MEASURE THEORY — "END-OF-TERM" EXAM

Time allowed: 120 min. Total no. of points: 110 (10 bunus points). You may write in pen or pencil.

January 16th 2018

 $A \subset B \stackrel{\mathrm{def}}{\Leftrightarrow} \forall x (x \in A \Rightarrow x \in B).$ 2^X je potenčna množica X. m je Lebesgueova mera na $\mathbb{R}.$ \mathcal{A}/\mathcal{B} je množica \mathcal{A}/\mathcal{B} -merljivih preslikav. \mathcal{B}_X je Borelova σ -algebra na X pod standardno topologijo za X. $\overline{\mathcal{A}}^{\mu}$ je napolnitev σ -algebre \mathcal{A} glede na mero μ na $\mathcal{A}.$ $A \subset B \stackrel{\mathrm{def}}{\Leftrightarrow} \forall x (x \in A \Rightarrow x \in B).$ 2^X is the power set of X. m is the Lebesgue measure on $\mathbb{R}.$ \mathcal{A}/\mathcal{B} is the set of \mathcal{A}/\mathcal{B} -measurable maps. \mathcal{B}_X is the Borel σ -algebra on X for the standard topology on X. $\overline{\mathcal{A}}^{\mu}$ is the completion of a σ -field \mathcal{A} with respect to a measure μ on \mathcal{A} .

1. (25 points) Za $\{p,q\} \subset (0,\infty)$ izračunaj $\int_0^1 \frac{x^{p-1}}{1+x^q} dx$ (izrazi kot numerično vrsto). Kateri (znani) vrsti dobiš pri p=q=1 ter pri p=1, q=2? **Nasvet**: Integrand razvij v, in integriraj funkcijsko vrsto. For $\{p,q\} \subset (0,\infty)$ evaluate $\int_0^1 \frac{x^{p-1}}{1+x^q} dx$ (express as a numeric series). Which (known) series do you obtain with p=q=1 and with p=1, q=2? Advice: Expand the integrand into, and integrate a function series.

Solution: The integrand is continuous, we are living on a compact interval; the Lebesgue integral may replace the Riemann integral. Expanding into a series, for $x \in [0,1), \frac{x^{p-1}}{1+x^q} = x^{p-1}(1-x^q+x^{2q}-x^{3q}+\cdots)$: The series is alternating; still we may "integrate term-by-term", if we combine two subsequent terms, since such sums are nonnegative (alternatively can appeal to dominated (bounded) convergence for the partial sums). We obtain $\int_0^1 \sum_{k=0}^\infty (x^{p-1+2qk}-x^{p-1+q(2k+1)}) dx = \sum_{k=0}^\infty \int_0^1 (x^{p-1+2qk}-x^{p-1+q(2k+1)}) dx = \sum_{k=0}^\infty \frac{1}{p+2qk} - \frac{1}{p+q(2k+1)} = \sum_{k=0}^\infty \frac{q}{(p+2qk)(p+q(2k+1))}$. With p=q=1 we get the/a series for log 2; with p=1, q=2, one gets the/a series for $\frac{\pi}{4}$.

2. Naj bo μ mera na $((0,\infty),\mathcal{B}_{(0,\infty)})$. Naj bo $f:(0,\infty)\to [0,\infty)$ odvedljiva, nepadajoča z $\lim_{0+} f=0$. Pokaži, da je

$$\int f d\mu = \int_{(0,\infty)} f'(y)\mu((y,\infty))m(dy)$$

Let μ be a measure on $((0,\infty),\mathcal{B}_{(0,\infty)})$. Let $f:(0,\infty)\to [0,\infty)$ be differentiable, nondecreasing with $\lim_{0+} f=0$. Show that

$$\int f d\mu = \int_{(0,\infty)} f'(y)\mu((y,\infty))m(dy)$$

- (a) (25 points) če je μ $\sigma\text{-končna};$ if μ is $\sigma\text{-finite};$
- (b) (10 points) in še v splošnem. and in general.

Pomoč. Pod navedenimi pogoji je za realne $0 < a \le b$, $f(b) - f(a) = \int_{[a,b]} f'dm$. **Help.** Under the indicated conditions, for real $0 < a \le b$, $f(b) - f(a) = \int_{[a,b]} f'dm$.

Solution: By the nondecreasingness of $f, f' \geq 0$; also f' is Borel measurable (as a suitable limit ...). When μ is σ -finite one concludes via the Fundamental theorem of calculus coupled with the theorem of Tonelli, writing $f(x) = \int_{(0,x)} f' dm$, $x \in (0,\infty)$ (where we have taken into account $\lim_{0+} f = 0$, via monotone convergence) and noting that $((0,\infty) \times \mathbb{R} \ni (x,y) \mapsto \mathbb{1}_{(0,x)}(y)f'(y)) \in \mathcal{B}_{(0,\infty)} \otimes \mathcal{B}_{\mathbb{R}}/\mathcal{B}_{[0,\infty)} = \mathcal{B}_{(0,\infty) \times \mathbb{R}}/\mathcal{B}_{[0,\infty)}$. If μ is not σ -finite, then for some $y \in (0,\infty)$, $\mu(y,\infty) = \infty$. Let $y^* := \sup\{y \in (0,\infty) : \mu(y,\infty) = \infty\} > 0$. The case $y^* = \infty$ may be dealt with easily seperately (both sides of the target equality are 0 or ∞ according as to whether f' = 0 m-a.e. (and hence everywhere) or not); assume $y^* < \infty$. Notice that $\mathbb{1}_{(y^*,\infty)} \cdot \mu$ is σ -finite and hence what we have already proven applies. Also, if $f(y^*) = 0$, then $\int_{(0,y^*]} f d\mu = 0 = \int_0^{y^*} f'(y)\mu(y,\infty)dy$, and linearity of the integral allows to conclude. And if $f(y^*) > 0$, then: (i) by the continuity of f, f is bounded below away from zero on (z,∞) for some $z \in (0,y^*)$; whereas (ii) by the Fundamental theorem of calculus and since $\lim_{0+} f = 0$, $m(\{f' > 0\} \cap (0,y^*)) > 0$; whence (noting that $\mu(y,\infty) = \infty$ for all $y \in (0,y^*)$) $\int f d\mu = \infty = \int_{(0,\infty)} f(y)\mu(y,\infty)m(dy)$.

- 3. (25 points) Naj bo $(\mu_n)_{n\in\mathbb{N}_0}$ zaporedje kompleksnih mer na (X,\mathcal{A}) . Pokaži, da sta sledeči trditvi ekvivalentni: Let $(\mu_n)_{n\in\mathbb{N}_0}$ be a sequence of complex measures on (X,\mathcal{A}) . Show that the following statements are equivalent:
 - (i) $\mu_n(A) \to \mu_0(A)$, ko gre $n \to \infty$, enakomerno v $A \in \mathcal{A}$. $\mu_n(A) \to \mu_0(A)$, as $n \to \infty$, uniformly in $A \in \mathcal{A}$.
 - (ii) $\lim_{n\to\infty} \|\mu_n \mu_0\| = 0.$

Spomnimo/povejmo: Za kompleksno mero ν na (X, \mathcal{A}) je $\|\nu\| := |\nu|(X)$. **Recall/be** advised: For a complex measure ν on (X, \mathcal{A}) , $\|\nu\| := |\nu|(X)$.

Solution: The first statement means, by definition, that $\lim_{n\to\infty} \sup_{A\in\mathcal{A}} |\mu_n(A) - \mu_0(A)| = 0$, i.e. $\lim_{n\to\infty} \sup_{A\in\mathcal{A}} |(\mu_n - \mu_0)(A)| = 0$. Since complex measures constitute a vector space over \mathbb{C} , it is then sufficient to show that for a sequence of complex measures $(\nu_n)_{n\in\mathbb{N}}$ on (X, \mathcal{A}) , the statements

- (I) $\nu_n(A) \to 0$, as $n \to \infty$, uniformly in $A \in \mathcal{A}$.
- (II) $\lim_{n\to\infty} \|\nu_n\| = 0.$

are equivalent. Sufficiency of the condition follows from $|\nu(A)| \leq |\nu|(A) \leq |\nu|(X) = \|\nu\|$ (where ν is a complex measure ...). Necessity. For $n \in \mathbb{N}$ let rP_n and rN_n , respectively iP_n and iN_n , be a Hahn decomposition of the signed measure $\Re \nu_n$, respectively $\Im \nu_n$. Then for any measurable partition $(A_j)_{j=1}^k$ of X and any $n \in \mathbb{N}$, $\sum_{j=1}^k |\nu_n(A_j)| \leq |\nu_n(rP_n)| + |\nu_n(rN_n)| + |\nu_n(iP_n)| + |\nu_n(iN_n)|$. Taking the supremum over the partitions, and sending $n \to \infty$, yields the desired conclusion.

4. (25 points) Naj bo (X, \mathcal{F}, μ) prostor z mero, $\mu(X) = 1$, $f \in \mathcal{F}/\mathcal{B}_{(e^{-1}, \infty)}$, $\int f d\mu = e$. Dokaži, da je $\int \sqrt{1 + \ln(f)} d\mu \leq \sqrt{2}$. Let (X, \mathcal{F}, μ) be a measure space, $\mu(X) = 1$, $f \in \mathcal{F}/\mathcal{B}_{(e^{-1}, \infty)}$, $\int f d\mu = e$. Prove that $\int \sqrt{1 + \ln(f)} d\mu \leq \sqrt{2}$. **Solution:** Differentiating $\phi:=((e^{-1},\infty)\ni x\mapsto \sqrt{1+\ln(x)})$ twice yields $\phi''<0$ which implies ϕ is concave. Then Jensen.