MEASURE THEORY — "MIDTERM" EXAM

Time allowed: 90 min. Total no. of points: 100. You may write in pen or pencil.

November 28th 2018

- 2^X je potenčna množica X. Leb je Lebesgueova mera na \mathbb{R} . \mathcal{A}/\mathcal{B} je množica \mathcal{A}/\mathcal{B} -merljivih preslikav. \mathcal{B}_X je Borelova σ -algebra na X pod standardno topologijo za X. $\overline{\mathcal{A}}^{\mu}$ je napolnitev σ -algebre \mathcal{A} glede na mero μ na \mathcal{A} . 2^X is the power set of X. Leb is the Lebesgue measure on \mathbb{R} . \mathcal{A}/\mathcal{B} is the set of \mathcal{A}/\mathcal{B} -measurable maps. \mathcal{B}_X is the Borel σ -algebra on X for the standard topology on X. $\overline{\mathcal{A}}^{\mu}$ is the completion of a σ -field \mathcal{A} with respect to a measure μ on \mathcal{A} .
- 1. Naj bo X množica, $h: X \to X$ bijekcija. Definirajmo $\mathcal{F}^{\wedge} := \{A \in 2^X : h(A) \subset A \text{ in } h^{-1}(A) \subset A\}$ in $\mathcal{F}^{\vee} := \{A \in 2^X : h(A) \subset A \text{ ali } h^{-1}(A) \subset A\}$. Let X be a set, $h: X \to X$ a bijection. Set $\mathcal{F}^{\wedge} := \{A \in 2^X : h(A) \subset A \text{ and } h^{-1}(A) \subset A\}$ and $\mathcal{F}^{\vee} := \{A \in 2^X : h(A) \subset A \text{ or } h^{-1}(A) \subset A\}$.
 - (a) (14 points) Ali je \mathcal{F}^{\wedge} σ -algebra na X, ne glede na izbiro h? Dokaži ali najdi protiptimer. Is \mathcal{F}^{\wedge} a σ -field on X, no matter what the h? Prove or find a counterexample.
 - (b) (14 points) Ali je \mathcal{F}^{\vee} σ -algebra na X, ne glede na izbiro h? Dokaži ali najdi protiptimer. Is \mathcal{F}^{\vee} a σ -field on X, no matter what the h? Prove or find a counterexample.
 - (c) (12 points) Če je odgovor na del (a) pritrdilen, potem identificiraj, kolikor eksplicitno moreš, $\mathcal{F}^{\wedge}/\mathcal{B}_{[-\infty,\infty]}$. Če je odgovor na del (b) pritrdilen, potem identificiraj, kolikor eksplicitno moreš, $\mathcal{F}^{\vee}/\mathcal{B}_{[-\infty,\infty]}$. Provided the answer to part (a) is to the affirmative, then identify, as explicitly as you can, $\mathcal{F}^{\wedge}/\mathcal{B}_{[-\infty,\infty]}$. Provided the answer to part (b) is to the affirmative, then identify, as explicitly as you can, $\mathcal{F}^{\vee}/\mathcal{B}_{[-\infty,\infty]}$.

Solution: Clearly (o) $\mathcal{F}^{\wedge} \subset 2^X$ and (i) $X \in \mathcal{F}^{\wedge}$. Further, (ii) if $A \in \mathcal{F}^{\wedge}$, then $h(A) \subset A$, and hence $h^{-1}(X \setminus A) \subset X \setminus A$, similarly $h^{-1}(A) \subset A$, and hence $h(X \setminus A) \subset X \setminus A$. It follows that $X \setminus A \in \mathcal{F}^{\wedge}$. Finally, (iii) \mathcal{F}^{\wedge} is closed under countable unions, since $h(\cup_{i \in \mathbb{N}} A_i) = \cup_{i \in \mathbb{N}} h(A_i)$ and likewise $h^{-1}(\cup_{i \in \mathbb{N}} A_i) = \cup_{i \in \mathbb{N}} h^{-1}(A_i)$, whenever $(A_i)_{i \in \mathbb{N}}$ is a sequence in 2^X . It follows that \mathcal{F}^{\wedge} is a σ -field on X. The answer for \mathcal{F}^{\vee} is negative: it is clear from the above it verifies (o)-(i)-(ii), but, in general not (iii): for instance with $h = \mathrm{id}_{\mathbb{R}}/2$, $A_1 := \{2^{-n} : n \in \mathbb{N}\} \in \mathcal{F}^{\vee}$ and $A_2 := \{2^n : n \in \mathbb{N}\} \in \mathcal{F}^{\vee}$, yet $A_1 \cup A_2 \notin \mathcal{F}^{\vee}$ (as, e.g., $\{1/2, 2\} \subset A_1 \cup A_2, 1 \notin A_1 \cup A_2$). We wish lastly to identify $\mathcal{F}^{\wedge}/\mathcal{B}_{[-\infty,\infty]}$. If $A \in \mathcal{F}^{\wedge}$, then $\mathbbm{1}_A \circ h = \mathbbm{1}_{h^{-1}(A)} \leq \mathbbm{1}_A$ and similarly $\mathbbm{1}_A \circ h^{-1} \leq \mathbbm{1}_A$. Hence $\mathbbm{1}_A = \mathbbm{1}_A \circ h$. (Incidentally, of course $\mathcal{F}^{\wedge} = \{A \in 2^X : h(A) = A = h^{-1}(A)\} = \{A \in 2^X : A = h^{-1}(A)\} = \{A \in 2^X : h(A) = A\}$.) For instance from the usual arguments of linearity and approximation, it then follows that for all $f \in \mathcal{F}^{\wedge}/\mathcal{B}_{[-\infty,\infty]}$, one has $f = f \circ h$. Conversely, if for some $f \in [-\infty,\infty]^X$ one has $f = f \circ h$, whence $f = f \circ h^{-1}$, then for $f \in \mathcal{B}_{[-\infty,\infty]}$, $f^{-1}(f) = f^{-1}(f) = f^{-1}(f)$, and thus indeed $f^{-1}(f) \in \mathcal{F}^{\wedge}$. In conclusion:

$$\mathcal{F}^{\wedge}/\mathcal{B}_{[-\infty,\infty]}=\{f\in[-\infty,\infty]^X:f=f\circ h\}.$$

Remark: It is easy to see that if X is finite, then $\mathcal{F}^{\vee} = \mathcal{F}^{\wedge}$. If X is infinite, then the example of h given in part (b) can be easily (since the bijection h given there fixes $\{2^k : k \in \mathbb{Z}\}$) tweaked to show that there is some bijection h on the given X for which \mathcal{F}^{\vee} is not a σ -field on X. Finally, in part (c), in fact for any separated σ -field \mathcal{H} one has

$$\mathcal{F}^{\wedge}/\mathcal{H} = \{ f \in (\cup \mathcal{H})^X : f = f \circ h \}.$$

The inclusion \supset is proved in precisely the same way, whilst the inclusion \subset follows from the separatedness: if there is $x \in X$ with $f(x) \neq f(h(x))$, there is an $H \in \mathcal{H}$ with $\mathbb{1}_H(f(x)) \neq \mathbb{1}_H(f(h(x)))$, which implies $h^{-1}(f^{-1}(H)) \neq f^{-1}(H)$, and so $f^{-1}(H)$ does not belong to \mathcal{F}^{\wedge} . [[By definition \mathcal{H} is separated if given any $x \neq y$ from $\cup \mathcal{H}$, there is $H \in \mathcal{H}$ such that $\mathbb{1}_H(x) \neq \mathbb{1}_H(y)$.]] If \mathcal{H} is not separated, then in general the displayed equality fails; for instance if \mathcal{H} is the trivial σ -field on a space containing at least two points and h is not the identity.

- 2. (30 points) Naj bo $A \subset \mathbb{R}$. Dokaži, da sta sledeči trditvi ekvivalentni: Let $A \subset \mathbb{R}$. Prove that the following two statements are equivalent:
 - (i) A je Lebesguovo merljiva. A is Lebesgue measurable.
 - (ii) Obstajajo odprte $O_n \subset \mathbb{R}$ in zaprte $K_n \subset \mathbb{R}$, $n \in \mathbb{N}$, da je $\bigcup_{n \in \mathbb{N}} K_n \subset A \subset \bigcap_{n \in \mathbb{N}} O_n$ in $\text{Leb}((\bigcap_{n \in \mathbb{N}} O_n) \setminus (\bigcup_{n \in \mathbb{N}} K_n)) = 0$. There exist open $O_n \subset \mathbb{R}$ and closed $K_n \subset \mathbb{R}$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} K_n \subset A \subset \bigcap_{n \in \mathbb{N}} O_n$ and $\text{Leb}((\bigcap_{n \in \mathbb{N}} O_n) \setminus (\bigcup_{n \in \mathbb{N}} K_n)) = 0$.

Sklepaj, da je $\mathcal{L} = \overline{\mathcal{B}_{\mathbb{R}}}^{\operatorname{Leb}|_{\mathcal{B}_{\mathbb{R}}}}$, kjer je \mathcal{L} množica Lebesguovo merljivih množic. Conclude that $\mathcal{L} = \overline{\mathcal{B}_{\mathbb{R}}}^{\operatorname{Leb}|_{\mathcal{B}_{\mathbb{R}}}}$, where \mathcal{L} is the collection of Lebesgue measurable sets.

Solution: \downarrow implication: The Lebesgue measure is outer regular wrt open sets and inner regular wrt closed (or compact) sets. We use the following known consequence thereof: for any $\epsilon > 0$ there are K and O closed and open respectively, $K \subset A \subset O$ with $\text{Leb}(O \setminus K) < \epsilon$. Then we find for each $n \in \mathbb{N}$, K_n and O_n , closed and open respectively, with $K_n \subset A \subset O_n$, and such that $\text{Leb}(O_n \setminus K_n) < 1/2^n$. Then $\cup_{n \in \mathbb{N}} K_n \subset A \subset \cap_{n \in \mathbb{N}} O_n$ and by monotonicity, for each $m \in \mathbb{N}$, $\text{Leb}((\cap_{n \in \mathbb{N}} O_n) \setminus (\cup_{n \in \mathbb{N}} K_n)) \leq \text{Leb}(O_m \setminus K_m) < 1/2^m$ which $\downarrow 0$ as $m \to \infty$. [[In particular we see that the Lebesgue σ -field \mathcal{L} is contained in the completion of the Borel σ -field with respect to the restriction of the Lebesgue measure to the Borel σ -field. Since the Lebesgue measure is complete, it means that one has in fact the equality $\mathcal{L} = \overline{\mathcal{B}}_{\mathbb{R}}^{\text{Leb}|\mathcal{B}_{\mathbb{R}}}$.]] The implication \uparrow is clear: A differs from a Borel measurable set only by a subset of a negligible Borel set, and is hence Lebesgue measurable (the Lebesgue measure is complete).

3. (30 points) Izračunaj: Compute:

$$\lim_{M \to \infty} \lim_{n \to \infty} n^3 \int_{\frac{1}{n^2}}^{\frac{M}{n}} (1 - x)^n x^2 \cos(x) dx$$

(limite po n, M čez \mathbb{N} limits of n, M over \mathbb{N}).

Solution: Forgetting about the outer limit for the time being, we effect the changes of variables u = xn in order to obtain

$$\lim_{n\to\infty} \int_{\frac{1}{n}}^{M} (1-u/n)^n u^2 \cos(u/n) du.$$

We then pass to Lebesgue integrals via equality of Riemann and Lebesgue integrals of continuous functions on compact intervals:

$$\lim_{n\to\infty} \int \mathbb{1}_{\left[\frac{1}{n},M\right]}(u)(1-u/n)^n u^2 \cos(u/n) \text{Leb}(du)$$

followed by an application of monotone convergence (cos is decreasing and nonnegative on $[0,\pi/2]$: no matter what the M, for all sufficiently large n, we are "home safe"; also, for any fixed $x\in(0,\infty)$, the map $[x,\infty)\ni\alpha\mapsto \left(1-\frac{x}{\alpha}\right)^\alpha\in[0,\infty)$ is nondecreasing to e^{-x} as is well-known and may be checked e.g. via differentiation: again no matter how large the M eventually in n we are good) to get $\int \mathbbm{1}_{[0,M]}(u)e^{-u}u^2\mathrm{Leb}(du)=\int \mathbbm{1}_{[0,M]}(u)e^{-u}u^2\mathrm{Leb}(du)$. In the limit as $M\to\infty$ we obtain the (improper) Riemann integral: $\int_0^\infty u^2e^{-u}du$, which is (via a double per partes or otherwise) = $\Gamma(3)=2!=2$.