Deformaction retracts

Definicija 3.1 Let $A \subset X$. A map $r: X \to A$ such that $r|_A = id_A$ is called a **retraction** and a subspace A is called a **retract** of X.

A subspace $A \subset X$ is **deformation retract**, if there exists a homotopy $H: X \times \mathbb{I} \to X$ from id_X and a retraction $r: X \to A$. A homotopy H is called **deformation retraction**. If the homotopy H fixes the subset A then H is called **strong deformation retraction** and a subset A is called **strong deformation retract** of the space X.

Naloga 3.2 1. Find all retracts of \mathbb{S}^1 .

- 2. Find all deformation retracts of \mathbb{S}^1 .
- 3. Find all strong deformation retracts of \mathbb{S}^1 .

Naloga 3.3 Prove that deformation retractions $F,G: X \times \mathbb{I} \to X$ are homotopic.

Naloga 3.4 Let $x_0 \in X$ be strong deformation retract of X.

- 1. Prove that for every neighborhood U of the point x_0 there exists a neighborhood $V \subset U$ of x_0 such that the inclusion $i: V \hookrightarrow U$ is homotopy to a constant map.
- 2. Prove that X is locally connected at the point x_0 .

Naloga 3.5 Let $X = (\mathbb{I} \times \{0\}) \cup (\{0\} \times \mathbb{I}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times \mathbb{I})$.

- 1. Prove that every point in X is a deformation retract of X.
- 2. Find all points in X which are strong deformation retracts of X.

Naloga 3.6 Let $X = ([0,1] \times \{0\}) \cup \{(x+a,\frac{x}{n}) \mid x \in [0,\frac{1}{2}], a \in \{0,\frac{1}{2}\}, n \in \mathbb{N}\}.$

- 1. Prove that X is contractible. (Hence every point in X is a deformation retract of X.)
- 2. Find all points in X which are strong deformation retracts of X.

Naloga 3.7 Let

$$X=\left(\left[0,1\right]\times\left\{ 0\right\} \right)\cup\left\{ \left(x+a,\frac{x}{n}\right)\mid m\in\mathbb{N},x\in\left[0,\frac{1}{2^{m}}\right],a=\frac{2^{m-1}-1}{2^{m-1}},n\in\mathbb{N}\right\} .$$

Prove that X is contractible.

Naloga 3.8 Let

$$T = \left(\mathbb{I} \times \{0\}\right) \cup \left(\cup_{q \in \mathbb{Q} \cap \mathbb{I}} \{q\} \times [0, q]\right)$$

and let \hat{T} be a set which is the mirror image of T over the line x=y and translated by the vector (0,-1). Let $X_0=T\cup\hat{T}$ and for all $n\in\mathbb{Z}$ let X_n be the set X_0 translated by the vector (n,n). Let $X=\bigcup_{n\in\mathbb{Z}}X_n$.

- 1. Prove that every point in X is a deformation retract of X.
- 2. Prove that there are no point in X which is a strong deformation retract of X.