(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 38618, 1153] NotebookOptionsPosition[ 35418, 1035] NotebookOutlinePosition[ 35764, 1050] CellTagsIndexPosition[ 35721, 1047] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Zdrs s cikloide", "Title", CellChangeTimes->{{3.6639508752319503`*^9, 3.663950884101256*^9}, { 3.6639512175208473`*^9, 3.6639512230752897`*^9}}], Cell["\<\ Materialna to\[CHacek]ka zdrsne z vrha gladke cikloide. Kdaj jo zapusti?\ \>", "Text", CellChangeTimes->{{3.663950887528144*^9, 3.6639509282027054`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"veci", " ", "=", " ", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"vecj", "=", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.663942577005927*^9, 3.6639425913436546`*^9}, { 3.663942639679207*^9, 3.6639426416827216`*^9}}], Cell[CellGroupData[{ Cell["Cikloida", "Subsubsection", CellChangeTimes->{{3.663950935615632*^9, 3.6639509445069466`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vecr", " ", "=", " ", RowBox[{"a", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "-", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], ",", RowBox[{"1", "-", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.6639404352346826`*^9, 3.6639405008537226`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"a", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"\[Phi]", "[", "t", "]"}]}], ")"}]}], ",", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], ")"}]}]}], "}"}]], "Output", CellChangeTimes->{3.6639405174810505`*^9, 3.6639502214481773`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"vecr", "/.", RowBox[{"a", "\[Rule]", " ", "1"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], ",", "0", ",", RowBox[{"2", "\[Pi]"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.663950226383458*^9, 3.663950264216277*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJxl13k8VN//OPBrn0G2irEkJUuWKBGS14kUpd4SFSlL9iIkS6IhSvbQJqIN IVmyJoRERSJr2WmRkCLLmPs9+vz++91/7uM5r7Pd1z33nDPr7M6YOrASBFHJ QhDL9///ytvgFLhKlyCmku/KVuG7poNj4C58ry5Jlu3Hd6mjTUa2ugT9ok1x 2C9sI6eTgd7YLNLXZUnswUEP1lDszUJShylAEPxZr42u4d+hISdMENtg48zZ Ozj+QPN8twgQ1QlnjgQ+1CUGBFt8ZNcCQXef8VB6okt4dJ00KZbGXpF6gvWZ LlHNwrdoLg8EOvOz6165LmHivVvbSxnHe37lGb3UJQScnC6HbcYu7eheeKVL TCk/0ozbivvbzld39q0ukce7Vq17GzbrNbnAj7qEFApbkgEg0niczBK6dIk/ J9tHE3cCYeNbIKbUq0vIO8FkkT4QHlaJq1lHdIlv7KSjuSGO3zrhvPGrLuF8 Z+vHtr24PaN9J++N4fG4BNt67sflNwgdNsJ5Kc/4Mh56EFs1se3qb11CYbTE lvUQEEdNdE0XZnQJ2XWaDrFmuP6RR6TXoi7Be7BKuOsIELQRMecL7Ljcc2fa BmsgwtdaX/blBKLYOH0xxgYIyrjswXicV0H90rwEW9y+SN5LhRVAxNyscH12 EoiRS2d/EauAuLqtX/iQMxAV23qTI1YDwfl3VjHGBQiJ5qu/5XDetbSC2D+4 AvGNrSMqVQyIerFUppsbEIaCj8b2rAP6+rwVV0I8gQi6Hihltx6It5UdYuAF RPyPvtXh0kDX6mSNJbFLmxbV5mSAWP/ptUiUNxAKKzQmzigCEXIk61GbLxA6 C6Gu/vg99JUPhUpcBMLu1JxCuDrQ2YLEpIXpQDRL7VmVpgHV1Q6/DdOwb/h2 MX5oAr2n/frJ58FAHBAfsp/bAcThiXUtvKFAGKQuVLEa4DyxWNlIXAVigW80 6LMBVEc/EqA3YAfVWFIqdgP9G1VlyCcCiOM8Wg1RhoAkvg+c7onEeUq4TfM1 BpRVHHCjIgbo9zd4TFSZgk14dk2YTzzQhQJUMq0PAd0xMSy5Lx6IOr0zg6xm YNNx/3XrngT8nOm9c4fMYWBPkEnKmkSgv2Xd3rDuKBD6R4QzOq4DceJv1j7v E4DKEtw9g24D4RnFNiDuBGmVVVvnPqQBweEoYPTACdDPQiP1lfeAXqxi/ELJ GTxOvnnz0wxbJ62kw8AFWgby3rd0Y/tbCGldOwXE6Z+Cx7/fB6T+vY/H0AOq FUsvXlz7CIgNldcubvCBtFGjv25fH+N8Pu5PjvKBOIW2wNltWVBdXNrDmPEB ZFEnPxeOvSjvFPXOF+jHppMclbKh+tTgU8mr/qBa6V740y8HiNtCj4p2BgKx KdclXv4p0FsJs5G+EJizay5q9iiAtBdtD/zlLkEDt4tsWmoB2IyXv6z3uAS3 tAIvZDVjO6YNRXKEAv37WLaLciGkxXPw9GwLAwHd5q64n4WA3nL/2VN9BcLN ygz8/IqALu4U5+EYDbTe5qAjpaVgE72pNvt1NBCrC6o2TZQCEvHTK98YAzQd wZM7NpQBXe3xVbOpGEA6dinEtTIQOHdx+o1+HO5/p9cat3JII7p0QievQaah IssjlQoQSLjRUHvnOtAPTEpH9VaBVNLhivL+63BrKFwul78aBqRqX+7YcAPk V1u9L1KtBlXZZ6JjuTeAtuZCnvTZarCJrEkZe3MT3jncyfebrwbE/sGDXJME ee2CliRPDQxcH7+/cmsq2GeEvNM2rIOW8j+SYncfgYfTjLiCeCNIrdV7xNHy COrusKv8Ro3gIdGsrMOaDrfk6BfbHRsBRcaviHRKhzzHC4WjBY1gk2wWUKSe ASZbPGzVjN+Ax0i+u/NAJp6fRnEBl96CyXRKQ4pHDgxc/fAhgL0Zwkf97az1 CyBT1T+EM+MDtNwUW+XoUgDTvdeWXlZ+gLzLlh9SYwsgvWqmJaLjA3yr3D6Y 87kAlK7LO+zibIW4+gFvVf9CyFqSCTns2AotmVXKs8+fgYLxMf8p+TbwODXS q+tSAqUC4hONJR/B+Uru5iznF7BQJ+UfsNAJ9k4fCqLHX0H1w4cGPCN94NfY xn75RDN47tZgn/s5BM607kG+2o94Ppddbf35BWzOPXwW97sHHq2qu7j9/Rg0 eLWWDiwOQGNwp/3G/AlwP7VGg2o2CpI2Vk4nfH7B+f7JktSh78Alruy9yfU3 rCo1f9ZjNQlV6L/ubL8ZePpFVffdvWmof/SsQ8XhLwhveSf+KWkGnN1ovVor 58FWQyr59Ip5kM3VT2GvXAAN/lydIrF5oEnKXPxSuwA99w0aCPl50AlJKXvV uACBvnvvpOnNwxevq1sutC9As3gMD5vfPDxvm+BpHF8AeFX9/eDwPOQorJcY FFsEy7uTa/gqFsAnY7yZOLcIqicllQrOMUDyxdjDfCkGcCWbVrWHMsD/SeeB /bIM8LvKMGckMCDxhq/3qCIDch3XXDYtYABD/ogSzzYGiL03r1g/yQD3E0Hr lPYz4NbG4TYTlyVYlbiqosaPAS+ymBId1kwQ2Ly+clsTA3au5D55+AwTOo7r vbduZYDjeWP37iAm+L3crRDayQBWFd93X1OY8G49tfTlIAP4fu84I/OZCbLH eagCswy4ofc6Yr0FCdp9+7Tm1iyBSLf19wgFAmnrmTaPuy6B7Mr1dJMtBHqo 6hgWdmYJyl2U94toE8hyXfMFMe8lSE+Uv5xpRCApZqCcVuASSCr0Hel2JtAg 30dDo9glYN95O+lsBoGULgTfLyxYgtVK72IuybCgyLpP6zNnl6DdaYzhpsyC 3lh+DKpfWIK8sUW6hToLKnfd/WeAuQQqS131agYsKC6PTY6biwm9rFFKM/Ys KPkvLUpZhAmtnra+WQ9Z0A/JvxYlGvi5SidKOjewIp2HD53fezHhkIFv7lEl VkTTf1mi6sOEo4V1/j1qrChHv/9SjD8Tfl3fFjmgx4qebf4UC3Qm3FxUC561 YUXn+WRsfKOZwBp5fdYwhRXxfLJT2ZHBBJfmQ6PBwmwo6tt7KYku/B7iDteK S7Kh9+qGkTyfmKB6mMeyWIYNPTi+y/JvLxNsDBhPfm5lQyk10+vrhplQc4Cn 0/4QG4KskH1bJpnAHfvWwTuODRWNyVnbcJBwnTdOSYiHHTmL5I8zN5HwMdhu pdNKdiR7KrI/dzMJ8dpO+RXi7MjkpdgFy60kSJ2z53NVYkcT8vufPtQiYbL0 iWLTfnaUs+PvN/ZdJPQNtE4UxrGj1lZZjj9HSNiosPvFytvs6AY9TvuEJQkW /Yaq3vfYkamSEF+dFQnr1PaTGgXsiDF0LyrElgTVrwFSdW3sKK9IpP2NKwk9 +1WdF4U50Jk994nwCyR0Jjydtl/Lgex95Ruyg0iQ9Rnney/Hga50uki/pZPQ XzDy96EmB0rmLIxnhJJgGfvE9YglB7q+UKKvEE2CoqLQm/YUDjTudd49L5kE nbV/xFVlONGvgSUp+1IS6mq/PRBV5kRRs4yYvjJcf3/tVTZ1TrRBRmul+XMS DlrrneraxYmKWGesNCpxfrJWuF6250Se9Zd/NNaSwPW8LGD6ASeyWZWeubWZ BKXBktOD2ZxI7PN3E4/3JPzR/J3dUsiJSqt5uTNbSFgM3CqYV8uJDG+WP+Fp w8+rbXfMa5gTFZj6FTzoJME1X12IXZoLqZrXeAkPkKA7Leb5V4ELbWmr5lw5 SEKTVjDfjy1cKJ1rewbPEAk54f1Emx4XaqDl8P4aJiEyYnfmIzsu1JmwYBf1 lQRK+83+JFcu1HTHyMzlGwl8S2H747y40Lc5ZKL3HbdXZ9AYEMKFwooPOn0b IyHwTNYG8/tc6MTVg7wcEyR46mvP7MviQvWpW/bXYBOOF//oFXAhm0K5mwGT JFz7tjVgcw0XirW7YTA0RULW09vRAkNcaLtIGRf9Nwl5IutKKWNcaM7BMWrN HxISj5ylskxzIc8LrbQSbDG7EIlpFgrqk//PsG+GhFUlMd/a11HQm4mxJcZf ElK0wkQyNlKQxs8dB/zmSBBVVbT320xBVklv3k1ih/I3morvpCDDO2vN2uZJ qC0Ymh43pKDZ0HwrWCCBByZzKk0oSMdIICED+/LODafsbCgoLulD+OlFEuyR u9tWZwqiruAwbMQW0p4I4/SgIBaZjK3rGXi+/G6dybpIQWckh683YI8IWOwL vEJBUerm3MJLJCh8OVL4XywFBR3/km2N/XIna8mfuxSkZCnl8xX7G+t7k9fp FGRblHlXhklCw6/D87dzKchuE/8fa+zo+1lPTxdT0LsPBj43sFem93hBJQW5 3ACZRmzpiL87herx8x+fIuawc7sFJUabKOjEL2OqNEkC6xptorSdgowo+3T3 YlN66D8jeino2s7BVDdsn8TZoeOjFMQnx7UpGpuvObtf9ScFtSkVfcvE7uHM H2KboaAt+SPvq7GtXwj/6GBQUBUjdvjjctz959/H7FRkrFcgPYrte9OAEshL RVN398T9wo4sUBE3WUVF7GL7Ny5gf9CuUJGWoCLZR9UTTOzkrMVds9JUpClx b4DEFrrAtGhUpCI7gwkmA9ttY7tbshoVCX3INJrF3qQcd/HMdir6a9Fa/QPb nBXF6OlTEcXBzb4XO2XDzK3V+6goyDZw61vsIoHqu99Mqag9k3NzEfaFXfl3 n1tSUVMQn+UdbBXovhljR0WOgneeBmLnBRtetXWlos9+hZutsMtj+L22elFR bon1gAY27YfuQa7zVBRfnvl8BfbImq8yPcFUdP7ordoBnP/SPNpkzlUqijHV mnuK3a1gecz0NhUNTVd+1cOeU4tkbLhHRe65L+5zYqsPXon5m0lF5VP3Iurx fFgbLxucXEpF8/oWg9rYRR+/97tXU5Hf8/0mk3h+PdV6rrizgYoaLruOp2J/ pb29PNpJRatmXHJm8Pw8MKuQWNJPRVb/nWtJwu6p+BRx9SsVsZ5eWKeD3cxx VlX5LxUddmnafxbP98XWA3pnhbmRxoq9bwvx9zLcPLR/QpIbzcbLDKtgF+UM qLvIcSMpo8MXMvD3lgbmN05ocqNicVO1q7N4Pfeu8d1jyY1GCI1SYfy9Cv40 MHhpx4382rf2u+Pv+/ebrFHtU9zIx6E/vGaahHpL8yTlC9wolmXR3uoXCb3a 3fkCd7nRwPh3A0u8fpycEZoJT+dGYZc/XYn5ifNZl8nC8pQb3TSQOlA5TsJW ATmvqSpuxDoa4yzwg4TRQdnYd4N4fOvLPgXh9Uy8U+WpnwwP0twgPxPaTwIq uTs/rsyD6mcvJ3n2kdAKpxZsNHjQ3JB/g0UvHq+xjZjhHh40bXq0SuITfr+8 iQVCLjzIeW54nVsHCWMFWttv5fCgGGoph+Y7vD8ZRR7nKuJBptmsVr1vSAj7 aCLt84IH5cvZo6BGEm4V0RNNm3lQyPa5ZwX1OP/DvuOcUzyo5F7I0S/VJGhu 3HnKSo0X8S3IffF7RsLUw6Ou6tt5ET+98sjvAry+XbpC4dPnRd7cO6Zc8knI 1reSrDTlReij9819uSS0Ke+4LurFi6Zu32gcyMD763/UTxV5vOjz1T+rDyWR cE4x1CK2lBe5cx2QibtFQonuqJNtNS8yPchl13gD93fsmip7Cy+apx11UE0g Qa5C7MiuSVw/qi+1JZKE9CtJMrnKKxDxfWqvJd5fbbVUNvurr0BfORMcLc+T 8MAz8YX+jhUoL4FRfNiPhAgZfvNO4xXIOkRqTt8br5fml+znTq1A495l1F+n SPjeX6m2LmsFGirP7L2O93vmuOoKLlk+JHXt7So+dRKojrtFHDfxoQcad9Nt tpAgYDvgXKfBh372mXTlquD93HmqN2gPH1oc85TUVcDru3HBxJgzH/Ldm71P fi0Jb9iYD+9m8yGdA1Z9ihQSjCac9E6r8qOIKxaNMx1McODSXszX5EdDDbpT L9qYEG3n2TGL+FHDWf3W4BYmDL4OmAw8yI+EGA5vGY1MKKgnooK9+FHGbs+c qgom7D2Qe+b4M36kKZlHnL+Hz2MZ+otPxQVQPIvS2GsnJjge5+7MWyuALm6b GBazZ4J+eqpGvrQAsr1i1u9iwwTBevGLeYoC6He0XP/iUSaMFGfJPt4ugMo/ flo7ZcSEncVix0KOCaCkndVxYopMuCPsWNqSJIAMcwXqgsaW4NWBVeXVIoIo 4uzK23XHlyAZJH4cExdE6V0f6z0sloBZ+zlhVlIQyRpEPhc1X4KA8Om9CrKC 6OwXCtPWGJ+fDRx2RW4VRMy7zezvtPF52NCXV+2gINKr30PhElkC/n21miIR goh7+kCYFD7Pd3n9zpNYEERHA57VSqkyYMna6EbvkiCKkeHmua2A/0+kNFWm sAghs/Mr+1bIMGDUJ6JTnCqEMrujlX+KMmDTJTZxfpoQeiHteTeEjQEfv60M /aAuhHyepipzdyzCfxwsz2s8hJBeo5/tTb9FuPSZflR3RAjty27dTHm2AGU6 xvGPC1YizszXKTtl5iEurOaam8cqNN72xmNLwF9wAcdQSZXVqBxUhKeiZqC1 rrLxx4fVyDrg8OK2x79hMv3xll2ewqhZPFdlPuoXGBuOPU+ZEUYEPPj+XnwS isvs2gadRNDt4O1fBNR/gPvxY++etoqgG77MxEW+ryD1Md6iVJaGpl8fU6s9 NAw5Ub05IZ40FJTa6ZjC2g8Tz1/TI7JpyK+qucFwdRfsmn74dk8ODVm1+1Q/ YXQC16Z+M/YnNESpnXeRGOmExOxk6YBcGrJRPD4mXNgJNgUPyq3zaYiukL87 +GAnjOmWC3GU0NAQze+GalwHhLJCQs1LGtqQpnBs/ep2iDh0NlusnYYMNcmk ON1WqC4zFSrGvh/KvfhMthWKFZ88MemgIdeW265f+FqhlSX+0qVOGpKSsk3w 6P8A36usS/u7aSg+JKJhffAHMP7yPdOrD/fnlp/M/roFEmx2NXB8pSGPj2lk Z1kzVOwqaliYwePfpshzzKER6l5NllrP0lC4rNqkATRCTViMYB1217mjh/eK NkIiM3Yp4i8N6bQ+aUttaoCljKa3gvM0RFvNei1oWwOYmrDfYWPQUFqnmfpK gdcgdMC65zyLKHqW0Pam62MdqEyJpjZh5zT9/sRRUAcVpprda1lFkb1FyLX9 sXUQFWf0tAY7R86aV3lvHWRMOEywsIuiqIh2VeWXtZBjqS7sxCmKVOffJms9 qwHXV37Ee25RJFFoO1iRWw1WHb0z/DyiyGyPe/J4bDUoAe9ZE2zk0zuh4VkN 9TQHzhbsNEllX/Gt1dCy0S25kVcUCZRb1xj5VME6BYfBdD5RNCcd+Soo+QX8 8OHP5xUSRZqvjYTDBcshgWvTKcDOEznWmtlTBurRe8s9sSkt//kTD8vAbUlB tB0bNbFUmG0rg5vp+0dvrBRFmasCg+JtSqGvPXo112pR1GVrIOH+ohg2Nt1s ThYRReG7s+UYaYVAG6NtrcfOLHi5mc2tEEybCxQnsVtOTOQaaxVCfI19G9Bw /xnXdDJaC4BveMuqz9gD+8S3XaAUgOaUYychhtu/EM/Ip+fBN4MUI1JcFBEc h1cc2ZMNbAeCOSQkRJHUx8kj26ayIMXczEET2ybQYjD1dhZoWVJXemALjFQJ ck88hp7YEI1P2FNJZ8INUjLhyZW7EvfWiKK4Dm5jt9XpoDPywXZSEvcvpaYl 4XYPPtX/CCTWiqLqCb0d3Yr34ObwMwtBbDrry938P9LA/rWa6ZZlaxg//uKa BqfohJknNvJmrQkfuAvu976zjWDb/N5Sdk36DoRv1jz0C3uA06BBOy8JfleW ujCxiTL3l507kmDbhS0TIlK4fNizwZ/HbgNDVtfOEDttLKsn+sFNiOKPtUld tozEZKFNIthJPz72GBvR2LUzGQnA+TlMpnA5fvyWUPztBMiQdJOrx67e4t+0 uyMe9At1f33HJuJ7WbYduwa0aU+ujetwPOHW8yjZaEhqqJRTXbfc3miJTmAU CM26Sm5bjhfevtvTHgk+C41xu5a9KqR5ICoCBA+z3Dy+7CfNq8SFwiFEwTUx fLl+hXG8s/8lcNVX7o/+177Ga8H+EFCIzybjsenXkaPMnhDoqAutS14uj5Tv REkGw9LQUY9cbCJwOLTqYyAoFj4MKFh2M826pv4CVPSx2hUvO2dNY/KLAGAp u1/zYrk98khMd5k/qE1t/PJmOb5705GA8XNw5uXLz03LlmpT0+c4B0PDrwpb lsufc1gaWe8NUR3VHB3LTmlyKTntBcPR+sb9y+WnnXJ2nHOH+Ury6OCys/el n/9zGojU0H3Dy3bn8j0TeAq+ad8c+bLsEIOTITnOsKT2eH582Q8fKVlcPAn8 M2f3TCwbNZfYGNvBuhoH+uSyncBCWtoWRlTci38te6oyqvjTcYgv+fxsetmy ORfu1x6DFtr6e7+XXW+4l6vKAvS9Bw1mlv3ZeWLHlDlUBBeS//yFZUJA1gyG Y3izZpe94dwa6zOmIMTO3vZ32aExWn1+B0D40YLp3D/7vTtJ3weWJfL1/1zn /mg41xC+NH0Kn19216bodro+mCuUdf+zt4Sq0YadMJ4RJLXwb7zlId69O6Dr fNfxfza522NarQWyPV7x/yzfnbnplzpEkfOV/1yaLEz12AJacmIj/yyQ5Vrv vwmSYi+yLv6rf3Ap4Kk8KPt3iP1z2lTm1mBpMJB9q/zP9PNsI71r4FMPVeef baq6XH+thsOfdXf/M9HsS5zng2Oewvv/Z3EP42A2iB/UOfi/+k0j/r9mdH3P nTj0v/h3W9PgYV1pHzmz/9mq71BwrS5Nedf/8/+u/wOUzruH "]]}}, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{"ScalingFunctions" -> None}, PlotRange->{{0., 6.283185307179586}, {0., 1.9999998831351729`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.05], Scaled[0.05]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.663950265114504*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Tangentni in normalni vektor", "Subsubsection", CellChangeTimes->{{3.6639509571672273`*^9, 3.6639509679240274`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vecv", " ", "=", " ", RowBox[{"D", "[", RowBox[{"vecr", ",", "t"}], "]"}]}]], "Input", CellChangeTimes->{{3.663940517328973*^9, 3.6639405245918875`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"a", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "-", RowBox[{ RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}], ",", RowBox[{"a", " ", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "t", "]"}]}]}], "}"}]], "Output", CellChangeTimes->{3.663940525243044*^9, 3.663950270727976*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vect", " ", "=", " ", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"vecv", "/", SqrtBox[ RowBox[{"vecv", ".", "vecv"}]]}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Phi]", "'"}], "[", "t", "]"}], ">", "0"}], ",", RowBox[{"a", ">", "0"}], ",", RowBox[{"0", "<", " ", RowBox[{"\[Phi]", "[", "t", "]"}], "<", " ", RowBox[{"2", "\[Pi]"}]}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.663941845373921*^9, 3.6639419553244743`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], ",", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}]}], "}"}]], "Output", CellChangeTimes->{{3.66394186383873*^9, 3.663941956127693*^9}, 3.663950273748746*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dsd\[Phi]", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"D", "[", RowBox[{"vecr", ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "]"}], ".", RowBox[{"D", "[", RowBox[{"vecr", ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "]"}]}], "]"}], ",", RowBox[{"a", ">", "0"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6639421770170527`*^9, 3.6639422118490963`*^9}, { 3.6639423798877373`*^9, 3.663942383198599*^9}}], Cell[BoxData[ RowBox[{"a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]], "Output", CellChangeTimes->{{3.6639421856403008`*^9, 3.6639422124202414`*^9}, 3.6639423840278215`*^9, 3.6639502977689853`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dvectds", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"D", "[", RowBox[{"vect", ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "]"}], "/", "dsd\[Phi]"}], "]"}]}]], "Input", CellChangeTimes->{{3.6639423971772294`*^9, 3.6639424512992845`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], RowBox[{"2", " ", "a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], RowBox[{"2", " ", "a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]]}]}], "}"}]], "Output", CellChangeTimes->{{3.6639424092813797`*^9, 3.663942453364828*^9}, 3.6639503109594088`*^9}] }, Open ]], Cell["Ukrivljenost", "Text", CellChangeTimes->{{3.663950982515812*^9, 3.663950987973234*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Kappa]", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{"Norm", "[", "dvectds", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a", ">", "0"}], ",", RowBox[{"0", "<", " ", RowBox[{"\[Phi]", "[", "t", "]"}], "<", " ", RowBox[{"2", "\[Pi]"}]}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6639424684517355`*^9, 3.6639425094433956`*^9}}], Cell[BoxData[ FractionBox[ RowBox[{"Csc", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], RowBox[{"4", " ", "a"}]]], "Output", CellChangeTimes->{{3.663942473646083*^9, 3.663942510650691*^9}, 3.663950314717385*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vecn", " ", "=", RowBox[{"Simplify", "[", " ", RowBox[{ RowBox[{"dvectds", "/", "\[Kappa]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a", ">", "0"}], ",", RowBox[{"0", "<", " ", RowBox[{"\[Phi]", "[", "t", "]"}], "<", " ", RowBox[{"2", "\[Pi]"}]}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6639428483834023`*^9, 3.663942877395934*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]], ",", RowBox[{"-", FractionBox[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], "2"]}], SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]]}]}], "}"}]], "Output", CellChangeTimes->{{3.66394286007345*^9, 3.6639428781791368`*^9}, 3.663950316992976*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Simplify", "[", RowBox[{"vecn", ".", "vecn"}], "]"}]], "Input", CellChangeTimes->{{3.6639428813069506`*^9, 3.663942893301071*^9}}], Cell[BoxData["1"], "Output", CellChangeTimes->{{3.6639428883988047`*^9, 3.66394289388723*^9}, 3.663950319545638*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"veca", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"s", "''"}], "[", "t", "]"}], " ", "vect"}], " ", "+", " ", RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{ RowBox[{"s", "'"}], "[", "t", "]"}], "2"], "vecn"}]}]}]], "Input", CellChangeTimes->{{3.6639426765307727`*^9, 3.663942710476591*^9}, { 3.6639429428229313`*^9, 3.66394294516354*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox[ RowBox[{ RowBox[{"Csc", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}], RowBox[{"4", " ", "a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]], "+", RowBox[{ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{ SuperscriptBox["s", "\[Prime]\[Prime]", MultilineFunction->None], "[", "t", "]"}]}]}], ",", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}], RowBox[{"2", " ", "a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]]}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{ SuperscriptBox["s", "\[Prime]\[Prime]", MultilineFunction->None], "[", "t", "]"}]}]}]}], "}"}]], "Output", CellChangeTimes->{3.663942713054269*^9, 3.663942946106789*^9, 3.663950323978804*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vecS", " ", "=", " ", RowBox[{"S", " ", "vecn"}]}]], "Input", CellChangeTimes->{{3.6639425968550787`*^9, 3.663942646354947*^9}, { 3.663942827473971*^9, 3.663942828725301*^9}, {3.6639428996847286`*^9, 3.6639429010660877`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"S", " ", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]], ",", RowBox[{"-", FractionBox[ RowBox[{"2", " ", "S", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], "2"]}], SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]]}]}], "}"}]], "Output", CellChangeTimes->{{3.6639426136864634`*^9, 3.663942646946086*^9}, 3.6639429016402483`*^9, 3.66395032642544*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Newtonova ena\[CHacek]ba ", "Subsubsection", CellChangeTimes->{{3.663951004336478*^9, 3.663951024218653*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqN", " ", "=", " ", RowBox[{ RowBox[{"m", " ", "veca"}], " ", "-", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "m"}], " ", "g", " ", "vecj"}], " ", "+", " ", "vecS"}], ")"}]}]}]], "Input", CellChangeTimes->{{3.663942538810011*^9, 3.6639425718866005`*^9}, { 3.6639427916306615`*^9, 3.6639427967389936`*^9}, {3.663942960935644*^9, 3.6639429716934295`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"S", " ", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]]}], "+", RowBox[{"m", " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{"Csc", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}], RowBox[{"4", " ", "a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]], "+", RowBox[{ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{ SuperscriptBox["s", "\[Prime]\[Prime]", MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"g", " ", "m"}], "+", FractionBox[ RowBox[{"2", " ", "S", " ", SuperscriptBox[ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], "2"]}], SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]], "+", RowBox[{"m", " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}], RowBox[{"2", " ", "a", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]]}], "+", RowBox[{ RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{ SuperscriptBox["s", "\[Prime]\[Prime]", MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}]}]}], "}"}]], "Output", CellChangeTimes->{{3.6639426167652483`*^9, 3.6639426487245464`*^9}, 3.6639427245372505`*^9, 3.6639427975622015`*^9, 3.663942904346944*^9, { 3.6639429543859277`*^9, 3.663942972298578*^9}, 3.663950331361722*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"eqt", "=", RowBox[{"Simplify", "[", RowBox[{"eqN", ".", "vect"}], "]"}]}], "\[IndentingNewLine]", RowBox[{"eqn", "=", RowBox[{"Simplify", "[", RowBox[{"eqN", ".", "vecn"}], "]"}]}]}], "Input", CellChangeTimes->{{3.6639426600824986`*^9, 3.6639426624061055`*^9}, { 3.663942733547583*^9, 3.6639427695359297`*^9}, {3.663942804293956*^9, 3.663942806107422*^9}, {3.6639429753363686`*^9, 3.663942992253789*^9}}], Cell[BoxData[ RowBox[{"m", " ", RowBox[{"(", RowBox[{ RowBox[{"g", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}]}], "+", RowBox[{ SuperscriptBox["s", "\[Prime]\[Prime]", MultilineFunction->None], "[", "t", "]"}]}], ")"}]}]], "Output", CellChangeTimes->{{3.6639427420177755`*^9, 3.6639427703131247`*^9}, 3.663942806800605*^9, 3.6639429078578444`*^9, {3.6639429564054527`*^9, 3.6639429931639986`*^9}, 3.6639503353487535`*^9}], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "a", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "S"}], "+", RowBox[{"g", " ", "m", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]}], ")"}], " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}]}], "-", RowBox[{"m", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}]}], ")"}]}], RowBox[{"2", " ", "a", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], ")"}]}]]], "Output", CellChangeTimes->{{3.6639427420177755`*^9, 3.6639427703131247`*^9}, 3.663942806800605*^9, 3.6639429078578444`*^9, {3.6639429564054527`*^9, 3.6639429931639986`*^9}, 3.6639503355028133`*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Energijska ena\[CHacek]ba", "Subsubsection", CellChangeTimes->{{3.6639510288708506`*^9, 3.6639510396496544`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqE", "=", RowBox[{"Simplify", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], "m", " ", SuperscriptBox[ RowBox[{ RowBox[{"s", "'"}], "[", "t", "]"}], "2"]}], "+", " ", RowBox[{"m", " ", "g", " ", RowBox[{"vecr", ".", "vecj"}]}], "-", " ", RowBox[{"(", RowBox[{ RowBox[{"m", " ", "g", " ", RowBox[{"vecr", ".", "vecj"}]}], "/.", RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "\[Rule]", " ", "\[Pi]"}]}], ")"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6639452259748545`*^9, 3.6639452884400826`*^9}, { 3.6639453241003428`*^9, 3.663945360316742*^9}}], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", "m", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "a", " ", "g", " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], ")"}]}], "+", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}]}]], "Output", CellChangeTimes->{{3.663945243953522*^9, 3.6639452897644334`*^9}, { 3.663945345415885*^9, 3.6639453609509196`*^9}, 3.66395035156499*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["To\[CHacek]ka odlepitve", "Subsubsection", CellChangeTimes->{{3.663951065587385*^9, 3.663951080917368*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"slvsp", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"eqE", "\[Equal]", " ", "0"}], ",", RowBox[{ RowBox[{"s", "'"}], "[", "t", "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6639453655651054`*^9, 3.663945383637805*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Rule]", RowBox[{ RowBox[{"-", SqrtBox["2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"a", " ", "g"}], "+", RowBox[{"a", " ", "g", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "\[Rule]", RowBox[{ SqrtBox["2"], " ", SqrtBox[ RowBox[{ RowBox[{"a", " ", "g"}], "+", RowBox[{"a", " ", "g", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.663945384404011*^9, 3.6639503633750353`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqS0", "=", RowBox[{"Simplify", "[", RowBox[{"eqn", "/.", RowBox[{"S", "\[Rule]", " ", "0"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.6639430016802115`*^9, 3.663943012229978*^9}, { 3.663944727002299*^9, 3.6639447329648333`*^9}}], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "a", " ", "g", " ", "m", " ", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}], "+", RowBox[{"m", " ", RowBox[{"Csc", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["s", "\[Prime]", MultilineFunction->None], "[", "t", "]"}], "2"]}]}], RowBox[{"4", " ", "a"}]]], "Output", CellChangeTimes->{3.6639430128711157`*^9, 3.663944733585981*^9, 3.6639503762874117`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eq\[Phi]", "=", RowBox[{"Simplify", "[", RowBox[{"eqS0", "/.", RowBox[{"slvsp", "[", RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.663945395669935*^9, 3.6639454318643284`*^9}}], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", "g", " ", "m", " ", RowBox[{"(", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"2", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}]}]]}], "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], ")"}], " ", RowBox[{"Csc", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}]}]}], ")"}]}]], "Output", CellChangeTimes->{{3.6639454108328743`*^9, 3.6639454324494853`*^9}, 3.663950386286971*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pom1", "=", RowBox[{"FullSimplify", "[", RowBox[{"eq\[Phi]", ",", RowBox[{"0", "<", RowBox[{"\[Phi]", "[", "t", "]"}], "<", RowBox[{"2", "\[Pi]"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.663950402911291*^9, 3.6639504132549815`*^9}, { 3.663950655648924*^9, 3.6639506565091543`*^9}}], Cell[BoxData[ RowBox[{"g", " ", "m", " ", RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], " ", RowBox[{"Csc", "[", FractionBox[ RowBox[{"\[Phi]", "[", "t", "]"}], "2"], "]"}]}]], "Output", CellChangeTimes->{3.663950413996168*^9, 3.6639506572273445`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Reduce", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"pom1", "\[Equal]", " ", "0"}], " ", "&&", " ", RowBox[{"0", "<", RowBox[{"\[Phi]", "[", "t", "]"}], "<", RowBox[{"2", "\[Pi]"}]}], " ", "&&", " ", RowBox[{"g", " ", "\[NotEqual]", " ", "0"}], "&&", " ", RowBox[{"m", "\[NotEqual]", " ", "0"}]}], ")"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}], ",", "Reals"}], "]"}]], "Input", CellChangeTimes->{{3.663950663823048*^9, 3.6639507148763094`*^9}, { 3.663950748850134*^9, 3.663950816740773*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"g", "\[NotEqual]", "0"}], "&&", RowBox[{"m", "\[NotEqual]", "0"}], "&&", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", "4"}], " ", RowBox[{"ArcTan", "[", RowBox[{"1", "-", SqrtBox["2"]}], "]"}]}]}], "||", RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "\[Equal]", RowBox[{"4", " ", RowBox[{"ArcTan", "[", RowBox[{"1", "+", SqrtBox["2"]}], "]"}]}]}]}], ")"}]}]], "Output", CellChangeTimes->{{3.6639506770014696`*^9, 3.6639507012927775`*^9}, 3.6639507591458025`*^9, {3.663950790980068*^9, 3.6639508174039316`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.663950827264493*^9, 3.663950832205783*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"g", "\[NotEqual]", "0"}], "&&", RowBox[{"m", "\[NotEqual]", "0"}], "&&", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"2", " ", RowBox[{"\[Phi]", "[", "t", "]"}]}], "\[Equal]", "\[Pi]"}], "||", RowBox[{ RowBox[{"2", " ", RowBox[{"\[Phi]", "[", "t", "]"}]}], "\[Equal]", RowBox[{"3", " ", "\[Pi]"}]}]}], ")"}]}]], "Output", CellChangeTimes->{3.663950832866947*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eq\[Phi]", "/.", RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "\[Rule]", " ", RowBox[{"3", RowBox[{"\[Pi]", "/", "2"}]}]}]}]], "Input", CellChangeTimes->{{3.663950631710707*^9, 3.6639506440579214`*^9}}], Cell[BoxData["0"], "Output", CellChangeTimes->{3.6639506448311286`*^9}] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{1517, 1141}, WindowMargins->{{-3, Automatic}, {Automatic, 42}}, FrontEndVersion->"10.3 for Microsoft Windows (64-bit) (October 9, 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 153, 2, 101, "Title"], Cell[736, 26, 164, 3, 30, "Text"], Cell[903, 31, 370, 10, 52, "Input"], Cell[CellGroupData[{ Cell[1298, 45, 101, 1, 39, "Subsubsection"], Cell[CellGroupData[{ Cell[1424, 50, 432, 12, 31, "Input"], Cell[1859, 64, 496, 15, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2392, 84, 340, 9, 31, "Input"], Cell[2735, 95, 9730, 169, 141, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[12514, 270, 123, 1, 39, "Subsubsection"], Cell[CellGroupData[{ Cell[12662, 275, 185, 4, 31, "Input"], Cell[12850, 281, 730, 21, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13617, 307, 558, 16, 40, "Input"], Cell[14178, 325, 344, 10, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14559, 340, 525, 14, 31, "Input"], Cell[15087, 356, 303, 8, 34, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15427, 369, 292, 8, 31, "Input"], Cell[15722, 379, 793, 26, 60, "Output"] }, Open ]], Cell[16530, 408, 94, 1, 30, "Text"], Cell[CellGroupData[{ Cell[16649, 413, 414, 11, 31, "Input"], Cell[17066, 426, 250, 7, 55, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17353, 438, 417, 11, 31, "Input"], Cell[17773, 451, 741, 24, 61, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18551, 480, 158, 3, 31, "Input"], Cell[18712, 485, 121, 2, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18870, 492, 410, 11, 31, "Input"], Cell[19283, 505, 1715, 53, 60, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21035, 563, 258, 5, 31, "Input"], Cell[21296, 570, 802, 25, 61, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[22147, 601, 116, 1, 39, "Subsubsection"], Cell[CellGroupData[{ Cell[22288, 606, 416, 11, 31, "Input"], Cell[22707, 619, 2810, 83, 63, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25554, 707, 451, 9, 52, "Input"], Cell[26008, 718, 519, 13, 47, "Output"], Cell[26530, 733, 1173, 34, 57, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[27752, 773, 120, 1, 39, "Subsubsection"], Cell[CellGroupData[{ Cell[27897, 778, 663, 19, 46, "Input"], Cell[28563, 799, 586, 16, 46, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[29198, 821, 114, 1, 39, "Subsubsection"], Cell[CellGroupData[{ Cell[29337, 826, 267, 7, 31, "Input"], Cell[29607, 835, 935, 31, 36, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[30579, 871, 269, 6, 31, "Input"], Cell[30851, 879, 653, 20, 56, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[31541, 904, 247, 6, 31, "Input"], Cell[31791, 912, 648, 20, 47, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[32476, 937, 337, 8, 31, "Input"], Cell[32816, 947, 287, 7, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33140, 959, 571, 13, 31, "Input"], Cell[33714, 974, 698, 20, 36, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34449, 999, 131, 2, 31, "Input"], Cell[34583, 1003, 442, 13, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35062, 1021, 241, 6, 31, "Input"], Cell[35306, 1029, 72, 1, 31, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)