Homotopy

Naloga 1.1 Let X be a topological space.

- 1. Prove taht $f, g: X \to \mathbb{R}^n$ are homotopic.
- 2. Let r > 0. Prove that $f, g: X \to \{(x, y) \in \mathbb{R}^2 \mid |x|^r + |y|^r \le 1\}$ are homotopic.
- 3. A subset $A \subset \mathbb{R}^n$ is **star-shaped** if there exists $a \in A$ such that for every $x \in A$ the segment $\{(1-t)a+tx \mid t \in \mathbb{I}\}$ is in the set A. Prove that $f,g\colon X \to A$ are homotopic, provided A is star-shaped subset of \mathbb{R}^n .
- 4. Prove that $f, g: X \to \mathbb{S}^2 \setminus \{(0, 0, 1)\}$ are homotopic.

Naloga 1.2 Let X be a topological space.

- 1. Prove that every map $f: \mathbb{R}^n \to X$ is homotopic to a constant map.
- 2. Are $f, g: \mathbb{R}^n \to X$ always homotopic? Find a condition on the space X such that all maps from \mathbb{R}^n to X are homotopic.

Naloga 1.3 Let $f, g: X \to \mathbb{C} - \{0\}$ be such that |f(x) - g(x)| < |f(x)| for all $x \in X$. Prove that f and g are homotopic.

Naloga 1.4 Let $n \in \mathbb{N} \cup \{0\}$.

- 1. Are $f, g: \mathbb{S}^n \to \mathbb{S}^n$ homotopic?
- 2. Let $f: \mathbb{S}^n \to \mathbb{S}^n$ be non surjective map. Prove that f is homotopic to constant map.
- 3. Let $f,g:\mathbb{S}^n\to\mathbb{S}^n$ such that $f(x)\neq -g(x)$ for all $x\in\mathbb{S}^n$. Prove that f and g are homotopic.
- 4. Let $f: \mathbb{S}^n \to \mathbb{S}^n$ taka, da je $f(x) \neq -x$ za vse $x \in \mathbb{S}^n$. Prove that f is not homotopic to a constant map.

Naloga 1.5 Let X be a topological space, $x_0 \in \mathbb{S}^n$ and $f: \mathbb{S}^n \to X$. Prove that the following is equivalent:

- 1. The map f is homotopic to a constant map c.
- 2. There exists an extension $F: \mathbb{B}^{n+1} \to X$ of the map f.
- 3. $f \simeq c \ (rel \ x_0)$.

Naloga 1.6 Let $n \in \mathbb{N}$.

- 1. Prove that the inclusion $i: \mathbb{S}^{n-1} \hookrightarrow \mathbb{R}^n \{0^n\}$ is not homotopic to a constant map.
- 2. Let $m \in \mathbb{N}$ and m > n. Prove that the inclusion $i: \mathbb{S}^{n-1} \hookrightarrow \mathbb{R}^m \{0^m\}$ is homotopic to a constant map.

Naloga 1.7 Let $f, g: [-1,1] \to \mathbb{R}^2 - \{(0,0)\}$ be defined as $f(x) = (x, \sqrt{1-x^2})$ and $g(x) = (x, -\sqrt{1-x^2})$. Prove that $f \simeq g$ and $f \not\simeq g$ (rel $\{-1,1\}$).

Naloga 1.8 Let $N = \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}, \ X = \mathbb{I} \times N, \ Y = \{(x, kx) \in \mathbb{R}^2 \mid x \in \mathbb{I}, k \in N\} \ and \ A = \mathbb{I} \times \{0\}.$ Definirajmo f(x, y) = (x, 0) in g(x, y) = (x, xy).

- 1. Prove that for $f, g: X \to Y$ we have $f \simeq g$.
- 2. Prove that for $f, g: (X, A) \to (Y, A)$ we have $f \simeq g$.
- 3. Prove that for $f, g: X \to Y$ we have $f \simeq g$ (rel A).