM gauge group, there are four different types of
particles, each coming in three flavors:

– Up-type quarks in the(3)+2/3 representation:u, c, t;

– Down-type quarks in the(3)−1/3 representation:d, s, b;

– Charged leptons in the(1)−1 representation:e, µ, τ ;

– Neutrinos in the(1)0 representation:ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By definition,
gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore
by massless gauge bosons, do not distinguish among the flavors and do not constitute part of flavor
physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Stan-
dard Model, these are the nine masses of the charged fermionsand the four “mixing parameters” (three
angles and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark-
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one
should add to the list three neutrino masses and six mixing parameters (three angles and three phases)
for theW± interactions with lepton-antilepton pairs.

The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-
portional to the unit matrix in flavor space. Thus, the strongand electromagnetic interactions are flavor-
universal. An alternative term for “flavor-universal” is “flavor-blind ”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor) are
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different. In “flavor changing charged current” processes,both up-type and down-type flavors, and/or
both charged lepton and neutrino flavors are involved. Examples are (i) muon decay viaµ→ eν̄iνj , and
(ii) K− → µ−ν̄j (which corresponds, at the quark level, tosū → µ−ν̄j). Within the Standard Model,
these processes are mediated by theW -bosons and occur at tree level. In “flavor changing neutral
current ” (FCNC) processes, either up-type or down-type flavors but not both, and/or either charged
lepton or neutrino flavors but not both, are involved. Example are (i) muon decay viaµ → eγ and (ii)
KL → µ+µ− (which corresponds, at the quark level, tosd̄→ µ+µ−). Within the Standard Model, these
processes do not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation ”. We explain it later in these lectures.

2 Why is flavor physics interesting?
– Flavor physics can discover new physics or probe it before it is directly observed in experiments.

Here are some examples from the past:

– The smallness ofΓ(KL→µ+µ−)
Γ(K+→µ+ν) led to predicting a fourth (the charm) quark;

– The size of∆mK led to a successful prediction of the charm mass;

– The size of∆mB led to a successful prediction of the top mass;

– The measurement ofεK led to predicting the third generation.

– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phaseδKM [1]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes thenew physics flavor
puzzle.

– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model
does not provide any explanation of these features. This is theStandard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixingswere measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

3 Flavor in the Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneoussymmetry breaking; (ii) The representations
of fermions and scalars. The Standard Model (SM) is defined asfollows:
(i) The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y. (1)

It is spontaneously broken by the VEV of a single Higgs scalar, φ(1, 2)1/2
(
〈φ0〉 = v/

√
2
)
:

GSM → SU(3)C × U(1)EM. (2)

(ii) There are three fermion generations, each consisting of five representations ofGSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (3)
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3.1 The interaction basis

The Standard Model Lagrangian,LSM, is the most general renormalizable Lagrangian that is consistent
with the gauge symmetry (1), the particle content (3) and thepattern of spontaneous symmetry breaking
(2). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (4)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace the derivative with
a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (5)

HereGµa are the eight gluon fields,W µ
b the three weak interaction bosons andBµ the single hypercharge

boson. TheLa’s areSU(3)C generators (the3 × 3 Gell-Mann matrices12λa for triplets,0 for singlets),
theTb’s areSU(2)L generators (the2×2 Pauli matrices12τb for doublets,0 for singlets), and theY ’s are
theU(1)Y charges. For example, for the quark doubletsQL, we have

Lkinetic(QL) = iQLiγµ

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)
δijQLj , (6)

while for the lepton doubletsLIL, we have

Lkinetic(LL) = iLLiγµ

(
∂µ +

i

2
gW µ

b τb −
i

2
g′Bµ

)
δijLLj. (7)

The unit matrix in flavor space,δij , signifies that these parts of the interaction Lagrangian are flavor-
universal. In addition, they conserve CP.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2. (8)

For the Standard Model scalar sector, where there is a singledoublet, this part of the Lagrangian is also
CP conserving.

The quark Yukawa interactions are given by

− LqY = Y d
ijQLiφDRj + Y u

ijQLiφ̃URj + h.c., (9)

(whereφ̃ = iτ2φ
†) while the lepton Yukawa interactions are given by

− LℓY = Y e
ijLLiφERj + h.c.. (10)

This part of the Lagrangian is, in general, flavor-dependent(that is,Y f 6∝ 1) and CP violating.

3.2 Global symmetries

In the absence of the Yukawa matricesY d, Y u andY e, the SM has a largeU(3)5 global symmetry:

Gglobal(Y
u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (11)

where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2ℓ = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (12)
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Out of the fiveU(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remainingU(1) groups can
be identified with the PQ symmetry whereby the Higgs andDR, ER fields have opposite charges, and
with a global rotation ofER only.

The point that is important for our purposes is thatLkinetic+LHiggs respect the non-Abelian flavor
symmetryS(3)3q × SU(3)2ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (13)

where theVi are unitary matrices. The Yukawa interactions (9) and (10) break the global symmetry,

Gglobal(Y
u,d,e 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (14)

(Of course, the gaugedU(1)Y also remains a good symmetry.) Thus, the transformations ofEq. (13) are
not a symmetry ofLSM. Instead, they correspond to a change of the interaction basis. These observations
also offer an alternative way of defining flavor physics: it refers to interactions that break theSU(3)5

symmetry (13). Thus, the term “flavor violation ” is often used to describe processes or parameters that
break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the globalSU(3)3q symmetry
(but are neutral underU(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (15)

and of the lepton Yukawa couplings as spurions that break theglobalSU(3)2ℓ symmetry (but are neutral
underU(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2
ℓ
. (16)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 5), and the idea ofminimal flavor violation (see Section 5.3).

3.3 Counting parameters

How many independent parameters are there inLqY? The two Yukawa matrices,Y u andY d, are3×3 and
complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of them
are, however, physical. The pattern ofGglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three3× 3 unitary matrices minus the phase
related toU(1)B). For example, we can use the unitary transformationsQL → VQQL, UR → VUUR
andDR → VDDR, to lead to the following interaction basis:

Y d = λd, Y u = V †λu, (17)

whereλd,u are diagonal,

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), (18)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we will identify
the nine real parameters as six quark masses and three mixingangles, while the single phase isδKM.

How many independent parameters are there inLℓY? The Yukawa matrixY e is 3×3 and complex.
Consequently, there are 9 real and 9 imaginary parameters inthis matrix. There is, however, freedom
to remove 6 real and 9 imaginary parameters (the number of parameters in two3 × 3 unitary matrices
minus the phases related toU(1)3). For example, we can use the unitary transformationsLL → VLLL
andER → VEER, to lead to the following interaction basis:

Y e = λe = diag(ye, yµ, yτ ). (19)
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We conclude that there are 3 real lepton flavor parameters. Inthe mass basis, we will identify these
parameters as the three charged lepton masses. We must, however, modify the model when we take into
account the evidence for neutrino masses.

3.4 The mass basis

Upon the replacementRe(φ0) → v+h0√
2

, the Yukawa interactions (9) give rise to the mass matrices

Mq =
v√
2
Y q. (20)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find unitary matri-
cesVqL andVqR such that

VqLMqV
†
qR =Mdiag

q ≡ v√
2
λq. (21)

The four matricesVdL, VdR, VuL andVuR are then the ones required to transform to the mass basis. For
example, if we start from the special basis (17), we haveVdL = VdR = VuR = 1 andVuL = V . The
combinationVuLV

†
dL is independent of the interaction basis from which we start this procedure.

We denote the left-handed quark mass eigenstates asUL andDL. The charged current interactions
for quarks [that is the interactions of the chargedSU(2)L gauge bosonsW±

µ = 1√
2
(W 1

µ ∓ iW 2
µ)], which

in the interaction basis are described by (6), have a complicated form in the mass basis:

− Lq
W± =

g√
2
ULiγ

µVijDLjW
+
µ + h.c.. (22)

whereV is the3 × 3 unitary matrix (V V † = V †V = 1) that appeared in Eq. (17). For a general
interaction basis,

V = VuLV
†
dL. (23)

V is the Cabibbo-Kobayashi-Maskawa (CKM)mixing matrixfor quarks [1, 2]. As a result of the fact
thatV is not diagonal, theW± gauge bosons couple to quark mass eigenstates of different generations.
Within the Standard Model, this is the only source offlavor changingquark interactions.

Exercise 1:Prove that, in the absence of neutrino masses, there is no mixing in the lepton sector.

Exercise 2:Prove that there is no mixing in theZ couplings. (In the physics jargon, there are no
flavor changing neutral currents at tree level.)

The detailed structure of the CKM matrix, its parametrization, and the constraints on its elements
are described in Appendix A.

4 Testing CKM

Measurements of rates, mixing, and CP asymmetries inB decays in the two B factories, BaBar abd
Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our understanding of CP
violation. The progress is both qualitative and quantitative. Various basic questions concerning CP and
flavor violation have received, for the first time, answers based on experimental information. These
questions include, for example,

– Is the Kobayashi-Maskawa mechanism at work (namely, isδKM 6= 0)?

– Does the KM phase dominate the observed CP violation?

As a first step, one may assume the SM and test the overall consistency of the various measurements.
However, the richness of data from the B factories allow us togo a step further and answer these questions
model independently, namely allowing new physics to contribute to the relevant processes. We here
explain the way in which this analysis proceeds.
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4.1 SψKS

The CP asymmetry inB → ψKS decays plays a major role in testing the KM mechanism. Before
we explain the test itself, we should understand why the theoretical interpretation of the asymmetry is
exceptionally clean, and what are the theoretical parameters on which it depends, within and beyond the
Standard Model.

The CP asymmetry in neutral meson decays into final CP eigenstatesfCP is defined as follows:

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (24)

A detailed evaluation of this asymmetry is given in AppendixB. It leads to the following form:

AfCP
(t) = SfCP

sin(∆mt)−CfCP
cos(∆mt),

SfCP
≡ 2Im(λfCP

)

1 + |λfCP
|2 , CfCP

≡ 1− |λfCP
|2

1 + |λfCP
|2 , (25)

where
λfCP

= e−iφB (AfCP
/AfCP

) . (26)

HereφB refers to the phase ofM12 [see Eq. (B.23)]. Within the Standard Model, the corresponding
phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (27)

The decay amplitudesAf andAf are defined in Eq. (B.1).

d or s

b q

q′

q

V
∗
qb

Vqq′

B
0

or

Bs
f

(a) tf

d or s

b q′

q

q

V
∗
q

u
b Vq

u
q′

q
u

B
0

or

Bs
f

(b) pf
qu

Fig. 1: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing toB0 → f or Bs → f via a
b̄→ q̄qq̄′ quark-level process.

TheB0 → J/ψK0 decay [3,4] proceeds via the quark transitionb̄→ c̄cs̄. There are contributions
from both tree (t) and penguin (pqu, wherequ = u, c, t is the quark in the loop) diagrams (see Fig. 1)
which carry different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(
V ∗
qubVqus

)
pquf . (28)

(The distinction between tree and penguin contributions isa heuristic one, the separation by the operator
that enters is more precise. For a detailed discussion of themore complete operator product approach,
which also includes higher order QCD corrections, see, for example, ref. [5].) Using CKM unitarity,
these decay amplitudes can always be written in terms of justtwo CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (29)
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whereTψK = tψK + pcψK − ptψK andP uψK = puψK − ptψK . A subtlety arises in this decay that is

related to the fact thatB0 → J/ψK0 andB
0 → J/ψK0. A common final state, e.g.J/ψKS , can

be reached viaK0 − K0 mixing. Consequently, the phase factor corresponding to neutralK mixing,
e−iφK = (V ∗

cdVcs)/(VcdV
∗
cs), plays a role:

AψKS

AψKS

= −
(VcbV

∗
cs)TψK + (VubV

∗
us)P

u
ψK(

V ∗
cbVcs

)
TψK +

(
V ∗
ubVus

)
P uψK

× V ∗
cdVcs
VcdV

∗
cs

. (30)

The crucial point is that, forB → J/ψKS and other̄b → c̄cs̄ processes, we can neglect theP u

contribution toAψK , in the SM, to an approximation that is better than one percent:

|P uψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor)× 0.1 × 0.23 ∼< 0.005. (31)

Thus, to an accuracy better than one percent,

λψKS
=

(
V ∗
tbVtd
VtbV

∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)
= −e−2iβ , (32)

whereβ is defined in Eq. (A.9), and consequently

SψKS
= sin 2β, CψKS

= 0 . (33)

(Below the percent level, several effects modify this equation [6–9].)

Exercise 3: Show that, if theB → ππ decays were dominated by tree diagrams, thenSππ =
sin 2α.

Exercise 4:Estimate the accuracy of the predictionsSφKS
= sin 2β andCφKS

= 0.

When we consider extensions of the SM, we still do not expect any significant new contribu-
tion to the tree level decay,b → cc̄s, beyond the SMW -mediated diagram. Thus, the expression
ĀψKS

/AψKS
= (VcbV

∗
cd)/(V

∗
cbVcd) remains valid, though the approximation of neglecting sub-dominant

phases can be somewhat less accurate than Eq. (31). On the other hand,M12, theB0−B0
mixing ampli-

tude, can in principle get large and even dominant contributions from new physics. We can parametrize
the modification to the SM in terms of two parameters,r2d signifying the change in magnitude, and2θd
signifying the change in phase:

M12 = r2d e
2iθd MSM

12 (ρ, η). (34)

This leads to the following generalization of Eq. (33):

SψKS
= sin(2β + 2θd), CψKS

= 0 . (35)

The experimental measurements give the following ranges [10]:

SψKS
= +0.68 ± 0.02, CψKS

= +0.005 ± 0.017 . (36)

4.2 Self-consistency of the CKM assumption

The three generation standard model has room for CP violation, through the KM phase in the quark
mixing matrix. Yet, one would like to make sure that indeed CPis violated by the SM interactions,
namely thatsin δKM 6= 0. If we establish that this is the case, we would further like to know whether the
SM contributions to CP violating observables are dominant.More quantitatively, we would like to put
an upper bound on the ratio between the new physics and the SM contributions.

As a first step, one can assume that flavor changing processes are fully described by the SM, and
check the consistency of the various measurements with thisassumption. There are four relevant mixing
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Moriond 09
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Fig. 2: Allowed region in theρ, η plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub/Vcb|), mass differences in theB0 (∆md) andBs (∆ms) neutral meson systems, and CP violation
in K → ππ (εK),B → ψK (sin 2β),B → ππ, ρπ, ρρ (α), andB → DK (γ). Taken from [12].

parameters, which can be taken to be the Wolfenstein parametersλ,A, ρ andη defined in Eq. (A.4). The
values ofλ andA are known rather accurately [11] from, respectively,K → πℓν andb→ cℓν decays:

λ = 0.2254 ± 0.0007, A = 0.811+0.022
−0.012. (37)

Then, one can express all the relevant observables as a function of the two remaining parameters,ρ and
η, and check whether there is a range in theρ− η plane that is consistent with all measurements. The list
of observables includes the following:

– The rates of inclusive and exclusive charmless semileptonic B decays depend on|Vub|2 ∝ ρ2+η2;

– The CP asymmetry inB → ψKS , SψKS
= sin 2β = 2η(1−ρ)

(1−ρ)2+η2 ;

– The rates of variousB → DK decays depend on the phaseγ, whereeiγ = ρ+iη√
ρ2+η2

;

– The rates of variousB → ππ, ρπ, ρρ decays depend on the phaseα = π − β − γ;

– The ratio between the mass splittings in the neutralB andBs systems is sensitive to|Vtd/Vts|2 =
λ2[(1− ρ)2 + η2];

– The CP violation inK → ππ decays,ǫK , depends in a complicated way onρ andη.

The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following ranges forρ
andη can account for all the measurements [11]:

ρ = +0.131+0.026
−0.013, η = +0.345 ± 0.014. (38)
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One can make then the following statement [13]:
Very likely, CP violation in flavor changing processes is dominated by the Kobayashi-Maskawa
phase.

In the next two subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

4.3 Is the KM mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level processes are
dominated by theW -mediated SM diagrams (see, for example, [14]). This is a very plausible assumption.
I am not aware of any viable well-motivated model where this assumption is not valid. Thus we can use
all tree level processes and fit them toρ andη, as we did before. The list of such processes includes the
following:

1. Charmless semileptonicB-decays,b→ uℓν, measureRu [see Eq. (A.8)].

2. B → DK decays, which go through the quark transitionsb → cūs andb → uc̄s, measure the
angleγ [see Eq. (A.9)].

3. B → ρρ decays (and, similarly,B → ππ andB → ρπ decays) go through the quark transition
b → uūd. With an isospin analysis, one can determine the relative phase between the tree decay
amplitude and the mixing amplitude. By incorporating the measurement ofSψKS

, one can subtract
the phase from the mixing amplitude, finally providing a measurement of the angleγ [see Eq.
(A.9)].

In addition, we can use loop processes, but then we must allowfor new physics contributions, in
addition to the(ρ, η)-dependent SM contributions. Of course, if each such measurement adds a separate
mode-dependent parameter, then we do not gain anything by using this information. However, there is a
number of observables where the only relevant loop process isB0−B0 mixing. The list includesSψKS

,
∆mB and the CP asymmetry in semileptonicB decays:

SψKS
= sin(2β + 2θd),

∆mB = r2d(∆mB)
SM,

ASL = −Re
(

Γ12

M12

)SM sin 2θd
r2d

+ Im
(

Γ12

M12

)SM cos 2θd
r2d

. (39)

As explained above, such processes involve two new parameters [see Eq. (34)]. Since there are three
relevant observables, we can further tighten the constraints in the(ρ, η)-plane. Similarly, one can use
measurements related toBs − Bs mixing. One gains three new observables at the cost of two new
parameters (see, for example, [15]).

The results of such fit, projected on theρ− η plane, can be seen in Fig. 3. It gives [12]

η = 0.44+0.05
−0.23 (3σ). (40)

[A similar analysis in Ref. [16] obtains the3σ range(0.31 − 0.46).] It is clear thatη 6= 0 is well
established:
The Kobayashi-Maskawa mechanism of CP violation is at work.

Another way to establish that CP is violated by the CKM matrixis to find, within the same proce-
dure, the allowed range forsin 2β [16]:

sin 2βtree = 0.80 ± 0.03. (41)

Thus,β 6= 0 is well established.

The consistency of the experimental results (36) with the SMpredictions (33,41) means that the
KM mechanism of CP violation dominates the observed CP violation. In the next subsection, we make
this statement more quantitative.
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Fig. 3: The allowed region in theρ− η plane, assuming that tree diagrams are dominated by the Standard Model
[12].

4.4 How much can new physics contribute toB0
− B

0 mixing?

All that we need to do in order to establish whether the SM dominates the observed CP violation, and
to put an upper bound on the new physics contribution toB0 − B0 mixing, is to project the results of
the fit performed in the previous subsection on ther2d − 2θd plane. If we find thatθd ≪ β, then the
SM dominance in the observed CP violation will be established. The constraints are shown in Fig. 4(a).
Indeed,θd ≪ β.

An alternative way to present the data is to use thehd, σd parametrization,

r2de
2iθd = 1 + hde

2iσd . (42)

While therd, θd parameters give the relation between the full mixing amplitude and the SM one, and
are convenient to apply to the measurements, thehd, σd parameters give the relation between the new
physics and SM contributions, and are more convenient in testing theoretical models:

hde
2iσd =

MNP
12

MSM
12

. (43)

The constraints in thehd−σd plane are shown in Fig. 4(b). We can make the following two statements:

1. A new physics contribution toB0 −B
0

mixing amplitude that carries a phase that is significantly
different from the KM phase is constrained to lie below the 20-30% level.

2. A new physics contribution to theB0−B0
mixing amplitude which is aligned with the KM phase

is constrained to be at most comparable to the CKM contribution.

One can reformulate these statements as follows:
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Fig. 4: Constraints in the (a)r2d − 2θd plane, and (b)hd − σd plane, assuming that NP contributions to tree level
processes are negligible [12].

1. The KM mechanism dominates CP violation inB0 −B
0

mixing.

2. The CKM mechanism is a major player inB0 −B
0

mixing.

5 The new physics flavor puzzle

5.1 A model independent discussion

It is clear that the Standard Model is not a complete theory ofNature:

1. It does not include gravity, and therefore it cannot be valid at energy scales abovemPlanck ∼ 1019

GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV;

3. The fine-tuning problem of the Higgs mass suggests that thescale where the SM is replaced with
a more fundamental theory is actually much lower,mtop−partners ∼< a few TeV.

4. If the dark matter is made of weakly interacting massive particles (WIMPs) then, again, a low scale
of new physics is likely,mwimp ∼< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physicsΛNP. For example, the lowest
dimension non-renormalizable terms are dimension five:

−Ldim−5
Yukawa =

Zνij
ΛNP

LILiL
I
Ljφφ+ h.c.. (44)

These are the seesaw terms, leading to neutrino masses.

Exercise 5:How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these
parameters in the mass basis.
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Table 1: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd ∆mK/mK = 7.0× 10−15 ǫK = 2.3× 10−3

cu ∆mD/mD = 8.7× 10−15 AΓ/yCP ∼< 0.2
bd ∆mB/mB = 6.3 × 10−14 SψK = +0.67 ± 0.02
bs ∆mBs/mBs = 2.1 × 10−12 Sψφ = −0.04 ± 0.09

Table 2: Lower bounds on the scale of new physicsΛNP, in units of TeV. The bounds from CP conserving

(violating) observables scale like
√
zij (

√
zIij).

ij CP-conserving CP-violating
sd 1× 103 2× 104

cu 1× 103 3× 103

bd 4× 102 8× 102

bs 7× 101 2× 102

As concerns quark flavor physics, consider, for example, thefollowing dimension-six, four-fermion,
flavor changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the termL∆B=2 ∝ (dLγµbL)

2 contributes to∆mB, the mass difference between the two

neutralB-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B0〉 = −1

3
m2
Bf

2
BBB. (46)

This leads to∆mB/mB = 2|MB
12|/mB ∼ (|zbd|/3)(fB/ΛNP)

2. Analogous expressions hold for the
other neutral mesons.

The experimental results for CP conserving and CP violatingobservables related to neutral meson
mixing (mass splittings and CP asymmetries in tree level decays, respectively) are given in Table 1.

The measurements quoted in Table 1 lead, for a given value of|zij | andzIij ≡ Im(zij), to lower
bounds on the scaleΛNP. In Table 2 we give the bounds that correspond to|zij | = 1 and tozIij = 1. The

bounds scale like
√
zij and

√
zIij , respectively.

We conclude that if the new physics has a generic flavor structure, that iszij = O(1), then its scale
must be above103 − 104 TeV. If the leading contributions involve electroweak loops, the lower bound
is somewhat lower, of order102 − 103 TeV. The bounds from the corresponding four-fermi terms with
LR structure, instead of the LL structure of Eq. (45), are even stronger.If indeedΛNP ≫ TeV , it means
that we have misinterpreted the hints from the fine-tuning problem and the dark matter puzzle.

There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV )2,
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zcu ∼< 5× 10−7 (ΛNP/TeV )2,

zbd ∼< 5× 10−6 (ΛNP/TeV )2,

zbs ∼< 2× 10−4 (ΛNP/TeV )2, (47)

zIsd ∼< 6× 10−9 (ΛNP/TeV )2,

zIcu ∼< 1× 10−7 (ΛNP/TeV )2,

zIbd ∼< 1× 10−6 (ΛNP/TeV )2,

zIbs ∼< 2× 10−5 (ΛNP/TeV )2. (48)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from generic.
Specifically, if new particles at the TeV scale couple to the SM fermions, then there are two ways in which
their contributions to FCNC processes, such as neutral meson mixing, can be suppressed: degeneracy
and alignment. Either of these principles, or a combinationof both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top,the Higgs and the weak gauge bosons). Thus,
the scale isΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, thezij coefficients are suppressed byα2

2. To identify the relevant flavor suppression factor, one
can employ the spurion formalism. For example, the flavor transition that is relevant toB0 −B0 mixing
involvesdLbL which transforms as(8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to

(Y uY u†)13 ∝ y2t VtbV
∗
td. Indeed, an explicit calculation, using VIA for the matrix element and neglecting

QCD corrections, gives (a detailed derivation can be found in Appendix B of [17])

2MB
12

mB
≈ −α

2
2

12

f2B
m2
W

S0(xt)(VtbV
∗
td)

2, (49)

wherexi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[
1− 11x

4
+
x2

4
− 3x2 lnx

2(1 − x)

]
. (50)

Similar spurion analyses, or explicit calculations, allowus to extract the weak and flavor suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

Im(zSMcu ) ∼ α2
2y

2
b |VubVcb|2 ∼ 2× 10−14,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (51)

Note that we did not includezSMcu in the list. The reason is tha it requires a more detailed consider-
ation. The naively leading short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5× 10−13. However,

higher dimension terms can replace ay2s factor with (Λ/mD)
2 [18]. Moreover, long distance contribu-

tions are expected to dominate. In particular, peculiar phase space effects [19, 20] have been identified
which are expected to enhance∆mD to within an order of magnitude of the its measured value. TheCP
violating part, on the other hand, is dominated by short distance physics.

It is clear then that contributions from new physics atΛNP ∼ 1 TeV should be suppressed by
factors that are comparable or smaller than the SM ones. Why does that happen? This is the new physics
flavor puzzle.
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Table 3: The phenomenological upper bounds on(δqLL)ij and 〈δqij〉 =
√
(δqLL)ij(δ

q
RR)ij . Hereq = u, d and

M = L,R. The constraints are given formq̃ = 1 TeV andx = m2

g̃/m
2

q̃ = 1. We assume that the phases could
suppress the imaginary part by a factor of∼ 0.3. Taken from Ref. [22].

q ij (δqLL)ij 〈δqij〉
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.2 0.07
u 12 0.1 0.008

The fact that the flavor structure of new physics at the TeV scale must be non-generic means that
flavor measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners andthe structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

5.2 The supersymmetric flavor puzzle

We consider, as an example, the contributions from the box diagrams involving the squark doublets of the
second and third generations,Q̃L2,3, to theBs−Bs mixing amplitude. The contributions are proportional
toKd∗

3i K
d
2iK

d∗
3jK

d
2j , whereKd is the mixing matrix of the gluino couplings to a left-handeddown quark

and their supersymmetric squark partners (∝ [(δdLL)23]
2 in the mass insertion approximation, described

in Appendix C.1). We work in the mass basis for both quarks andsquarks. A detailed derivation [21] is
given in Appendix C.2. It gives:

M s
12 =

α2
smBsf

2
Bs
BBsηQCD

108m2
d̃

[11f̃6(x) + 4xf6(x)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
32K

d
22)

2. (52)

Heremd̃ is the average mass of the two squark generations,∆m2
d̃

is the mass-squared difference, and

x = m2
g̃/m

2
d̃
.

Eq. (52) can be translated into our generic language:

ΛNP = mq̃, (53)

zbs1 =
11f̃6(x) + 4xf6(x)

18
α2
s

(
∆m̃2

d̃

m2
d̃

)2

(Kd∗
32K

d
22)

2 ≈ 10−4(δLL23 )2,

where, for the last approximation, we took the example ofx = 1 [and used, correspondingly,11f̃6(1) +
4f6(1) = 1/6], and defined

δLL23 =

(
∆m̃2

d̃

m2
d̃

)
(Kd∗

32K
d
22). (54)

Similar expressions can be derived for the dependence ofK0 −K0 on (δdMN )12, B0 −B0 on (δdMN )13,
andD0 − D0 on (δuMN )12. Then we can use the constraints of Eqs. (47,48) to put upper bounds on
(δqMN )ij . Some examples are given in Table 3 (see Ref. [22] for detailsand list of references).

We learn that, in most cases, we needδqij/mq̃ ≪ 1/TeV. One can immediately identify three
generic ways in which supersymmetric contributions to neutral meson mixing can be suppressed:

1. Heaviness:mq̃ ≫ 1 TeV ;
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2. Degeneracy:∆m2
q̃ ≪ m2

q̃;

3. Alignment:Kq
ij ≪ 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [23], the squarks are
very heavy and supersymmetry no longer solves the fine tuningproblem. (When the first two squark
generations are mildly heavy and the third generation is light, as in effective supersymmetry [24], the
fine tuning problem is still solved, but additional suppression mechanisms are needed.) If we want to
maintain supersymmetry as a solution to the fine tuning problem, either degeneracy or alignment or a
combination of the two is needed. This means that the flavor structure of supersymmetry is not generic,
as argued in the previous section.

Take, for example,(δdLL)12 ≤ 0.03. Naively, one might expect the alignment to be of order
(VcdV

∗
cs) ∼ 0.2, which is far from sufficient by itself. Barring a very precise alignment (|Kd

12| ≪ |Vus|)
[25,26] and accidental cancelations, we are led to concludethat the first two squark generations must be
quasi-degenerate. Actually, by combining the constraintsfromK0 −K0 mixing andD0 −D0 mixing,
one can show that this is the case independently of assumptions about the alignment [27–29]. Analogous
conclusions can be drawn for many TeV-scale new physics scenarios: a strong level of degeneracy is
required (for definitions and detailed analysis, see [30]).

Exercise 9:DoesKd
31 ∼ |Vub| suffice to satisfy the∆mB constraint with neither degeneracy nor

heaviness? (Use the two generation approximation and ignore the second generation.)

Is there a natural way to make the squarks degenerate? Degeneracy requires that the3×3 matrix of
soft supersymmetry breaking mass-squared termsm̃2

QL
≃ m̃2

q̃1. We have mentioned already that flavor
universality is a generic feature of gauge interactions. Thus, the requirement of degeneracy is perhaps a
hint that supersymmetry breaking isgauge mediatedto the MSSM fields.

5.3 Minimal flavor violation (MFV)

If supersymmetry breaking is gauge mediated, the squark mass matrices forSU(2)L- doublet and
SU(2)L-singlet squarks have the following form at the scale of mediationmM :

M̃2
UL

(mM ) =
(
m2
Q̃L

+DUL

)
1+MuM

†
u,

M̃2
DL

(mM ) =
(
m2
Q̃L

+DDL

)
1+MdM

†
d ,

M̃2
UR

(mM ) =
(
m2
ŨR

+DUR

)
1+M †

uMu,

M̃2
DR

(mM ) =
(
m2
D̃R

+DDR

)
1+M †

dMd, (55)

whereDqA = (T3)qA − (QEM)qAs
2
Wm

2
Z cos 2β are theD-term contributions. Here, the only source of

theSU(3)3q breaking are the SM Yukawa matrices.

This statement holds also when the renormalization group evolution is applied to find the form of
these matrices at the weak scale. Taking the scale of the softbreaking termsmq̃A to be somewhat higher
than the electroweak breaking scalemZ allows us to neglect theDqA andMq terms in (55). Then we
obtain

M̃2
QL

(mZ) ∼ m2
Q̃L

(
r31+ cuYuY

†
u + cdYdY

†
d

)
,

M̃2
UR

(mZ) ∼ m2
ŨR

(
r31+ cuRY

†
uYu

)
,

M̃2
DR

(mZ) ∼ m2
D̃R

(
r31+ cdRY

†
d Yd

)
. (56)

Herer3 represents the universal RGE contribution that is proportional to the gluino mass (r3 = O(6) ×
(M3(mM )/mq̃(mM ))) and thec-coefficients depend logarithmically onmM/mZ and can be ofO(1)
whenmM is not far below the GUT scale.
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Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete example of a
large class of models that obey a simple principle calledminimal flavor violation(MFV) [31]. This
principle guarantees that low energy flavor changing processes deviate only very little from the SM
predictions. The basic idea can be described as follows. Thegauge interactions of the SM are universal
in flavor space. The only breaking of this flavor universalitycomes from the three Yukawa matrices,Y u,
Y d andY e. If this remains true in the presence of the new physics, namely Y u, Y d andY e are the only
flavor non-universal parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions that
we presented in section 3.2. The Standard Model with vanishing Yukawa couplings has a large global
symmetry (11,12). In this section we concentrate only on thequarks. The non-Abelian part of the flavor
symmetry for the quarks isSU(3)3q of Eq. (12) with the three generations of quark fields transforming
as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (57)

The Yukawa interactions,
LY = QLY

dDRH +QLY
uURHc, (58)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions with the

following transformation properties underSU(3)3q [see Eq. (15)]:

Y u ∼ (3, 3̄, 1), Y d ∼ (3, 1, 3̄). (59)

When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields which transform
under the flavor symmetry, and then require that all the Lagrangian terms, constructed from the SM
fields,Y d andY u, must be (formally) invariant under the flavor groupSU(3)3q . Of course, in reality,LY
breaksSU(3)3q precisely becauseY d,u arenot fields and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be applied in two
ways:

1. If we consider the SM as a low energy effective theory, thenall higher-dimension operators, con-
structed from SM-fields andY -spurions, are formally invariant underGglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed from
SM and the new fields, and fromY -spurions, are formally invariant underGglobal.

Exercise 10: Use the spurion formalism to argue that, in MFV models, theKL → π0νν̄ decay
amplitude is proportional toy2t VtdV

∗
ts.

Exercise 11: Find the flavor suppression factors in thezbsi coefficients, if MFV is imposed, and
compare to the bounds in Eq. (47).

Examples of MFV models include models of supersymmetry withgauge-mediation or with anomaly-
mediation of its breaking.

5.3.1 Testing MFV at the LHC

If the LHC discovers new particles that couple to the SM fermions, then it will be able to test solutions
to the new physics flavor puzzle such as MFV [32]. Much of its power to test such frameworks is based
on identifying top and bottom quarks.

To understand this statement, we notice that the spurionsY u andY d can always be written in
terms of the two diagonal Yukawa matricesλu andλd and the CKM matrixV , see Eqs. (17,18). Thus,
the only source of quark flavor changing transitions in MFV models is the CKM matrix. Next, note that
to an accuracy that is better thanO(0.05), we can write the CKM matrix as follows:

V =




1 0.23 0
−0.23 1 0

0 0 1


 . (60)

16



Exercise 12:The approximation (60) should be intuitively obvious to top-physicists, but definitely
counter-intuitive to bottom-physicists. (Some of them have dedicated a large part of their careers to
experimental or theoretical efforts to determineVcb andVub.) What does the approximation imply for the
bottom quark? When we take into account that it is only good toO(0.05), what would the implications
be?

We learn that the third generation of quarks is decoupled, toa good approximation, from the first
two. This, in turn, means that any new particle that couples to an odd number of the SM quarks (think, for
example, of heavy quarks in vector-like representations ofGSM), decay into either third generation quark,
or to non-third generation quark, but not to both. For example, in Ref. [32], MFV models with additional
charge−1/3, SU(2)L-singlet quarks –B′ – were considered. A concrete test of MFV was proposed,
based on the fact that the largest mixing effect involving the third generation is of order|Vcb|2 ∼ 0.002:
Is the following prediction, concerning events ofB′ pair production, fulfilled:

Γ(B′B′ → Xq1,2q3)

Γ(B′B′ → Xq1,2q1,2) + Γ(B′B′ → Xq3q3)
∼< 10−3. (61)

If not, then MFV is excluded. One could similarly test various versions of minimal lepton flavor violation
(MLFV) [33–38].

Analogous tests can be carried out in the supersymmetric framework [39–45]. Here, there is also
a generic prediction that, in each of the three sectors (QL, UR,DR), squarks of the first two generations
are quasi-degenerate, and do not decay into third generation quarks. Squarks of the third generation can
be separated in mass (though, for smalltan β, the degeneracy in thẽDR sector is threefold), and decay
only to third generation quarks.

We conclude that measurements at the LHC related to new particles that couple to the SM fermions
are likely to teach us much more about flavor physics.

6 The Standard Model flavor puzzle

The SM has thirteen flavor parameters: six quark Yukawa couplings, four CKM parameters (three angles
and a phase), and three charged lepton Yukawa couplings. (One can use fermions masses instead of the
fermion Yukawa couplings,Yf =

√
2mf/v.) The orders of magnitudes of these thirteen dimensionless

parameters are as follows:

Yt ∼ 1, Yc ∼ 10−2, Yu ∼ 10−5,

Yb ∼ 10−2, Ys ∼ 10−3, Yd ∼ 10−4,

Yτ ∼ 10−2, Yµ ∼ 10−3, Ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δKM ∼ 1. (62)

Only two of these parameters are clearly ofO(1), the top-Yukawa and the KM phase. The other flavor
parameters exhibit smallness and hierarchy. Their values span six orders of magnitude. It may be that
this set of numerical values are just accidental. More likely, the smallness and the hierarchy have a
reason. The question of why there is smallness and hierarchyin the SM flavor parameters constitutes
“The Standard Model flavor puzzle."

The motivation to think that there is indeed a structure in the flavor parameters is strengthened by
considering the values of the four SM parameters that are notflavor parameters, namely the three gauge
couplings and the Higgs self-coupling:

gs ∼ 1, g ∼ 0.6, e ∼ 0.3, λ ∼ 0.2. (63)

This set of values does seem to be a random distribution of order-one numbers, as one would naively
expect.
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A few examples of mechanisms that were proposed to explain the observed structure of the flavor
parameters are the following:

– An approximate Abelian symmetry (“The Froggatt-Nielsen mechanism" [46]);

– An approximate non-Abelian symmetry (seee.g.[47]);

– Conformal dynamics (“The Nelson-Strassler mechanism" [48]);

– Location in an extra dimension [49].

We will take as an example the Froggatt-Nielsen mechanism.

6.1 The Froggatt-Nielsen mechanism

Small numbers and hierarchies are often explained by approximate symmetries. For example, the small
mass splitting between the charged and neural pions finds an explanation in the approximate isospin
(globalSU(2)) symmetry of the strong interactions.

Approximate symmetries lead to selection rules which account for the size of deviations from the
symmetry limit. Spurion analysis is particularly convenient to derive such selection rules. The Froggatt-
Nielsen mechanism postulates aU(1)H symmetry, that is broken by a small spurionǫH . Without loss of
generality, we assignǫH aU(1)H charge ofH(ǫH) = −1. Each SM field is assigned aU(1)H charge. In
general, different fermion generations are assigned different charges, hence the term ‘horizontal symme-
try.’ The rule is that each term in the Lagrangian, made of SM fields and the spurion should be formally
invariant underU(1)H .

The approximateU(1)H symmetry thus leads to the following selection rules:

Y u
ij = ǫ

|H(Q̄i)+H(Uj)+H(φu)|
H ,

Y d
ij = ǫ

|H(Q̄i)+H(Dj)+H(φd)|
H ,

Y e
ij = ǫ

|H(L̄i)+H(Ej)−H(φd)|
H . (64)

As a concrete example, we take the following set of charges:

H(Q̄i) = H(Ui) = H(Ei) = (2, 1, 0),

H(L̄i) = H(Di) = (0, 0, 0),

H(φu) = H(φd) = 0. (65)

It leads to the following parametric suppressions of the Yukawa couplings:

Y u ∼



ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ
ǫ2 ǫ 1


 , Y d ∼ (Y e)T ∼



ǫ2 ǫ2 ǫ2

ǫ ǫ ǫ
1 1 1


 . (66)

We emphasize that for each entry we give the parametric suppression (that is the power ofǫ), but each
entry has an unknown (complex) coefficient of order one, and there are no relations between the order
one coefficients of different entries.

The structure of the Yukawa matrices dictates the parametric suppression of the physical observ-
ables:

Yt ∼ 1, Yc ∼ ǫ2, Yu ∼ ǫ4,

Yb ∼ 1, Ys ∼ ǫ, Yd ∼ ǫ2,

Yτ ∼ 1, Yµ ∼ ǫ, Ye ∼ ǫ2,
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|Vus| ∼ ǫ, |Vcb| ∼ ǫ, |Vub| ∼ ǫ2, δKM ∼ 1. (67)

For ǫ ∼ 0.05, the parametric suppressions are roughly consistent with the observed hierarchy. In partic-
ular, this set of charges predicts that the down and charged lepton mass hierarchies are similar, while the
up hierarchy is the square of the down hierarchy. These features are roughly realized in Nature.

Exercise 13: Derive the parametric suppression and approximate numerical values ofY u, its
eigenvalues, and the three angles ofV u

L , forH(Qi) = 4, 2, 0, H(Ui) = 3, 2, 0 andǫH = 0.2

Could we explain any set of observed values with such an approximate symmetry? If we could,
then the FN mechanism cannot be really tested. The answer however is negative. Consider, for example,
the quark sector. Naively, we have 11U(1)H charges that we are free to choose. However, theU(1)Y ×
U(1)B ×U(1)PQ symmetry implies that there are only 8 independent choices that affect the structure of
the Yukawa couplings. On the other hand, there are 9 physicalparameters. Thus, there should be a single
relation between the physical parameters that is independent of the choice of charges. Assuming that the
sum of charges in the exponents of Eq. (64) is of the same sign for all 18 combinations, the relation is

|Vub| ∼ |VusVcb|, (68)

which is fulfilled to within a factor of 2. There are also interesting inequalities (herei < j):

|Vij | ∼> m(Ui)/m(Uj), m(Di)/m(Dj). (69)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, then
the CKM matrix is predicted to be∼ 1, namely the diagonal entries are not parametrically suppressed.
This structure is also consistent with the observed CKM structure.

6.2 The flavor of neutrinos

Five neutrino flavor parameters have been measured in recentyears (seee.g. [50]): two mass-squared
differences,

∆m2
21 = (7.5 ± 0.2)× 10−5 eV2, |∆m2

32| = (2.5 ± 0.1) × 10−3 eV2, (70)

and the three mixing angles,

|Ue2| = 0.55 ± 0.01, |Uµ3| = 0.64 ± 0.02, |Ue3| = 0.15 ± 0.01. (71)

These parameters constitute a significant addition to the thirteen SM flavor parameters and provide, in
principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

– |Uµ3| > any |Vij |;
– |Ue2| > any |Vij|;
– |Ue3| is not particularly small (|Ue3| 6≪ |Ue2Uµ3|);
– m2/m3 ∼> 1/6 > any mi/mj for charged fermions.

These features can be summarized by the statement that, in contrast to the charged fermions, neither
smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass anarchy
[51–53]. It postulates that the neutrino mass matrix has no structure, namely all entries are of the same
order of magnitude. Normalized to an effective neutrino mass scale,v2/Λseesaw, the various entries are
random numbers of order one. Note that anarchy means neitherhierarchy nor degeneracy.
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If true, the contrast between neutrino mass anarchy and quark and charged lepton mass hierarchy
may be a deep hint for a difference between the flavor physics of Majorana and Dirac fermions. The
source of both anarchy and hierarchy might, however, be explained by a much more mundane mech-
anism. In particular, neutrino mass anarchy could be a result of a FN mechanism, where the three
left-handed lepton doublets carry the same FN charge. In that case, the FN mechanism predict paramet-
ric suppression of neither neutrino mass ratios nor leptonic mixing angles, which is quite consistent with
(70) and (71). Indeed, the viable FN model presented in Section 6.1 belongs to this class.

Another possible interpretation of the neutrino data is to takem2/m3 ∼ |Ue3| ∼ 0.15 to be small,
and require that they are parametrically suppressed (whilethe other two mixing angles are order one).
Such a situation is impossible to accommodate in a large class of FN models [54].

The same data, and in particular the proximity of|Ue2| to 1/
√
3 ≃ 0.58 and the proximity of

|Uµ3| to 1/
√
2 ≃ 0.71 led to a very different interpretation. This interpretation, termed ‘tribimaximal

mixing’ (TBM), postulates that the leptonic mixing matrix is parametrically close to the following special
form [55]:

|U |TBM =




2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2


 . (72)

Such a form is suggestive of discrete non-Abelian symmetries, and indeed numerous models based on an
A4 symmetry have been proposed [56,57]. A significant feature of of TBM is that the third mixing angle
should be close to|Ue3| = 0. Until recently, there have been only upper bounds on|Ue3|, consistent with
the models in the literature. In the last year, however, a value of |Ue3| close to the previous upper bound
has been established [58], see Eq. (71). Such a large value (and the consequent significant deviation
of |Uµ3| from maximal bimixing) puts in serious doubt the TBM idea. Indeed, it is difficult in this
framework, if not impossible, to account for∆m2

12/∆m
2
23 ∼ |Ue3|2 without fine-tuning [59].

7 Higgs physics: the new flavor arena

A Higgs-like bosonh has been discovered by the ATLAS and CMS experiments at the LHC [60, 61].
The fact that for thef = γγ andf = ZZ∗ final states, the experiments measure

Rf ≡ σ(pp → h)BR(h→ f)

[σ(pp → h)BR(h→ f)]SM
, (73)

of order one (seee.g.[62]),

RZZ∗ = 1.1 ± 0.2, (74)

Rγγ = 1.1 ± 0.2, (75)

is suggestive that theh-production via gluon-gluon fusion proceeds at a rate similar to the Standard
Model (SM) prediction, giving a strong indication thatYt, thehtt̄ Yukawa coupling, is of order one. This
first determination ofYt signifies a new arena for the exploration offlavor physics.

In the future, measurements ofRbb̄ andRτ+τ− will allow us to extract additional flavor parameters:
Yb, thehbb̄ Yukawa coupling, andYτ , thehτ+τ− Yukawa coupling. For the latter, the current allowed
range is already quite restrictive:

Rτ+τ− = 1.0± 0.4. (76)

It may well be that the values ofYb and/orYτ will deviate from their SM values. The most likely
explanation of such deviations will be that there are more than one Higgs doublets, and that the doublet(s)
that couple to the down and charged lepton sectors are not thesame as the one that couples to the up
sector.
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A more significant test of our understanding of flavor physics, which might provide a window into
new flavor physics, will come further in the future, whenRµ+µ− is measured. (At present, there is an
upper bound,Rµ+µ− < 9.8.) The ratio

Xµ+µ− ≡ BR(h→ µ+µ−)
BR(h→ τ+τ−)

, (77)

is predicted within the SM with impressive theoretical cleanliness. To leading order, it is given by
Xµ+µ− = m2

µ/m
2
τ , and the corrections of orderαW and of orderm2

µ/m
2
τ to this leading result are

known. It is an interesting question to understand what can be learned from a test of this relation [63,64].

It is also possible to search for the SM-forbidden decay modes,h → µ±τ∓ [65–68]. A measure-
ment of, or an upper bound on

Xµτ ≡ BR(h→ µ+τ−) + BR(h→ µ−τ+)
BR(h→ τ+τ−)

, (78)

would provide additional information relevant to flavor physics. Thus, a broader question is to understand
the implications for flavor physics of measurements ofRτ+τ− ,Xµ+µ− andXµτ [63].

Let us take as an example how we can use the set of these three measurements if there is a single

light Higgs boson. A violation of the SM relationY SM
ij =

√
2mi

v δij , is a consequence of nonrenormaliz-
able terms. The leading ones are thed = 6 terms. In the interaction basis, we have

Ld=4
Y = −λij f̄ iLf jRφ+ h.c., (79)

Ld=6
Y = −

λ′ij
Λ2
f̄ iLf

j
Rφ(φ

†φ) + h.c. ,

where expanding around the vacuum we haveφ = (v + h)/
√
2. DefiningVL,R via

√
2m = VL

(
λ+

v2

2Λ2
λ′
)
V †
Rv, (80)

wherem = diag(me,mµ,mτ ), and defininĝλ via

λ̂ = VLλ
′V †
R, (81)

we obtain

Yij =

√
2mi

v
δij +

v2

Λ2
λ̂ij . (82)

To proceed, one has to make assumptions about the structure of λ̂. In what follows, we consider
first the assumption of minimal flavor violation (MFV) and then a Froggatt-Nielsen (FN) symmetry.

7.1 MFV

MFV requires that the leptonic part of the Lagrangian is invariant under anSU(3)L × SU(3)E global
symmetry, with the left-handed lepton doublets transforming as(3, 1), the right-handed charged lepton
singlets transforming as(1, 3) and the charged lepton Yukawa matrixY is a spurion transforming as
(3, 3̄).

Specifically, MFV means that, in Eq. (79),

λ′ = aλ+ bλλ†λ+O(λ5), (83)
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wherea andb are numbers. Note that, ifVL andVR are the diagonalizing matrices forλ, VLλV
†
R = λdiag,

then they are also the diagonalizing matrices forλλ†λ, VLλλ†λV
†
R = (λdiag)3. Then, Eqs. (80), (81)

and (82) become
√
2m

v
=

(
1 +

av2

2Λ2

)
λdiag +

bv2

2Λ2
(λdiag)3,

λ̂ = aλdiag + b(λdiag)3 = a

√
2m

v
+

2
√
2bm3

v3
,

Yij =

√
2mi

v
δij

[
1 +

av2

Λ2
+

2bm2
i

Λ2

]
, (84)

where, in the expressions forλ̂ andY , we included only the leading universal and leading non-universal
corrections to the SM relations.

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has no flavor off-diagonal couplings:

Yµτ , Yτµ = 0. (85)

2. The values of the diagonal couplings deviate from their SMvalues. The deviation is small, of order
v2/Λ2:

Yτ ≈
(
1 +

av2

Λ2

) √
2mτ

v
. (86)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value. The deviation is, however, very small, of orderm2

ℓ/Λ
2:

Yµ
Yτ

=
mµ

mτ

(
1−

2b(m2
τ −m2

µ)

Λ2

)
. (87)

The predictions of the SM with MFV non-renormalizable termsare then the following:
(
σ(pp → h)SM

σ(pp → h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 + 2av2/Λ2,

Xµ+µ− = (mµ/mτ )
2(1− 4bm2

τ/Λ
2),

Xτµ = 0. (88)

Thus, MFV will be excluded if experiments observe theh→ µτ decay. On the other hand, MFV allows
for a universal deviation ofO(v2/Λ2) of the flavor-diagonal dilepton rates, and a smaller non-universal
deviation ofO(m2

τ/Λ
2).

7.2 FN

An attractive explanation of the smallness and hierarchy inthe Yukawa couplings is provided by the
Froggatt-Nielsen (FN) mechanism [46]. In this framework, aU(1)H symmetry, under which different
generations carry different charges, is broken by a small parameterǫH . Without loss of generality,ǫH is
taken to be a spurion of charge−1. Then, various entries in the Yukawa mass matrices are suppressed
by different powers ofǫH , leading to smallness and hierarchy.

Specifically for the leptonic Yukawa matrix, takingh to be neutral underU(1)H , H(h) = 0, we
have

λij ∝ ǫ
H(Ej)−H(Li)
H . (89)
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We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic mixing
angles is given by [69]

mℓi/v ∼ ǫ
H(Ei)−H(Li)
H , |Uij| ∼ ǫ

H(Lj)−H(Li)
H . (90)

SinceH(φ†φ) = 0, the entries of the matrixλ′ have the same parametric suppression as the
corresponding entries inλ [26], though the order one coefficients are different:

λ′ij = O(1)× λij. (91)

This structure allows us to estimate the entries ofλ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v,

λ̂22 ∼ mµ/v,

λ̂23 ∼ |U23|(mτ/v),

λ̂32 ∼ (mµ/v)/|U23|. (92)

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has flavor off-diagonal couplings:

Yµτ = O
( |U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (93)

2. The values of the diagonal couplings deviate from their SMvalues:

Yτ ≈
√
2mτ

v

[
1 +O

(
v2

Λ2

)]
. (94)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value:

Yµ
Yτ

=
mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (95)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:

(
σ(pp→ h)SM

σ(pp→ h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 +O(v2/Λ2),

Xµ+µ− = (mµ/mτ )
2(1 +O(v2/Λ2)),

Xτµ = O(v4/Λ4). (96)

Thus, FN will be excluded if experiments observe deviationsfrom the SM of the same size in both
flavor-diagonal and flavor-changingh decays. On the other hand, FN allows non-universal deviations of
O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation ofO(v4/Λ4) in the off-diagonal
rate.
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8 Conclusions

(i) Measurements of CP violatingB-meson decays have established that the Kobayashi-Maskawamech-
anism is the dominant source of the observed CP violation.

(ii) Measurements of flavor changingB-meson decays have established the the Cabibbo-Kobayashi-
Maskawa mechanism is a major player in flavor violation.

(iii) The consistency of all these measurements with the CKMpredictions sharpens the new
physics flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor structure must be
highly non-generic.

(iv) Measurements of neutrino flavor parameters have not only not clarified the standard model
flavor puzzle, but actually deepened it. Whether they imply an anarchical structure, or a tribimaximal
mixing, it seems that the neutrino flavor structure is very different from that of quarks.

(v) If the LHC experiments, ATLAS and CMS, discover new particles that couple to the Standard
Model fermions, then, in principle, they will be able to measure new flavor parameters. Consequently,
the new physics flavor puzzle is likely to be understood.

(vi) If the flavor structure of such new particles is affectedby the same physics that sets the flavor
structure of the Yukawa couplings, then the LHC experiments(and future flavor factories) may be able
to shed light also on the standard model flavor puzzle.

(vii) The recently discovered Higgs-like boson provides anopportunity to make progress in our
understanding of the flavor puzzle(s).

The huge progress in flavor physics in recent years has provided answers to many questions. At
the same time, new questions arise. The LHC era is likely to provide more answers and more questions.

Appendices

A The CKM matrix

The CKM matrixV is a3× 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in definingV in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses,i.e. (u1, u2, u3) →
(u, c, t) and(d1, d2, d3) → (d, s, b). The elements ofV are written as follows:

V =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (A.1)

(ii) There is further freedom in the phase structure ofV . This means that the number of physical
parameters inV is smaller than the number of parameters in a general unitary3× 3 matrix which is nine
(three real angles and six phases). Let us definePq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of usingVqL andVqR for the rotation (21) to the mass basis we useṼqL andṼqR, defined
by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis sinceMdiag

q remains
unchanged by such transformations. However,V does change:

V → PuV P
∗
d . (A.2)

This freedom is fixed by demanding thatV has the minimal number of phases. In the three generation
caseV has a single phase. (There are five phase differences betweenthe elements ofPu andPd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phaseδKM which is the single source of CP violation in the quark sectorof the Standard Model [1].
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

Fig. A.1: Graphical representation of the unitarity constraintVudV
∗

ub + VcdV
∗

cb + VtdV
∗

tb = 0 as a triangle in the
complex plane.

The fact thatV is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [70]

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 , (A.3)

wherecij ≡ cos θij andsij ≡ sin θij. The θij ’s are the three real mixing parameters whileδ is the
Kobayashi-Maskawa phase. It is known experimentally thats13 ≪ s23 ≪ s12 ≪ 1. It is convenient to
choose an approximate expression where this hierarchy is manifest. This is the Wolfenstein parametriza-
tion, where the four mixing parameters are(λ,A, ρ, η) with λ = |Vus| = 0.23 playing the role of an
expansion parameter andη representing the CP violating phase [71,72]:

V =




1− 1
2λ

2 − 1
8λ

4 λ Aλ3(ρ− iη)
−λ+ 1

2A
2λ5[1− 2(ρ+ iη)] 1− 1

2λ
2 − 1

8λ
4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2λ

2)(ρ+ iη)] −Aλ2 + 1
2Aλ

4[1− 2(ρ+ iη)] 1− 1
2A

2λ4


 . (A.4)

A very useful concept is that of theunitarity triangles. The unitarity of the CKM matrix leads to
various relations among the matrix elements,e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (A.5)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (A.6)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A.7)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles", though the
term “unitarity triangle" is usually reserved for the relation (A.7) only. The unitarity triangle related to
Eq. (A.7) is depicted in Fig. A.1.

The rescaled unitarity triangle is derived from (A.7) by (a)choosing a phase convention such that
(VcdV

∗
cb) is real, and (b) dividing the lengths of all sides by|VcdV ∗

cb|. Step (a) aligns one side of the triangle
with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters(ρ, η). The area of the rescaled unitarity
triangle is|η|/2.

Depicting the rescaled unitarity triangle in the(ρ, η) plane, the lengths of the two complex sides
are

Ru ≡
∣∣∣∣
VudVub
VcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣
VtdVtb
VcdVcb

∣∣∣∣ =
√

(1− ρ)2 + η2. (A.8)
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The three angles of the unitarity triangle are defined as follows [73,74]:

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (A.9)

They are physical quantities and can be independently measured by CP asymmetries inB decays. It is
also useful to define the two small angles of the unitarity triangles (A.6,A.5):

βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
, βK ≡ arg

[
− VcsV

∗
cd

VusV ∗
ud

]
. (A.10)

B CPV in B decays to final CP eigenstates

We define decay amplitudes ofB (which could be charged or neutral) and its CP conjugateB to a
multi-particle final statef and its CP conjugatef as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (B.1)

whereH is the Hamiltonian governing weak interactions. The actionof CP on these states introduces
phasesξB andξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,
CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (B.2)

so that(CP )2 = 1. The phasesξB andξf are arbitrary and unphysical because of the flavor symmetry
of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, thenAf andAf have the
same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (B.3)

A state that is initially a superposition ofB0 andB0, say

|ψ(0)〉 = a(0)|B0〉+ b(0)|B0〉 , (B.4)

will evolve in time acquiring components that describe all possible decay final states{f1, f2, . . .}, that
is,

|ψ(t)〉 = a(t)|B0〉+ b(t)|B0〉+ c1(t)|f1〉+ c2(t)|f2〉+ · · · . (B.5)

If we are interested in computing only the values ofa(t) andb(t) (and not the values of allci(t)), and
if the timest in which we are interested are much larger than the typical strong interaction scale, then
we can use a much simplified formalism [75]. The simplified time evolution is determined by a2 × 2
effective HamiltonianH that is not Hermitian, since otherwise the mesons would onlyoscillate and not
decay. Any complex matrix, such asH, can be written in terms of Hermitian matricesM andΓ as

H =M − i

2
Γ . (B.6)

M andΓ are associated with(B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and on-shell
(absorptive) intermediate states, respectively. Diagonal elements ofM andΓ are associated with the
flavor-conserving transitionsB0 → B0 andB0 → B0 while off-diagonal elements are associated with
flavor-changing transitionsB0 ↔ B0.

The eigenvectors ofH have well defined masses and decay widths. We introduce complex pa-
rametersp andq to specify the components of the strong interaction eigenstates,B0 andB0, in the light
(BL) and heavy (BH ) mass eigenstates:

|BL,H〉 = p|B0〉 ± q|B0〉 (B.7)
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with the normalization|p|2 + |q|2 = 1. The special form of Eq. (B.7) is related to the fact that CPT
imposesM11 =M22 andΓ11 = Γ22. Solving the eigenvalue problem gives

(
q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (B.8)

If either CP or T is a symmetry ofH, thenM12 andΓ12 are relatively real, leading to

(
q

p

)2

= e2iξB ⇒
∣∣∣∣
q

p

∣∣∣∣ = 1 , (B.9)

whereξB is the arbitrary unphysical phase introduced in Eq. (B.2).

The real and imaginary parts of the eigenvalues ofH corresponding to|BL,H〉 represent their
masses and decay-widths, respectively. The mass difference ∆mB and the width difference∆ΓB are
defined as follows:

∆mB ≡MH −ML, ∆ΓB ≡ ΓH − ΓL. (B.10)

Note that here∆mB is positive by definition, while the sign of∆ΓB is to be experimentally determined.
The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (B.11)

It is useful to define dimensionless ratiosx andy:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (B.12)

Solving the eigenvalue equation gives

(∆mB)
2 − 1

4
(∆ΓB)

2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ
∗
12). (B.13)

All CP-violating observables inB andB decays to final statesf andf can be expressed in terms
of phase-convention-independent combinations ofAf ,Af ,Af andAf , together with, for neutral-meson

decays only,q/p. CP violation in charged-meson decays depends only on the combination |Af/Af |,
while CP violation in neutral-meson decays is complicated by B0 ↔ B0 oscillations and depends,
additionally, on|q/p| and onλf ≡ (q/p)(Af/Af ).

For neutralD, B, andBs mesons,∆Γ/Γ ≪ 1 and so both mass eigenstates must be considered
in their evolution. We denote the state of an initially pure|B0〉 or |B0〉 after an elapsed proper timet as
|B0

phys(t)〉 or |B0
phys(t)〉, respectively. Using the effective Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (B.14)

where

g±(t) ≡
1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)
. (B.15)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=

(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)
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+ 2Re((q/p)A∗
fAf ) sinh(yΓt)− 2Im((q/p)A∗

fAf ) sin(xΓt) , (B.16)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=

(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt)−

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA∗
f ) sinh(yΓt)− 2Im((p/q)AfA

∗
f ) sin(xΓt) , (B.17)

whereNf is a common normalization factor. Decay rates to the CP-conjugate final statef are obtained
analogously, withNf = Nf and the substitutionsAf → Af andAf → Af in Eqs. (B.16,B.17). Terms

proportional to|Af |2 or |Af |2 are associated with decays that occur without any netB ↔ B oscilla-
tion, while terms proportional to|(q/p)Af |2 or |(p/q)Af |2 are associated with decays following a net
oscillation. Thesinh(yΓt) andsin(xΓt) terms of Eqs. (B.16,B.17) are associated with the interference
between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-space vari-
ables. Interference may be present in some regions but not others, and is strongly influenced by resonant
substructure.

One possible manifestation of CP-violating effects in meson decays [76] is in the interference
between a decay without mixing,B0 → f , and a decay with mixing,B0 → B0 → f (such an effect
occurs only in decays to final states that are common toB0 andB0, including all CP eigenstates). It is
defined by

Im(λf) 6= 0 , (B.18)

with

λf ≡ q

p

Af
Af

. (B.19)

This form of CP violation can be observed, for example, usingthe asymmetry of neutral meson decays
into final CP eigenstatesfCP

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (B.20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation forB mesons),AfCP
has a particularly

simple form [77–79]:

Af (t) = Sf sin(∆mt)− Cf cos(∆mt),

Sf ≡ 2Im(λf )

1 + |λf |2
, Cf ≡ 1− |λf |2

1 + |λf |2
, (B.21)

Consider theB → f decay amplitudeAf , and the CP conjugate process,B → f , with decay
amplitudeAf . There are two types of phases that may appear in these decay amplitudes. Complex
parameters in any Lagrangian term that contributes to the amplitude will appear in complex conjugate
form in the CP-conjugate amplitude. Thus their phases appear in Af andAf with opposite signs. In the
Standard Model, these phases occur only in the couplings of theW± bosons and hence are often called
“weak phases”. The weak phase of any single term is convention dependent. However, the difference
between the weak phases in two different terms inAf is convention independent. A second type of phase
can appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is the possible
contribution from intermediate on-shell states in the decay process. Since these phases are generated by
CP-invariant interactions, they are the same inAf andAf . Usually the dominant rescattering is due to
strong interactions and hence the designation “strong phases” for the phase shifts so induced. Again,
only the relative strong phases between different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-transformation
phases of Eq. (B.3). Those spurious phases are due to an arbitrary choice of phase convention, and do
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not originate from any dynamics or induce any CP violation. For simplicity, we set them to zero from
here on.

It is useful to write each contributionai toAf in three parts: its magnitude|ai|, its weak phaseφi,
and its strong phaseδi. If, for example, there are two such contributions,Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),
Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (B.22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (B.23)

Each of the phases appearing in Eqs. (B.22,B.23) is convention dependent, but combinations such as
δ1−δ2, φ1−φ2, φM −φΓ andφM +φ1−φ1 (whereφ1 is a weak phase contributing toAf ) are physical.

In the approximations that only a single weak phase contributes to decay,Af = |af |ei(δf+φf ), and
that |Γ12/M12| = 0, we obtain|λf | = 1 and the CP asymmetries in decays to a final CP eigenstatef
[Eq. (B.20)] with eigenvalueηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf ). (B.24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are involved in the
extraction of its value fromIm(λf ).

C Supersymmetric flavor violation

C.1 Mass insertions

Supersymmetric models provide, in general, new sources of flavor violation. We here present the for-
malism of mass insertions. We do that for the charged sleptons, but the formalism is straightforwardly
adapted for squarks.

The supersymmetric lepton flavor violation is most commonlyanalyzed in the basis in which the
charged lepton mass matrix and the gaugino vertices are diagonal. In this basis, the slepton masses are
not necessarily flavor-diagonal, and have the form

ℓ̃∗Mi(M
2
ℓ̃
)MN
ij ℓ̃Nj = (ℓ̃∗Li ℓ̃

∗
Rk)

(
M2
Lij Ailvd

Ajkvd M2
Rkl

)(
ℓ̃Lj
ℓ̃Rl

)
, (C.1)

whereM,N = L,R label chirality, andi, j, k, l = 1, 2, 3 are generational indices.M2
L andM2

R are
the supersymmetry breaking slepton masses-squared. TheA parameters enter in the trilinear scalar
couplingsAijφdℓ̃Liℓ̃∗Rj , whereφd is the down-type Higgs boson, andvd = 〈φd〉. We neglect small
flavor-conserving terms involvingtan β = vu/vd.

In this basis, charged LFV takes place through one or more slepton mass insertion. Each mass
insertion brings with it a factor of

δMN
ij ≡ (M2

ℓ̃
)MN
ij /m̃2, (C.2)

wherem̃2 is the representative slepton mass scale. Physical processes therefore constrain

(δMN
ij )eff ∼ max

[
δMN
ij , δMP

ik δPNkj , . . . , (i↔ j)
]
. (C.3)

For example,

(δLR12 )eff ∼ max
[
A12vd/m̃

2,M2
L1kAk2vd/m̃

4, A1kvdM
2
Rk2/m̃

4, . . . , (1 ↔ 2)
]
. (C.4)
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Note that contributions with two or more insertions may be less suppressed than those with only one.

It is useful to express theδMN
ij mass insertions in terms of parameters in the mass basis. We can

write, for example,

δLLij =
1

m̃2

∑

α

KL
iαK

L∗
jα∆m̃

2
Lα. (C.5)

Here, we ignoreL−Rmixing, so thatKL
iα is the mixing angle in the coupling of a neutralino toℓLi− ℓ̃Lα

(with ℓi = e, µ, τ denoting charged lepton mass eigenstates andℓ̃α = ℓ̃1, ℓ̃2, ℓ̃3 denoting charged slepton
mass eigenstates), and∆m̃2

Lα = m2
ℓ̃Lα

− m̃2. Using the unitarity of the mixing matrixKL, we can write

m̃2δLLij =
∑

α

KL
iαK

L∗
jα (∆m̃

2
Lα + m̃2) = (M2

ℓ̃
)LLij , (C.6)

thus reproducing the definition (C.2).

In many cases, a two generation effective framework is useful. To understand that, consider a case
where (no summation overi, j, k)

|KL
ikK

L∗
jk | ≪ |KL

ijK
L∗
j |,

|KL
ikK

L∗
jk ∆m

2
ℓ̃Lk ℓ̃Li

| ≪ |KL
ijK

L∗
j ∆m2

ℓ̃Lj ℓ̃Li
|, (C.7)

where∆m2
ℓ̃j ℓ̃i

= m2
ℓ̃Lj

− m2
ℓ̃Li

. Then, the contribution of the intermediatẽℓk can be neglected and,

furthermore, to a good approximationKL
iiK

L∗
ji +KL

ijK
L∗
jj = 0. For these cases, we obtain

δLLij =
∆m2

ℓ̃Lj ℓ̃Li

m̃2
KL
ijK

L∗
jj . (C.8)

C.2 Neutral meson mixing

We consider the squark-gluino box diagram contribution toD0 − D
0

mixing amplitude that is propor-
tional toKu

2iK
u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino couplings to left-handed up

quarks and their up squark partners. (In the language of the mass insertion approximation, we calculate
here the contribution that is∝ [(δuLL)12]

2.) We work in the mass basis for both quarks and squarks.

The contribution is given by

MD
12 = −i4π

2

27
α2
smDf

2
DBDηQCD

∑

i,j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j )(11Ĩ4ij + 4m̃2

gI4ij). (C.9)

where

Ĩ4ij ≡
∫

d4p

(2π)4
p2

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j)

=
i

(4π)2

[
m̃2
g

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃4
i

(m̃2
i − m̃2

j)(m̃
2
i − m̃2

g)
2
ln
m̃2
i

m̃2
g

+
m̃4
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2
ln
m̃2
j

m̃2
g

]
, (C.10)

I4ij ≡
∫

d4p

(2π)4
1

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j)
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=
i

(4π)2

[
1

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃2
i

(m̃2
i − m̃2

j)(m̃
2
i − m̃2

g)
2
ln
m̃2
i

m̃2
g

+
m̃2
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2
ln
m̃2
j

m̃2
g

]
. (C.11)

We now follow the discussion in refs. [21, 80]. To see the consequences of the super-GIM mech-
anism, let us expand the expression for the box integral around some valuẽm2

q for the squark masses-
squared:

I4(m̃
2
g, m̃

2
i , m̃

2
j) = I4(m̃

2
g, m̃

2
q + δm̃2

i , m̃
2
q + δm̃2

j )

= I4(m̃
2
g, m̃

2
q , m̃

2
q) + (δm̃2

i + δm̃2
j )I5(m̃

2
g, m̃

2
q, m̃

2
q , m̃

2
q)

+
1

2

[
(δm̃2

i )
2 + (δm̃2

j )
2 + 2(δm̃2

i )(δm̃
2
j )
]
I6(m̃

2
g, m̃

2
q , m̃

2
q , m̃

2
q, m̃

2
q) + · · · ,(C.12)

where

In(m̃
2
g, m̃

2
q , . . . , m̃

2
q) ≡

∫
d4p

(2π)4
1

(p2 − m̃2
g)

2(p2 − m̃2
q)
n−2

, (C.13)

and similarly forĨ4ij . Note thatIn ∝ (m̃2
q)
n−2 and Ĩn ∝ (m̃2

q)
n−3. Thus, usingx ≡ m̃2

g/m̃
2
q , it is

customary to define

In ≡ i

(4π)2(m̃2
q)
n−2

fn(x), Ĩn ≡ i

(4π)2(m̃2
q)
n−3

f̃n(x). (C.14)

The unitarity of the mixing matrix implies that
∑

i

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) =

∑

j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) = 0. (C.15)

Consequently, the terms that are proportionalf4, f̃4, f5 andf̃5 vanish in their contribution toM12. When
δm̃2

i ≪ m̃2
q for all i, the leading contributions toM12 come fromf6 and f̃6. We learn that for quasi-

degenerate squarks, the leading contribution is quadraticin the small mass-squared difference. The
functionsf6(x) andf̃6(x) are given by

f6(x) =
6(1 + 3x) ln x+ x3 − 9x2 − 9x+ 17

6(1 − x)5
,

f̃6(x) =
6x(1 + x) lnx− x3 − 9x2 + 9x+ 1

3(1− x)5
. (C.16)

For example, withx = 1, f6(1) = −1/20 and f̃6 = +1/30; with x = 2.33, f6(2.33) = −0.015 and
f̃6 = +0.013.

To further simplify things, let us consider a two generationcase. Then

MD
12 ∝ 2(Ku

21K
u∗
11 )

2(δm̃2
1)

2 + 2(Ku
22K

u∗
12 )

2(δm̃2
2)

2 + (Ku
21K

u∗
11K

u
22K

u∗
12 )(δm̃

2
1 + δm̃2

2)
2

= (Ku
21K

u∗
11 )

2(m̃2
2 − m̃2

1)
2. (C.17)

We thus rewrite Eq. (C.9) for the case of quasi-degenerate squarks:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )

2. (C.18)

For example, forx = 1, 11f̃6(x) + 4xf6(x) = +0.17. Forx = 2.33, 11f̃6(x) + 4xf6(x) = +0.003.
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