1. Prove that

$$2^{n-2}n(n-1) = \sum_{k=0}^{n} k(k-1) \binom{n}{k}.$$

2. Prove that for $k \leq n$ it holds

$$\binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}.$$

3. Prove that

$$\binom{n+m}{k} = \sum_i \binom{n}{i} \binom{m}{k-i}.$$

4. Prove that

$$B(n+1) = \sum_{i=0}^{n} \binom{n}{i} B(i).$$

- 5. Prove that $B(n) \leq n!$.
- 6. Prove that $n! \leq S(2n, n) \leq (2n)!$.
- 7. Let F(n,k) denote the number of sequences A_1, \ldots, A_n , where $1 \leq A_i \leq k$, $A_i \in \mathbb{N}$, for all $i \in [n]$, and the following properties hold for the sequence.
 - For every $j \in [k]$ there exists $i \in [n]$ such that $A_i = j$.
 - The first time j appears in the sequence A_1, \ldots, A_n is before the first appearance of j+1.

Prove that F(n,k) = S(n,k).